Kaushik Jayaram
Assistant Professor • Robotics and Systems Design, Materials, Micro/Nanoscale

Office Location: ECES 166 
Lab Location: ECME 1B35 / ECES 1B14

Research Interests

Bioinspired robotics, biomechanics, locomotion robustness, origami-based design and fabrication, distributed sensing

Jayaram's research combines biology and robotics to, uncover the principles of robustness that make animals so successful at locomotion in natural environments, and, in turn, inspire the design of the next generation of novel robots for effective real-world operation. 

Societal Impact

Our research aims to develop a rich ecosystem of robotic devices that, in the not-so-distant future, will have the potential to benefit human lives in the areas of search and rescue, inspection and maintenance, personal assistance, and environmental monitoring.

Select Publications

  • Jayaram,K.*, Doshi, N.*, Castellanos, S., Kuindersma, S., & Wood, R. J. (2019). Effective locomotion at multiple stride frequencies using proprioceptive feedback on a legged microrobot. Bioinspiration & Biomimetics,14(5), 056001. (Selected for Special Issue on Terrestrial Locomotion)
  • de Rivaz, S. D., Goldberg, B., Doshi, N., Jayaram, K., Zhou, J., & Wood, R. J. (2018). Inverted and vertical climbing of a quadrupedal microrobot using electroadhesion. Science Robotics, 3(25), eaau3038. 
  • Jayaram, K., Jafferis, N. T., Doshi, N., Goldberg, B., & Wood, R. J. (2018). Concomitant sensing and actuation for piezoelectric microrobots. Smart Materials and Structures, 27(6), 065028.
  • Jayaram, K., Mongeau, J.-M., Mohapatra, A., Birkmeyer, P., Fearing, R. S., & Full, R. J. (2018). Transition by head-on collision: mechanically mediated manoeuvres in cockroaches and small robots. Journal of The Royal Society Interface, 15(139), 20170664. 
  • Jayaram, K. & Full, R. J. (2016). Cockroaches traverse crevices, crawl rapidly in confined spaces, and inspire a soft, legged robot. Proceedings of the National Academy of Sciences, 113(8), E950–E957.