2018-2019 Schedule

September 22 — "The Physics of Keeping Secrets: A Look Inside the World of Quantum Encryption"

  • Presented by: Professor Colin West
  • Abstract: For decades, quantum physics has been talked about as the next big source of technological innovation. Some of the most headline-grabbing applications, such as quantum computers, are still in a state of promising infancy. But there are many other quantum technologies which are much closer to real-world deployment. In this talk, we will explore in particular how quantum physics offers radically new ways to encrypt, store, and share secret information, even as quantum computers themselves threaten to undermine our current secret-keeping capabilities.

October 20 — "The Higgs Boson and Beyond"

  • Presented by: Professor Keith Ulmer
  • Abstract: In 2012 the CMS and ATLAS experiments at the Large Hadron Collider at CERN made the remarkable discovery of the Higgs Boson. In this talk we'll explore what the Higgs is and how it was discovered, as well as the unique role that it plays in the origin of mass in the universe. The talk will conclude with a discussion of some of the possibilities for what discoveries might be next for these remarkable experiments.

December 1 — "Quantum Glasses"

  • Presented by: Professor Rahul Nandkishore
  • Abstract: Most quantum systems eventually follow the laws of equilibrium statistical physics  after they come to equilibrium with their environment. Recently, however, some intriguing exceptions –"quantum glass"– have been discovered. Quantum glasses remain quantum even at large scales and long times, and support new quantum phases of matter. In this talk we will explore their properties. 

January 26 — "Powered by the Sun: Turning Light into Electricity with Photovoltaic Cells"

  • Presented by: Professor Sean Shaheen
  • Abstract: Photovoltaic cells have taken enormous strides recently toward becoming a viable, if not vital, source of renewable energy for our planet. They advantage of photon-electron interactions in semiconductors to generate power that we can use in our everyday lives. Existing cells with solar-to-electric power conversion efficiencies of around 20% are based on silicon and are decreasing in cost rapidly. New cells based on organic and hybrid materials are being developed that have the potential to further decrease costs while increasing the efficiency to 30+%. In this talk I will explain the physics of their operation and provide some intuition as to just how powerful this science can be!

February 23 — "How Can We Explore Galaxy Evolution Using the Same Molecules in Galaxies Found in Diesel Soot on Earth?"

  • Presented by: Professor Jason Glenn
  • Abstract: Astronomers know a great deal about the properties of galaxies in the present-day Universe. However, fundamental questions remain about how galaxies formed from the smooth plasma in the early Universe. Such as, how and when did the stars in galaxies and the supermassive black holes at the centers form and grow? Professor Glenn will explore the background and open questions, and share the design of the Galaxy Evolution Probe, a NASA infrared space observatory concept, to address these questions. He will discuss what astronomers hope to learn with the Galaxy Evolution Probe, how measurements will be made (including ‘diesel soot’ molecules), and exciting new technology being developed at CU and NASA.

March 16 — "Get out your Popcorn: An Ultrafast Movie"

  • Presented by: Professor Markus Raschke
  • Abstract: The properties of all materials (including those you use every day in batteries, magnets, touch screens, or solar cells) are defined by the intricate interaction of their elementary building blocks, especially electrons. Electrons hold the atoms together, and are responsible for color, electrical conductivity, and magnetism. However, the motion of electrons occurs both on extremely fast time scales with interactions on equally tiny length scales, making their microscopic investigation extremely difficult. We developed a microscope that can visualize the motion of electrons on their natural time scale of femtoseconds (millionths of a billions of a second) and length scales of nanometers (billionths of a meter). In this talk, we will discuss from the history of microscopy to the development of this new type of microscope to image the most elementary quantum processes for materials discoveries. 

April 27 — "It's Not Just About Saving Kilowatt-Hours: The Role of Buildings (and Occupants!) in a Truly Efficient Power Grid"

  • Presented by: Dr. Lieko Earle
  • Abstract: Residential and commercial buildings account for roughly 40% of the nation’s energy use, so they are a big focus area for energy efficiency research. We used to think of a building’s energy efficiency simply in terms of the amount of energy it consumes on an annual basis. The goal was to minimize the energy required to keep the occupants comfortable, by improving the thermal envelope and installing the most efficient equipment for major loads such as HVAC and hot water. Recent advancements in distributed energy resources on the grid (such as renewable generation and storage) are necessitating a shift in how we value electricity: It matters not only how much we use, but when we use it. Research in grid-interactive efficient buildings (GEB) aims to leverage the rapid increase in internet connectivity to make buildings more responsive to electric grid conditions, enabling a greater penetration of renewable resources on the grid while ensuring a more secure, reliable, and affordable energy future for all users.