Charles Musgrave
Robert H. Davis Professor • Associate Dean of Graduate Programs, College of Engineering and Applied Science • Fellow, Renewable and Sustainable Energy Institute • Fellow, Materials Science and Engineering Program

Office: JSCBB E1B45
Mailbox: 596 UCB


PhD, California Institute of Technology, 1994
MS, California Institute of Technology, 1990
BS, University of California at Berkeley, 1988


  • Boulder, Faculty Assembly Award for Excellence in Research, Scholarly, and Creative Work (2020)
  • Outstanding Research Award, College of Engineering, University of Colorado Boulder (2017)
  • Outstanding Service Award, Department of Chemical and Biological Engineering, University of Colorado Boulder (2017)
  • Undergraduate Teaching Award, Department of Chemical and Biological Engineering, University of Colorado Boulder (2013)
  • NSF US-Japan Nanoscience and Technology Young Scientist Exchange Program (2003)
  • AIChE NorCal Excellence Award for Academic Teaching (2003)
  • Charles Powell Fellow, Stanford University (1997)
  • First Feynman Prize in Nanotechnology (1993)

Selected Publications

  • Bartel, C.J., J.M. Clary, C. Sutton, D. Vigil-Fowler, B.R. Goldsmith, A.M. Holder, C.B. Musgrave, "Inorganic Halide Double Perovskites with Optoelectronic Properties Modulated by Sublattice Mixing,” Journal of the American Chemical Society 142 (11), 5135-5145 (2020). DOI: 10.1021/jacs.9b12440

  • Singstock, N.R., C.J. Bartel, A.M. Holder, C.B. Musgrave, "High‐Throughput Analysis of Materials for Chemical Looping Processes,” Advanced Energy Materials, 2000685 (2020). DOI: 10.1002/aenm.202000685

  • Bartel, C.J., C. Sutton, B.R. Goldsmith, R. Ouyang, C.B. Musgrave, L.M. Ghiringhelli, M. Scheffler, “New Tolerance Factor to Predict Perovskite Oxide and Halide Stability,” Science Advances, 5 (2), eaav0693 (2019).

  • Kim, K., N.R. Singstock, K.K. Childress, J. Sinha, A.M. Salazar, S.N. Whitfield, A.M. Holder, J.W. Stansbury, C.B. Musgrave, "Rational Design of Efficient Amine Reductant Initiators for Amine–Peroxide Redox Polymerization’” Journal of the American Chemical Society 141, 6279-6291 (2019). DOI: 10.1021/jacs.8b13679

  • Lim, C., S. Ilic, A. Alherz, B. Worrell, S. Bacon, J. Hynes, K. Glusac and C. Musgrave, “Benzimidazoles as Metal-Free and Renewable Hydrides for CO2 Reduction to Formate,” Journal of the American Chemical Society, 141 (1), 272-280 (2019). DOI: 10.1021/jacs.8b09653

  • Mavila, S., B. Worrell, H. Culver, T. Goldman, C. Wang, C-H Lim, D. Domaille, S. Pattanayak, M. McBride, C. Musgrave and C. Bowman, “Dynamic and Responsive DNA-Like Polymers,” Journal of the American Chemical Society 140, 13594-135-98 (2018). DOI: 10.1021/jacs.8b09105

  • Bartel, C.J., S.L. Millican, A.M. Deml, J.R. Rumptz, W. Tumas, A.W. Weimer, S. Lany, V. Stevanovic, C. B. Musgrave,* and A.M. Holder*, “Machine Learning The Gibbs Energy of Inorganic Crystalline Solids,” Nature Communications, 9 (2018). DOI: 10.1038/s41467-018-06682-4

  • Young, M., A. Holder, C. Musgrave, “The Unified Electrochemical Band Diagram Framework: Understanding the Driving Forces for Materials Electrochemistry,” Advanced Functional Materials, 28, 1803439 (2018).  DOI: 10.1002/adfm.201803439

  • Worrell, B., M. McBride, G. Lyon, L. Cox, C. Wang, S. Mavilla, C-H. Lim, H. Coley, C. Musgrave, Y. Ding and C. Bowman, “Bistable and Photoswitchable States of Matter,” Nature Communications, 9, (2018). DOI: 10.1038/s41467-018-05300-7

  • Ilic, S. A. Alherz, C.B. Musgrave, K.D. Glusac*, “Thermodynamic and Kinetic Hydricities of Metal-Free Hydrides,” Chemical Society Reviews, 47, 2809-2836 (2018). DOI: 10.1039/C7CS00171A

  • Ellis, L.D., R.M. Trottier, C.B. Musgrave, D.K. Schwartz, and J.W. Medlin*, “Controlling the Surface Reactivity of Titania via Electronic Tuning of Self-Assembled Monolayers,” ACS Catalysis, 7 (12), 8351-8357 (2017). DOI: 10.1021/acscatal.7b02789

  • Lim, C.H, M.D. Ryan, B.G. McCarthy, J.C. Theriot, S.M. Sartor, N.H. Damrauer, C.B. Musgrave, and G.M. Miyake, “Intramolecular Charge Transfer and Ion Pairing in N, N-Diaryl Dihydrophenazine Photoredox Catalysts for Efficient Organocatalyzed Atom Transfer Radical Polymerization,” Journal of the American Chemical Society, 139 (1), 348-355 (2017). DOI: 10.1021/jacs.6b11022

  • Pearson, R., C.H. Lim, B. McCarthy, C.B. Musgrave, and G.M. Miyake, “Organocatalyzed Atom Transfer Radical Polymerization Using N-Aryl Phenoxazines as Photoredox Catalysts,”  Journal of the American Chemical Society, 138 (35), 11399-11407 (2016). DOI: 10.1021/jacs.6b08068

  • Theriot, J.C., C.H. Lim, H. Yang, M.D. Ryan, C.B. Musgrave and G.M. Miyake, “Organocatalyzed Atom Transfer Radical Polymerization Driven by Visible Light," Science, 352 (6289), 1082-1086 (2016). DOI: 10.1126/science.aaf3935

  • Muhich, C.L., B. Ehrhart, V. Witte, S.L. Miller, E. Coker, C.B. Musgrave, A.W. Weimer, “Predicting the Solar Thermochemical Water Splitting Ability and Reaction Mechanism of Metal Oxides: a Case Study of the Hercynite Family of Water Splitting Cycles,” Energy and Environmental Science, 8, 3687-3699 (2015). DOI: 10.1039/C5EE01979F

  • Lim, C., A. Holder, J. Hynes and C. Musgrave, “Reduction of CO2 to Methanol Catalyzed by a Biomimetic Organo-hydride Produced from Pyridine,” Journal of the American Chemical Society, 136 (45), 16081-16095 (2014). DOI: 10.1021/ja510131a

  • Deml, A., V. Stevanovic, C. Muhich, R. O’Hayre and C. Musgrave, “Band Gap and Oxide Enthalpy of Formation as Accurate Descriptors of Oxygen Vacancy Formation Energetics,” Energy and Environmental Science, 7 (6), 1996-2004 (2014). DOI:10.1039/C3EE43874K

  • Aguirre Soto, A., C. Lim, A. Hwang, C. Musgrave and J. Stansbury, “Visible-Light Organic Photocatalysis for Latent Radical-Initiated Polymerization via 2e−/1H+ Transfers: Initiation with Parallels to Photosynthesis," Journal of the American Chemical Society, 136 (20), 7418-7427 (2014).

  • Lim, C., A. Holder and C. Musgrave, “Mechanism of Homogeneous Reduction of CO2 by Pyridine: Proton Relay in Aqueous Solvent and Aromatic Stabilization,” Journal of the American Chemical Society, 135 (10), 142-154 (2013). DOI: 10.1021/ja3064809

  • Muhich, C., B. Evanko, K. Weston, P. Lichty, X. Liang, J. Martinek, C. Musgrave, and A. Weimer, “Efficient Generation of H2 by Splitting Water with an Isothermal Redox Cycle," Science, 341 (6145) 540-542 (2013). DOI: 10.1126/science.1239454

  • Zimmerman, P., C. Musgrave and M. Head-Gordon, “A Correlated View of Singlet Fission,” Accounts of Chemical Research, 46(6) 1339-1347 (2013). DOI: 10.1021/ar3001734

  • Holder, A., K. Osborn, C. Lobb, and C. Musgrave, “Bulk and Surface Tunneling Hydrogen Defects in Alumina," Physical Review Letters, 111 (6), 065901-065905 (2013). DOI: 10.1103/PhysRevLett.111.065901

  • Ford, D., L. Nielsen, S. Zuend, C. Musgrave and E. Jacobsen, “Mechanistic Basis for High Stereoselectivity and Broad Substrate Scope in the (salen)Co(III)-Catalyzed Hydrolytic Kinetic Resolution,” Journal of the American Chemical Society, 135 (41), 15595-15608 (2013). DOI: 10.1021/ja408027p

  • Zimmerman, P., Z. Zhang, and C. Musgrave, “Generation of Multiple Triplet Excitons in Pentacene by Singlet Fission Through Doubly-Excited Dark States,” Nature Chemistry, 2, 648-652 (2010). Nature Chemistry Highlighted Article.  DOI: 10.1038/NCHEM.694

Research Interests

Catalysis for energy conversion and storage, photovoltaics, batteries, atomic and molecular layer deposition, nanotechnology
Our research program focuses on using quantum mechanics to simulate molecular processes in important engineering problems. Our approach is fundamental and interdisciplinary and combines quantum mechanics, chemical kinetics, and surface, interfacial and materials chemistry. We aim to develop a fundamental molecular and mechanistic understanding of the processes underlying important technologies and to exploit this understanding to computationally prototype and design new engineering solutions. Problems we investigate include the discovery and design of catalysts and materials for the conversion and storage of energy, and the chemistry of materials processing for microelectronics, nanofabrication, data storage and biomaterials.

Molecular Engineering of Catalysts for Energy Conversion and Storage
We use quantum simulations to discover and design molecules for the conversion and storage of energy, including; catalysts for the conversion of methane to methanol and other valuable liquid products, catalysts to produce and convert syngas, catalysts to release hydrogen for chemical storage of hydrogen and molecular dyes for dye sensitized solar cells. The discovery of an economical, low-temperature and selective catalyst for conversion of methane to valuable liquid products would have enormous impact. Vast reserves of remote natural gas are either left untapped or squandered through venting, flaring or reinjection because of cost of transporting gases. However, conversion of methane to select liquid products would greatly reduce transportation costs and produce energy and valuable chemical commodities. We are also investigating catalysts for converting syngas to various products, including ethanol, catalysts for releasing hydrogen from chemical storage species, such as ammonia borane, and photocatalysts to produce fuels. Finally, we also use quantum simulations to investigate molecules and quantum dots as the photoactive materials in photovoltaics.

Atomic and Molecular Layer Deposition
Atomic Layer Deposition and Molecular Layer Deposition are nanofabrication technologies capable of producing ultrathin, uniform and conformal films with precise thicknesses, structures and compositions. Applications have included thin films for microelectronics and thin film displays, although many new applications are being explored including coatings for biocompatibility, batteries and ultracapacitors, fuel cells and photovoltaics. We study the mechanisms of these powerful nanofabrication techniques to develop a fundamental understanding of their chemistry, which we aim to exploit to accelerate their development and extend their application.

Electronic Structure of Interfaces
Interfaces between specific dissimilar materials have properties that enable various technologies including photovoltaics, flash memory, transistors, fuel cells and batteries. We simulate the electronic properties of novel interface structures to computationally study, design and develop new interface technologies for energy, microelectronics, information storage and biomaterials technologies. Interfaces we investigate include those between metals and dielectrics, dielectrics and semiconductors, molecular dyes and dielectrics, amino acids and semiconductors and organic molecules and quantum dots.