Embedded Systems Engineering

Student testing a sign-language glove

The professional master’s program in embedded systems engineering (ESE) provides comprehensive coverage of essential embedded technologies, current tools and trends. It is structured to provide students with a broad, versatile skillset and coupled with industry input for continuous curriculum updates.

Through flexible core course options and electives, students enrolled in the ESE program may pursue a 9-credit hour certificate or a 30-credit hour degree. Many courses offer distance learning options through Boulder Connect. Please refer to our course schedule for more information.

Courses   Flyer   FAQs

The Demand for Embedded Systems

Most of us will casually encounter dozens of embedded systems by mid-morning each day throughout our residences, roadways and workplaces. Fundamentally, an embedded system is some combination of hardware and software that is designed for a particular function. It senses a real-world condition, does some computing, then produces output data or control of some kind.

These intelligent machines are a permanent part of our global landscape, and are continuously being expanded and upgraded by a world of forward-thinking engineers and entrepreneurs. Application domains include aerospace and defense, energy, industrial automation, medical, networking and communication, security, transportation and more. Also expected to fuel much more growth is an overarching megatrend referred to as the Internet of Things (IoT), which involves connecting more embedded systems to the internet, enabling countless human-to-machine and machine-to-machine applications ranging from home automation to security and many beyond.

Fueled largely by new internet protocols and wireless technology convergence, industry-wide estimates of 20 to 30 billion connected devices by 2020 are common among major technology research companies. Of course, this trend ushers in greater hardware and software design challenges of effectively managing and securing connected devices, as well as capturing and harnessing the vast amounts of data the devices are meant to produce around their associated services.