Skip to main content
Log in

Preliminary Friction Force Measurements on Small Bowel Lumen When Eliminating Sled Edge Effects

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

This study aims to produce experimental results for the coefficient of friction (COF) between the small bowel lumen and an edgeless, translating sled. Friction was measured as a function of sled speed under in situ and in vitro conditions. The results indicate that by eliminating edge effects, the COF between a stainless steel sled and the inner surface of the small bowel lumen is decreased. The average COF for in situ testing was found to be slightly lower than in vitro tests. Friction increased with increasing velocity. The friction forces ranged from 0.013 to 0.08 N, and COF values ranged from 0.007 to 0.054 under these conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. McGee, M.F., Rosen, M.J., Marks, J., Onders, R.P., Chak, A., Faulx, A., Chen, V.K., Ponsky, J.: A primer on natural orifice transluminal endoscopic surgery: building a new paradigm. Surg. Innov. 13, 86–93 (2006)

    Article  Google Scholar 

  2. Phee, L., Accoto, D., Menciassi, A., Stefanini, C., Carrozza, M., Dario, P.: Analysis and development of locomotion devices for the gastrointestinal tract. IEEE Trans. Biomed. Eng. 49, 613–616 (2002)

    Article  Google Scholar 

  3. Swain, P.: The future of wireless capsule endoscopy. World J. Gastroenterol. 14, 4142 (2008)

    Article  Google Scholar 

  4. Sliker, L.J., Kern, M.D., Schoen, J.A., Rentschler, M.E.: Surgical evaluation of a novel tethered robotic capsule endoscope using micro-patterned treads. Surg. Endosc. 26, 2862–2869 (2012)

    Article  Google Scholar 

  5. Gregersen, H., Kassab, G.S.: Biomechanics of the Gastrointestinal Tract: New Perspectives in Motility Research and Diagnostics. Springer, London (2003)

    Book  Google Scholar 

  6. Olsson, H., Astrom, K., de Wit, C., Gafvert, M., Lischinsky, P.: Friction models and friction compensation. Eur. J. Control. 4, 176–195 (1998)

    Article  Google Scholar 

  7. Grosch, K.A.: The relation between the friction and visco-elastic properties of rubber. Proc. R. Soc. Lond. A 274, 21–39 (1963)

    Article  CAS  Google Scholar 

  8. Ludema, K.C., Tabor, D.: The friction and viscoelastic properties of polymeric solids. Rubber Chem. Technol. 41, 329–348 (1966)

    Google Scholar 

  9. Bahadur, S., Ludema, K.: The viscoelastic nature of the sliding friction of polypropylene and copolymers. Wear 18, 109–128 (1971)

    Article  CAS  Google Scholar 

  10. Yamaguchi, T., Ohmata, S., Doi, M.: Regular to chaotic transition of stick-slip motion in sliding friction of an adhesive gel sheet. J. Phys.: Condens. Matter, 21, 1–7 (2009)

    Article  Google Scholar 

  11. Ringlein, J., Robbins, M.O.: Understanding and illustrating the atomic origins of friction. Am. J. Phys. 2, 884 (2004)

    Article  Google Scholar 

  12. Gong, J.P., Osada, Y.: Surface friction of polymer gels. Prog. Polym. Sci. 27, 3–38 (2002)

    Article  CAS  Google Scholar 

  13. Atuma, C., Strugala, V., Allen, A., Holm, L.: The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo. Am. J. Physiol. Gastrointest. Liver Physiol. 280, 922–929 (2001)

    Google Scholar 

  14. Lai, S.K., Wang, Y.-Y., Wirtz, D., Hanes, J.: Micro- and macrorheology of mucus. Adv. Drug Deliv. Rev. 61, 86–100 (2009)

    Article  CAS  Google Scholar 

  15. Baek, N., Sung, I., Kim, D.: Frictional resistance characteristics of a capsule inside the intestine for microendoscope design. Proc. Inst. Mech. Eng. [H] 218, 193–201 (2004)

    Article  CAS  Google Scholar 

  16. Kwon, J., Park, S., Kim, B., Park, J.: Bio-material property measurement system for locomotive mechanism in gastro-intestinal tract. In: Proceedings of the 2005 IEEE: International Conference on Robotics and Automation. pp. 1315–1320 (2005)

  17. Kim, J., Sung, I., Kim, Y., Kwon, E., Kim, D., Jang, Y.H.: Experimental investigation of frictional and viscoelastic properties of intestine for microendoscope application. Tribol. Lett. 22, 143–149 (2006)

    Article  Google Scholar 

  18. Kim, Y.T., Kim, D.E., Park, S.H., Yoon, E.S.: Frictional behavior of solid and hollow cylinders in contact against a porcine intestine specimen. KSTLE Int. J. 7, 51–55 (2006)

    Google Scholar 

  19. Kim, Y., Kim, D.: Biotribological investigation of a multi-tube foot for traction generation in a medical microrobot. J. Eng. Med. 223, 677–686 (2009)

    Article  CAS  Google Scholar 

  20. Wang, K.D., Yan, G.: Research on measurement and modeling of the gastro intestine’s frictional characteristics. Meas. Sci. Technol. 20, 1–6 (2009)

    CAS  Google Scholar 

  21. Wang, X., Meng, M.Q.-H.: An experimental study of resistant properties of the small intestine for an active capsule endoscope. Proc. Inst. Mech. Eng. H. 224, 107–118 (2010)

    CAS  Google Scholar 

  22. Terry, B.S., Lyle, A.B., Schoen, J.A., Rentschler, M.E.: Preliminary mechanical characterization of the small bowel for in vivo robotic mobility. J. Biomech. Eng. 133, 091010 (2011)

    Article  Google Scholar 

  23. Yoshida, H., Morita, Y., Ikeuchi, K.: Biological lubrication of hydrated surface layer in small intestine. Tribol. Interface Eng. Ser.: Tribol. Res. Des. Eng. Syst. 41, 425–428 (2003)

    Google Scholar 

  24. Accoto, D., Stefanini, C., Phee, L.: Measurement of the frictional properties of the GI tract. In: Proceedings of the 2nd International Conference on Tribology. 1, 153–158 (2001)

  25. Bistac, S., Schmitt, M., Ghorbal, A.: Sliding Friction of Polymers: The Complex Role of Interface. Fundamentals of Friction and Wear: Nanoscience and Technology. pp. 647–658 (2007)

  26. Sanchez, N.C., Tenofsky, P.L., Dort, J.M., Shen, L.Y., Helmer, S.D., Smith, R.S.: What is normal intra-abdominal pressure? Am. Surg. 67, 243–248 (2001)

    CAS  Google Scholar 

  27. Terry, B.S., Passernig, A.C., Hill, M., Schoen, J.A., Rentschler, M.E.: Small Intestine mucosal adhesivity to In vivo capsule robot materials. J. Mech. Behav. Biomed. Mater. 15, 24–32 (2012)

    Article  Google Scholar 

  28. Terry, B.S., Schoen, J.A., Rentschler, M.E.: Measurements of the contact force from myenteric contractions on a solid bolus. J. Robotic Surg. (Epub), doi:10.1007/s11701-012-0346-3 (2012)

  29. Terry, B.S., Schoen, J.A., Rentschler, M.E.: Characterization and experimental results of a novel sensor for measuring the contact force from myenteric contractions. IEEE Trans. Biomed. Eng. 59, 1971–1977 (2012)

    Article  Google Scholar 

  30. Lyle, A.B., Luftig, J.T., Rentschler, M.E.: A tribological investigation of the small bowel surface. Tribol. Int. 62, 171–176 (2013)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allison B. Lyle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyle, A.B., Terry, B.S., Schoen, J.A. et al. Preliminary Friction Force Measurements on Small Bowel Lumen When Eliminating Sled Edge Effects. Tribol Lett 51, 377–383 (2013). https://doi.org/10.1007/s11249-013-0167-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-013-0167-1

Keywords

Navigation