Published: July 7, 2022

For Faculty Lecturer Alyssa McCluskey, the capstone project at the University of Colorado’s Engineering Management Program (EMP) boils down to two things: agency and opportunity. 

Agency, because students can chart their own course. And opportunity, arising from that agency, allows students to become leaders on their own or within their organizations. McCluskey ought to know: Capstone worked for her as a student and she knew, eventually, it could work for others as well.

“In my civil engineering capstone, we could explore and create different solutions to the use of biosolids, and I was really proud of the report and presentation that we produced,” McCluskey says. “I did send the report to my future employer, a research institute in Boston, and was hired partially based on the document that I had sent them. And I just remember really enjoying the process. So I wanted to bring that to this Program as something to offer the students.


What Is a Capstone Project?

In the Engineering Management Program, students can now elect to cap off their engineering curriculum with a capstone project. The project can be anything that uses their management and engineering skills to make a product, design software or find innovative ways to affect change within their industry.

In the past, students were given a list of topics to write an 8-10 page paper using concepts learned throughout the program to culminate their degree. McCluskey found that the traditional method was serving neither students nor faculty well. This method seemed like just regurgitating material and lacked a meaningful experience for students to use what they learned throughout the degree.

Looking for more flexible options for CU students, the EMP decided to offer two paths for degree completion: completing the full coursework, 30 credit hours, or taking 27 credit hours of coursework and completing a final 3-credit capstone project in their final semester. 

“We made the capstone flexible so students can explore any ideas or topics of interest,” McCluskey says. “Anything from hot topics in project management to anything they found interesting over their courses in the EMP. I encourage them to look at courses they really enjoyed, talk with professors they enjoyed learning from, meet with professionals working in areas they are interested in and think of topics around that.”


A Diverse Range of Capstone Project Ideas

EMP just launched this program and there are four students in the first cohort, each working on a unique capstone project. All of them are focused on finding practical solutions to real-world problems.

One student’s capstone is about finding effective methods and tactics to increase employee engagement within the Office of Information Technology (OIT).

“This is a student who’s employed at OIT at CU,” McCluskey says. “And so she was asking how do we retain our employees and make them happy and want to stay? She found some startling statistics that close to 50% of employees are thinking of leaving.”

This capstone is especially topical given the nature of the Great Resignation where many employees are seeking better opportunities and are no longer willing to settle for the status quo.

“She did a number of surveys, listened to podcasts, took some courses and came up with a plan that she’s trying to implement within her department based on the capstone she worked on,” McCluskey adds. 

Another fascinating engineering capstone project idea was one student’s mission to make a more sustainable satellite, combining interests in both sustainability and the aerospace industry. 

“They developed a tool to quantify the environmental impacts of producing, launching and disposing of a satellite,” McCluskey says. After inputting the information into a spreadsheet, it comes out with “the carbon footprint of what the satellite would produce. And not only that but also ranking which areas you should spend your [resources] and get the most bang for the buck that’s most probably going to reduce your carbon footprint,” McCluskey says.

Given the concerns about orbital “space junk,” this capstone project addresses a need in aerospace that could be all the more germane as technology allows us to explore beyond our own planet.

And for the person on the move  whose arms are constantly full and trying to literally—and figuratively—juggle the messiness of life, one student came to the capstone project with an idea already in hand: “merge bottle technology”—magnetized stacking water bottles that allow you to carry different beverages or food in one place, even at different temperatures.

“What I saw was great,” McCluskey says. “As a parent, you’re having to carry all these things, right? Also, he found that people in the healthcare industry and first responders who might be on a shift for a long time were interested right away. You can keep something hot, you can keep something cold, you could put food in one and drinks in another. Teachers as well. They have all these bags and bunches of containers they carry around. So instead of having multiple water bottles for your coffee and your water, you could just carry one stack.”

Yet another capstone project focuses on the uncertainties inherent in software product development and how that uncertainty affects humans at the neurobiological level. 

“This student is in the software product management field, so she studied how we can better support employees to deal with uncertainty,” McCluskey says, “and she came up with four main things that companies can do to help their employees deal with that.”

The capstone project identified four key strategic theories—frequent stakeholder communication, a transparent roadmap with dependencies, iterative feedback opportunities and integration and focus on analytics—that empower product managers to ameliorate uncertainty among stakeholders during the software development process. 

Perhaps the biggest takeaway is that students focus their capstone project not on abstract concepts, but on tangible strategies that have the potential for immediate real-world application. As a result, these capstone projects can help a student stand out as a desirable employee and a potential leader in their field or company.


Communication and Research: Soft Skills for Engineers that Pay Dividends

Many people—even many experts— know their field and products inside and out but struggle with communicating their ideas and knowledge to key audiences within their company or to clients. To help develop these skills, part of the capstone project incorporates a communication course. 

“This involves working on your writing, working on your presentation skills, and working on peer reviews,” McCluskey says. 

Good communication also means translating sometimes complex ideas and knowledge into a “language” that a wide audience can understand. That’s a skill that students refine over the course of their projects. 

“You may understand something so well that you’re using acronyms others don’t know and you just lose the reader right away,” McCluskey says. “So that’s something we spend some time on. What’s nice is that we switch throughout the semester with our peers as well as the instructors and advisors so that if anybody is unfamiliar with something, it’s highlighted.”

Another benefit of the capstone project is that it allows students to stretch and improve their research skills beyond the usual Google search. Rachel Knapp, assistant professor and applied sciences librarian at CU, spoke to the capstone cohort and went over online resources available to CU students via OneSearch and discussed best practices in research strategies—for instance, how to narrow a topic and get the best out of information searches and how to determine which journals you may want to publish in. If capstone students get “stuck” in their research or are not getting the results hoped for, they can set up an appointment with a CU librarian to help with ideas and options. 

Armed with this information, the capstone gives the students a chance to put into action much of what they’ve learned during the EMP and presents a valuable opportunity to live out what being an engineering manager is all about.

“They come in and they are the project manager of their capstones, ” McCluskey says. “So they get a chance to implement all the things you can think of that go into that: time management, building out your product schedule, problem-solving skills, thinking ahead, identifying what you might run into that’s going to cause a problem. They start to build their confidence because they’re now experts on this topic.”

Taking on a project of this nature flexes many skills including writing and planning, constructively giving peer feedback, and setting and achieving goals—while also making a student an attractive hire or a more effective contributor in their current position.

“The student who created the toolbox for the sustainable satellite,” McCluskey says, “is actually presenting to some higher-ups in his company who have expressed interest in what he’s done. So that’s not only letting our student be seen by people up in his organization but also giving him a way forward and fast track in that sense.”


“This is a Chance to Explore Something That Interests You”

For students, these ideas for capstone projects lead to something beyond typical coursework: the freedom to explore. Instead of listening to lectures and wondering, “Will this be on the test?” EMP capstone cohorts take the reins of their interests and bring those ideas to the world with the idea of solving a problem for individuals  (teachers/mothers/first responders) or an entire industry (more sustainable satellite building for aerospace).

“This is a chance to explore something that interests you,” McCluskey says. “You’re not coming to a class prescribed exactly what you have to learn. You get to choose where you want to put your time and where your interests lie. It’s a win-win: You’re getting credit for it, and you're also coming out with something that you might personally believe in or want to move forward with.”

McCluskey is proof positive of the benefits of the capstone. She still works with advisors she knew from 30 years ago. 

She says, “You’re really developing those relationships as well, not only with your classmates through working together in peer reviews and class, but also with your advisor and other professionals you interact with over the semester.” 

“I’m their guide on this adventure,” McCluskey adds. “I bring in some guest speakers so they can learn from outside experts. I try to base the guest speakers on student interests like entrepreneurship and journal editors for publishing papers to help spark and refine student ideas. I also have lectures and guest speakers on communication best practices throughout the course, and then help them stay on track.”

Advisors, faculty or working professionals who are chosen by each student, meet with them at least five times over the semester, all the while reviewing the work. These relationships may bear fruit later in a career and provide an important sounding board for bouncing around new ideas.

And in the end, the progress made quite literally puts a capstone on the Engineering Management Program.

“It gives you confidence and pride in the culmination of your degree,” McCluskey says. “It's not just a piece of paper, you actually have a product that you've developed and the ability that you can do something like this.”


Engineering Capstone Projects: For EMP, It’s Just the Beginning

For McCluskey, this is an exciting time. Seeing the four students come through the capstone project fills her with optimism for the future of the project and, more importantly, what it offers to EMP students willing to take on the capstone and flex their engineering skills.

She sees students come in with ideas that are all over the board and then with her help along with other advisors, refine the ideas so they are manageable and attainable. It is gratifying for McCluskey to hear what the cohort had achieved at the end of this pilot program.

“We had them present to all the advisors at the end of the semester and they offered beautiful presentations,” she says. “They were high quality. They were very articulate. They answered questions. It was fun to see the advisors’ excitement with the different products.”

It could be that one student's capstone becomes the cornerstone of another student’s in the future; that it could, as McCluskey says, “spawn another idea for the next capstone. There might be somebody interested in a project that someone else did before and they could take it to the next step.”

For now, the capstone project is offered only in the spring semester, but with growing interest, it could be offered every semester.

The hope is that each session of capstone projects will spur more inspiration and more innovation.

“I was ready for some bumps along the road,” McCluskey says. “I was able to be pretty agile and move where I saw the needs that were there. So I’m really excited to learn more from these students and watch more students grow from an idea to a product they’re proud of. So I’m excited to just have more of them.”


Learn More About the EMP Capstone

To learn more, please visit the Engineering Management Program website or email for more information about the capstone project.