Andrew Goodwin
Assistant Professor



B.A., Columbia University (2002)
Ph.D., University of California, Berkeley (2007)


  • NIH Director's New Innovator Award, 2014-2019
  • NIH K99 Pathway to Independence Award in Cancer Nanotechnology, 2010-2015
  • DOD Breast Cancer Postdoctoral Fellowship Award, 2010-2013
  • AACR Scholar-in-Training Award, 2011
  • NIH T32 Postdoctoral Fellowship, 2008-2010

Selected Publications

  • R. Chattaraj, G. M. Goldscheitter, A. Yildirim, and A. P. Goodwin.* "Enhanced Acoustic Vaporization of Perfluorocarbon Nanodroplets due to Phase Behavior of Mixed Lipid Monolayers." In revision.
  • K. Kumar, E. J. Castano, A. R. Weidner, A. P. Goodwin.* “Depolymerizable Poly(vinyl carbamate-alt-sulfones) as Customizable Macromolecular Mucosal Drug Delivery Scaffolds.” In revision.
  • Yildirim, R. Chattaraj, N. T. Blum, G. M. Goldscheitter, and A. P. Goodwin.* "Stable Encapsulation of Air in Mesoporous Silica Nanoparticles: Fluorocarbon-Free Nanoscale Ultrasound Contrast Agents." Adv. Healthcare Mater. 2016, in press.
  • D. W. Domaille,* G. R. Hafenstine, M. A. Greer, A. P. Goodwin,* and J. N. Cha.* “Catalytic Upgrading in Bacteria-Compatible Conditions via a Biocompatible Aldol Condensation.” ACS Sustainable Chem. Eng. 2016, 4, 671-675.
  • R. Chattaraj, P. Mohan, C. R. Livingston, J. D. Besmer, K. Kumar, and A. P. Goodwin.* “Mutually-Reactive, Fluorogenic Reporter Molecules for In-Solution Biosensing via Droplet Association.” ACS Appl. Mater. Inter. 2016, 8, 802-808.
  • K. Kumar and A. P. Goodwin.* “Alternating Sulfone Copolymers Depolymerize in Response to Both Chemical and Mechanical Stimuli.” ACS Macro Lett. 2015, 4, 907-911.
  • R. Chattaraj, P. Mohan, J. D. Besmer, and A. P. Goodwin.* “Selective Vaporization of Superheated Nanodroplets for Rapid, Sensitive Acoustic Biosensing.” Adv. Healthcare Mater. 2015, 4, 1790-1795.
  • A. P. Goodwin.* “Novel polymer-lipid assemblies for stimulus-responsive imaging contrast agents.” J. Acoust. Soc. Am. 2015, 137, 2397.
  • A. P. Goodwin,* M. A. Nakatsuka, and R. F. Mattrey.* “Stimulus-Responsive Ultrasound Contrast Agents for Clinical Imaging: Motivations, Demonstrations, and Future Directions.” WIREs Nanomed. Nanobiotechnol. 2015, 7, 111-123.
  • G. R. Hafenstine, D. W. Domaille, J. N. Cha,* and A. P. Goodwin.* “Self-Assembly and Reassembly of Fiber-forming Dipeptides for pH-Triggered DNA Delivery.” J. Polym. Sci. A. 2015, 53, 183-187.
  • K. R. Fitch and A. P. Goodwin.* “A Mechanochemical Reaction Cascade for Sensitive Detection of Covalent Bond Breakage in Hydrogels.” Chem. Mater. 2014, 26, 6771-6776.
  • P. Mohan, P. S. Noonan, M. A. Nakatsuka, and A. P. Goodwin.* “On-Demand Droplet Fusion: A Strategy for Stimulus-Responsive Biosensing in Solution.” Langmuir. 2014, 30, 12321–12327.
  • P. S. Noonan, P. Mohan, A. P. Goodwin, and D. K. Schwartz.* "DNA Hybridization-Mediated Liposome Fusion at the Aqueous-Liquid Crystal Interface." Adv. Func. Mater. 2014, 24, 3206-3214.
  • H. Noh, S. Goodman, P. Mohan, A. P. Goodwin, P. Nagpal, and J. N. Cha.* "Direct conjugation of DNA to quantum dots for scalable assembly of photoactive thin films." RSC Adv. 2014, 4, 8064-8071.
  • M. A. Nakatsuka, C. V. Barback, K. R. Fitch, A. R. Farwell, R. F. Mattrey, S. C. Esener, J. N. Cha, and A. P. Goodwin.* "In Vivo Ultrasound Visualization of Non-Occlusive Blood Clots with Thrombin-Sensitive Contrast Agents." Biomaterials. 2013, 34, 9559-9565.
  • P. F. Xu, H. Noh, J. H. Lee, D. W. Domaille, M. A. Nakatsuka, A. P. Goodwin,* and J. N. Cha.* "Imparting the unique properties of DNA into complex material architectures and functions." Mater. Today. 2013, 16, 290-296.
  • S. Chapman, et al. "Nanoparticles for cancer imaging: The good, the bad, and the promise." Nano Today. 2013, 8, 454-460.
  • M. A. Nakatsuka, R. F. Mattrey, S. C. Esener, J. N. Cha,* and A. P. Goodwin.* "Aptamer-Crosslinked Microbubbles: Smart Contrast Agents for Thrombin-Activated Ultrasound Imaging." Adv. Mater. 2012, 24, 6010-6016.
  • M. A. Nakatsuka, M. J. Hsu, S. C. Esener,* J. N. Cha,* and A. P. Goodwin.* “DNA-Coated Microbubbles with Biochemically-Tunable Ultrasound Contrast Activity.” Adv. Mater. 2011, 23, 4908-4912.
  • M. A. Nakatsuka, J. H. Lee, E. Nakayama, A. M. Hung, M. J. Hsu, R. F. Mattrey, S. C. Esener,* J. N. Cha,* and A. P. Goodwin.* “Facile One-Pot Synthesis of Polymer-Phospholipid Composite Microbubbles with Enhanced Drug Loading Capacity for Ultrasound-Triggered Therapy.” Soft Matter. 2011, 7, 1656-1659.
  • M. J. Hsu, M. Eghtedari, A. P. Goodwin, R. F. Mattrey, D. J. Hall, and S. C. Esener. “Characterization of individual ultrasound microbubble dynamics with a light-scattering system.” J. Biomed. Opt. 2011, 16, 067002.
  • A. P. Goodwin, S. M. Tabakman, K. Welsher, S. P. Sherlock, G. Prencipe, and H. Dai. “Phospholipid-Dextran with a Single Coupling Point: a Useful Amphiphile for Functionalization of Nanomaterials.” J. Am. Chem. Soc. 2009, 131, 289-296.
  • Z. Chen, S. M. Tabakman, A. P. Goodwin, M. G. Kattah, D. Daranciang, X. Wang, G. Zhang, X. Li, Z. Liu, P. J. Utz, K. L. Jiang, S. S. Fan, and H. Dai. “Protein microarrays with carbon nanotubes as multicolor Raman labels.” Nature Biotechnol. 2008, 26, 1285-1292.
  • A. P. Goodwin, S. S. Lam, J. M. J. Fréchet. “Rapid, Efficient Synthesis of Heterobifunctional Biodegradable Dendrimers.” J. Am. Chem. Soc. 2007, 129, 6994-6995.
  • J. L. Mynar, A. P. Goodwin, J. A. Cohen, Y-Z. Ma, G. R. Fleming, J. M. J. Fréchet. “Two-photon Degradable Supramolecular Assemblies of Linear-Dendritic Copolymers.” Chem. Commun. 2007, 20, 2081-2082.
  • A. P. Goodwin, J. L. Mynar, Y-Z. Ma, G. R. Fleming, J. M. J. Fréchet. “Synthetic Micelle Sensitive to IR Light Via a Two-Photon Process.” J. Am. Chem. Soc. 2005, 127, 9952-9953.
  • E. R. Gillies, A. P. Goodwin, J. M. J. Fréchet. “Acetals as pH-Sensitive Linkages for Drug Delivery.” Bioconjugate Chem. 2004, 15, 1254-1263.

* indicates corresponding author

Research Interests

Colloid and interface science, polymer science and engineering, self-assembly, chemical synthesis, imaging, drug delivery, cancer research.
Our research is focused on the interplay between chemical properties at the molecular scale and materials properties at the nano- and microscale. Through careful design of interfacial structure and function, we are creating “smart” colloids and materials – such as polymeric architectures, organic/inorganic hybrids, and multiphase composites – that can sense their surroundings and react accordingly. This reaction results in transmission of information, release of encapsulated contents, or change of local surface and material properties, and applications for such systems include imaging, drug delivery, catalysis, sensing, and renewable materials, among others. We are also interested in how interfaces organize themselves when sensing chemical stimuli, and how they respond to external forces. We are exploring these phenomena in both natural and synthetic systems through a combination of chemical design, colloid and surface engineering, and microscopy.