NMiP Reader
Textbooks
Computational Photonics : An Introduction with MATLAB by Marek S. Wartak
Numerical Methods In Photonics by Andrei V. Lavrinenko, Jesper Lægsgaard, Niels Gregersen, Frank Schmidt, Thomas Søndergaard.
Both are availabe online through the CU library. I have tried to give direct links above, but if those fail, just look them up using the library search tool.
Optimization
- Original paper by Nelder and Mead on simplex method: J.A. Nelder and R. Mead, “A simplex method for function minimization,” Computer Journal, Volume 7, Issue 4, 1965, pp. 308-313. https://doi.org/10.1093/comjnl/7.4.308
- Concise statement of algorithm plus convergence proof in 1 and 2 dimensions: J. C. Lagarias, J. A. Reeds, M. H. Wright, P. E. Wright, “Convergence properties of the Nelder-Mead simplex method in low dimensions,” SIAM J. Optim., Vol. 9, No. 1, 1998, pp. 112-147
- Original paper on simulated annealing for finding equilibrium of atoms: Kirkpatrick, S.; Gelatt, C. D.; and Vecchi, M. P. "Optimization by Simulated Annealing." Science 220, 671-680, 1983
- Summary by the authors that applied it to optimization: K. S. Yee, "Numerical Solution of Initial Boundary Value Problems Involving Maxwell's Equations in Isotropic Media,'' IEEE Trans. on Antennas and Propagat., vol. 14, pp. 302-307, May 1966.
FDTD Method
Boundary conditions for the FDTD method
- K. S. Yee, "Numerical Solution of Initial Boundary Value Problems Involving Maxwell's Equations in Isotropic Media,'' IEEE Trans. on Antennas and Propagat., vol. 14, pp. 302-307, May 1966.
- G. Mur, "Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations," IEEE Trans. on Electromagnetic Compatibility, Vol. EMC-23, November 1981, pp. 377-382
- B. Engquist and A. Majda, "Absorbing boundary conditions for the numerical simulation of waves", Math. Comput., vol. 31, pp. 629-651, 1977.
Dispersive materials in FDTD method
- R. J. Luebbers, F. Hunsberger, K. S. Kunz, R. B. Standler, and M. Schneider., “ A frequency-dependent finite-difference time-domain formulation for dispersive materials”, IEEE Trans. on EM Compat, V 32, N 3, Aug 1990
Anisotropic materials in the FDTD method
Nonlinear materials in the FDTD method
- G. W. Zheng and K. S. Chen, “Transient analysis of dielectric step discontinuity of microstrip lines containing a nonlinear layer,“ Int. J. Infrared Millim. Waves, vol. 13, no. 8, pp. 1127-1137, 1992
- P. M. Goorjian and A. Taflove, “Direct time integration of Maxwell's equations in nonlinear dispersive media for propagation and scattering of femtosecond electromagnetic solitons,” OpticsLett., B 17, pp. 180-182, Feb. 1992.
Gaussian Beam Superposition Method
- J. Arnaud, “Representation of Gaussian beams by complex rays,” Applied Optics, Volume 24, Issue 4, 538- February 1985
- R. P. Herloski, S. Marshall, R. L. Antos, „Gaussian beam ray-equivalent modeling and optical design,”Applied Optics, Vol. 22 Issue 8 Page 1168 (April 1983)
- A. W. Greynolds, “Propagation of generally astigmatic Gaussian beams along skew ray paths,” SPIE Vol560, Diffraction Phenomenon in Optical Engineering Applications, 1985.
FFT Beam Propagation Method
- M. D. Feit and J. A. Fleck, Jr., "Beam nonparaxiality, filament formation, and beam breakup in the sel-focusing of optical beams," J Opt Soc Am B., Vol. 5, No. 3, pp. 633-640, March 1988
- M. D. Feit and J. A. Fleck, Jr., "Computation of mode properties in optical fiber waveguides by a propagating beam method," Applied Optics, Vol. 19, No. 7, pp. 1154-1164, 1 April 1980
- N. Delen, B. Hooker, “Free-space beam propagation between arbitrarily oriented planes based on full diffraction theory: a fast Fourier transform approach,” JOSA A, Volume 15, Issue 4, 857-867, April 1998
- D. Yevick, J. Yu, Y. Yayon, “Optimal absorbing boundary conditions,” J. Opt. Soc. Am. A,Vol. 12, No. 1, January 1995
- R. R. McLeod, Notes on gyrotropic materials
- Robert R. McLeod and Kelvin H. Wagner, "Vector Fourier optics of anisotropic materials," Adv. Opt. Photon. 6, 368-412 (2014)
Finite Difference Beam Propagation Method (FD BPM)
Coupled Mode Equations applied to Bragg holography
Mode Propagation Method
Method
- Good summary: D. F.G. Gallagher, T.P. Felici, “Eigenmode Expansion Methods for Simulation of Optical Propagation in Photonics – Pros and Cons,” Photonics West, San Jose, 2003. Paper 4987-10
- All of the details: P. Bienstman Ph.D. dissertation, U. Gent, 2000
Applications
- Shani Y, Henry CH, Kistler RC, Kazarinov RF, Orlowsky KJ. "Integrated optic adiabatic devices on silicon." IEEE Journal of Quantum Electronics, vol.27, no.3, March 1991, pp.556-66
- Henry CH, Shani Y. "Analysis of mode propagation in optical waveguide devices by Fourier expansion." IEEE Journal of Quantum Electronics, vol.27, no.3, March 1991, pp.523-30.