Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Reaction dynamics

OH electron, where art thou?

The study of the reaction of a ground-state O atom with H2 has previously proved difficult because of its high activation barrier. Now, new experiments have revealed unexpected OH product states; but perhaps there is a simple explanation?

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The assignment of the six valence electrons and the projection of their spins as the O(3P) + H2 → OH(2Π) + H reaction proceeds from reactants (top left) through the transition state (top right) and on to products (bottom).

References

  1. Althorpe, S. C. et al. Nature 416, 67–70 (2002).

    Article  CAS  Google Scholar 

  2. Qiu, M. H. et al. Science 311, 1440–1443 (2006).

    Article  CAS  Google Scholar 

  3. Wang, X. et al. Science 322, 573–576 (2008).

    Article  CAS  Google Scholar 

  4. Lahankar, S. A., Zhang, J., McKendrick, K. G. & Minton, T. K. Nature Chem. 5, 315–319 10.1038/nchem.1588(2013).

    Article  CAS  Google Scholar 

  5. Herzberg, G. Molecular Spectra and Molecular Structure III. Electronic Spectra and Electronic Structure of Polyatomic Molecules (D. Van Nostrand, Princeton, 1967).

    Google Scholar 

  6. Truhlar, D. G., Hase, W. L. & Hynes, J. T. J. Phys. Chem. 87, 2664–2682 (1983).

    Article  CAS  Google Scholar 

  7. Garton, D. J. et al. J. Phys. Chem. A 110, 1327–1341 (2006).

    Article  CAS  Google Scholar 

  8. Alexander, M. H. et al. J. Chem. Phys. 89, 1749–1753 (1988).

    Article  CAS  Google Scholar 

  9. Butler, J. E., Jursich, G. M., Watson, I. A. & Wiesenfeld, J. R. J. Chem. Phys. 84, 5365–5377 (1986).

    Article  CAS  Google Scholar 

  10. Alexander, M. H., Rackham, E. J. & Manolopoulos, D. E. J. Chem. Phys. 121, 5221–5235 (2004).

    Article  CAS  Google Scholar 

  11. Andresen, P., Ondrey, G. S., Titze, B. & Rothe, E. W. J. Chem. Phys. 80, 2548 (1984).

    Article  CAS  Google Scholar 

  12. Che, L. et al. Science 317, 1061–1064 (2007).

    Article  CAS  Google Scholar 

  13. Maiti B. & Schatz, G. C. J. Chem. Phys. 119, 12360–12371 (2003).

    Article  CAS  Google Scholar 

  14. Interleaved excerpts from interviews of Dudley Herschbach (DH) by John Rigden (JR) on May 21–22, 2003 & Bretislav Friedrich (BF) on March 5–9, 2012. Mol. Phys. 110, 1549–1590 (2012).

Download references

Acknowledgements

The author is grateful to the US National Science Foundation for support under grant CHE1213332 and to Paul Dagdigian for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Millard H. Alexander.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexander, M. OH electron, where art thou?. Nature Chem 5, 253–255 (2013). https://doi.org/10.1038/nchem.1598

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1598

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing