
Stacking Models for Nearly Optimal Link
Prediction in Complex Networks
Amir Ghasemiana,b,c, Homa Hosseinmardib, Aram Galstyanb, Edoardo M. Airoldic,d, and Aaron Clauseta,e,f

aDepartment of Computer Science, University of Colorado, Boulder, CO 80309, USA; bInformation Sciences Institute, University of Southern California, Marina del Rey, CA
90292, USA; cDepartment of Statistics, Harvard University, Cambridge, MA 02138, USA; dDepartment of Statistical Science, Fox School of Business, Temple University,
Philadelphia, PA 19122, USA; eBioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA; fSanta Fe Institute, Santa Fe, NM 87501, USA

Most real-world networks are incompletely observed. Algorithms
that can accurately predict which links are missing can dramatically
speedup the collection of network data and improve the validity of
network models. Many algorithms now exist for predicting missing
links, given a partially observed network, but it has remained un-
known whether a single best predictor exists, how link predictabil-
ity varies across methods and networks from different domains, and
how close to optimality current methods are. We answer these ques-
tions by systematically evaluating 203 individual link predictor algo-
rithms, representing three popular families of methods, applied to a
large corpus of 548 structurally diverse networks from six scientific
domains. We first show that individual algorithms exhibit a broad
diversity of prediction errors, such that no one predictor or family is
best, or worst, across all realistic inputs. We then exploit this diver-
sity via meta-learning to construct a series of “stacked” models that
combine predictors into a single algorithm. Applied to a broad range
of synthetic networks, for which we may analytically calculate opti-
mal performance, these stacked models achieve optimal or nearly
optimal levels of accuracy. Applied to real-world networks, stacked
models are also superior, but their accuracy varies strongly by do-
main, suggesting that link prediction may be fundamentally easier in
social networks than in biological or technological networks. These
results indicate that the state-of-the-art for link prediction comes
from combining individual algorithms, which achieves nearly opti-
mal predictions. We close with a brief discussion of limitations and
opportunities for further improvement of these results.

networks | link prediction | meta-learning | stacking | near optimality

Networks provide a powerful abstraction for representing
the structure of complex social, biological, and techno-

logical systems. However, data on most real-world networks
is incomplete. For instance, social connections among people
may be sampled, intentionally hidden, or simply unobserv-
able (1, 2); interactions among genes, or cells, or species must
be observed or inferred by expensive experiments (3, 4); and,
connections mediated by a particular technology omit all off-
platform interactions (2, 5). The presence of such “missing
links” can, depending on the research question, dramatically al-
ter scientific conclusions when analyzing a network’s structure
or modeling its dynamics.

Methods that accurately predict which observed pairs of
unconnected nodes should, in fact, be connected have broad
utility. For instance, they can improve the accuracy of pre-
dictions of future network structure and minimize the use of
scarce experimental or network measurement resources (6, 7).
Moreover, the task of link prediction itself has become a stan-
dard for evaluating and comparing models of network struc-
ture (8, 9), playing a role in networks that is similar to that
of cross-validation in traditional statistical learning (10, 11).
Hence, by helping to select more accurate network models (8),

methods for link prediction can shed light on the organizing
principles of complex systems of all kinds.

But, predicting missing links is a statistically hard problem.
Most real-world networks are relatively sparse, and the number
of unconnected pairs in an observed network—each a potential
missing link—grows quadratically, like O(n2) for a network
with n nodes when the number of connected pairs or edges m
grows linearly, like O(n). The probability of correctly choosing
by chance a missing link is thus only O(1/n)—an impractically
small chance even for moderate-sized systems (12). Despite
this baseline difficulty, a plethora of link prediction methods
exist (3, 13, 14), embodied by the three main families we study
here: (i) topological methods (15, 16), which utilize network
measures like node degrees, the number of common neighbors,
and the length of a shortest path; (ii) model-based methods (8,
12), such as the stochastic block model, its variants, and
other models of community structure; and (iii) embedding
methods (17, 18), which project a network into a latent space
and predict links based on the induced proximity of its nodes.

A striking feature of this array of methods is that all ap-
pear to work relatively well (8, 15, 17). However, systematic
comparisons are lacking, particularly of methods drawn from
different families, and most empirical evaluations are based on
relatively small numbers of networks. As a result, the general
accuracy of different methods remains unclear, and we do not
know whether different methods, or families, are capturing
the same underlying signatures of “missingness.” For instance,
is there a single best method or family for all circumstances?
If not, then how does missing link predictability vary across
methods and scientific domains, e.g., in social versus biolog-
ical networks, or across network scales? And, how close to
optimality are current methods?

Here, we answer these questions using a large corpus of 548
structurally and scientifically diverse real-world networks and
203 missing link predictors drawn from three large methodolog-
ical families. First, we show that individual methods exploit
different underlying signals of missingness, and, affirming the
practical relevance of the No Free Lunch theorem (19, 20),
no method performs best or worst on all realistic inputs. We
then show that a meta-learning approach (21–23) can exploit
this diversity of errors by “stacking” individual methods into
a single algorithm (24), which we argue makes nearly optimal
predictions of missing links. We support this claim with three
lines of evidence: (i) evaluations on synthetic data with known
structure and optimal performance, (ii) tests using real-world
networks across scientific domains and network scales, and
(iii) tests of sufficiency and saturation using subsets of methods.
Across these tests, model stacking is nearly always the best
method on held-out links, and nearly-optimal performance
can be constructed using model-based methods, topological
methods, or a mixture of the two. Furthermore, we find that

1

ar
X

iv
:1

90
9.

07
57

8v
1

 [
st

at
.M

L
]

 1
7

Se
p

20
19

missing links are generally easiest to predict in social networks,
where most methods perform well, and hardest in biological
and technological networks. We conclude by discussing lim-
itations and opportunities for further improvement of these
results.

Methods and Materials

As a general setting, we imagine an unobserved simple
network G with a set of E pairwise connections among a set of
V nodes, with sizes m and n, respectively. Of these, a subset
E′ ⊂ E of connections is observed, chosen by some function f .
Our task is to accurately guess, based only on the pattern of
observed edges E′, which unconnected pairsX = V×V−E′ are
in fact among the missing links Y = E−E′. A link prediction
method defines a score function over these unconnected pairs
i, j ∈ X so that better-scoring pairs are more likely to be
missing links (15). In a supervised setting, the particular
function that combines input predictors to produce a score
is learned from the data.We evaluate the accuracy of such
predictions using the standard AUC statistic, which provides
a context-agnostic measure of a method’s ability to distinguish
a missing link i, j ∈ Y (a true positive) from a non-edge X−Y
(a true negative) (12). Other accuracy measures may provide
insight about a predictor’s performance in specific settings,
e.g., precision and recall at certain thresholds. We leave their
investigation for future work.

The most common approach to predict missing links con-
structs a score function from network statistics of each un-
connected node pair (15). We study 42 of these topological
predictors, which include predictions based on node degrees,
common neighbors, random walks, node and edge centrali-
ties, among others (see SI Appendix, Table S1). Models of
large-scale network structure are also commonly used for link
prediction. We study 11 of these model-based methods (8),
which either estimate a parametric probability Pr(i → j | θ)
that a node pair is connected (12), given a decomposition of
a network into communities, or predict a link as missing if it
would improve a measure of community structure (15) (see SI
Appendix, Table S2). Close proximity of an unconnected pair,
after embedding a network’s nodes into a latent space, is a
third common approach to link prediction. We study 150 of
these embedding-based predictors, derived from two popular
graph embedding algorithms and six notions of distance or
similarity in the latent space. In total, we consider 203 fea-
tures of node pairs, some of which are the output of existing
link prediction algorithms, while others are numerical features
derived from the network structure. For our purposes, each is
considered a missing link “predictor.” A lengthier description
of these 203 methods, and the three methodological families
they represent, is given in SI Appendix, section A.

Meta-learning techniques are a powerful class of machine
learning algorithms that can learn from data how to com-
bine individual predictors into a single, more accurate algo-
rithm (22, 25). Stacked generalization (24) combines predictors
by learning a supervised model of input query characteristics
and the errors that individual predictors make. In this way,
model “stacking” treats a set of predictors as a panel of ex-
perts, and learns the kinds of questions each is most expert at
answering correctly. Stacked models can thus be strictly more
accurate than their component predictors (24), making them
attractive for hard problems like link prediction (26), but only

if those predictors make distinct errors and are sufficiently
diverse in the signals they exploit.

We evaluate individual prediction methods, and their
stacked generalizations, using two types of network data. The
first is a set of synthetic networks with known structure that
varies along three dimensions: (i) the degree distribution’s
variability, being low (Poisson), medium (Weibull), or high
(power law); (ii) the number of “communities” or modules
k ∈ {1, 2, 4, 16, 32}; and (iii) the fuzziness of the corresponding
community boundaries ε, being low, medium, or high. These
synthetic networks thus range from homogeneous to heteroge-
neous random graphs, from no modules to many modules, and
from weakly to strongly modular structure (see SI Appendix,
section B and Table S3). Moreover, because the data generat-
ing process for these networks is known, we exactly calculate
the optimal accuracy that any link prediction method could
achieve, as a reference point (see SI Appendix, section B).

The second is a large corpus of 548 real-world networks.
This structurally diverse corpus includes social (23%), biologi-
cal (33%), economic (22%), technological (12%), information
(3%), and transportation (7%) networks (8), and spans three
orders of magnitude in size (see SI Appendix, section C and
Fig. S1). It is by far the largest and most diverse empirical
benchmark of link prediction methods to date, and enables an
assessment of how methods perform across scientific domains.

Finally, our evaluations assume a missingness function f
that samples edges uniformly at random from E so that each
edge (i, j) ∈ E is observed with probability α. This choice
presents a hard test, as f is independent of both observed edges
and metadata. Other models of f , e.g., in which missingness
correlates with edge or node characteristics, may better capture
particular scientific settings and are left for future work. Our
results thus provide a general, application-agnostic assessment
of link predictability and method performance. In cases of
supervised learning, we train a method using 5-fold cross
validation by choosing as positive examples a subset of edges
E′′ ⊂ E′ according to the same missingness model f , along
with all observed non-edges V × V − E′ as negative examples
(see SI Appendix, section D). Unless other specified, results
reflect a choice of α = 0.8, i.e., 20% of edges are unobserved
(holdout set); other values produce qualitatively similar results.

Results

Prediction Error Diversity. If all link predictors exploit a com-
mon underlying signal of missingness, then one or a few pre-
dictors will consistently perform best across realistic inputs.
Optimal link prediction could then be obtained by further
leveraging this universal signal. In contrast, if different pre-
dictors exploit distinct signals, they will exhibit a diversity of
errors in the form of heterogenous performance across inputs,
In this case, there will be no best or worst method overall, and
optimal link predictions can only be obtained by combining
multiple methods. This dichotomy also holds at the level of
predictor families, one of which could be best overall, e.g.,
topological methods, even if no one family member is best.

To distinguish these possibilities, we characterize the empir-
ical distribution of errors by training a random forest classifier
over the 203 link predictors applied to each of the 548 real-
world networks and separately to all networks in each of the
six scientific domains within our corpus (see SI Appendix sec-
tion E). In this setting, the character of a predictor’s errors

2 Ghasemian et al.

Fig. 1. The Gini importances for predicting missing links in networks within each of six scientific domains, for the 29 most important predictors, grouped by family, under a
random forest classifier trained over all 203 predictors. Across domains, predictors exhibit widely different levels of importance, indicating a diversity of errors, such that no
predictor is best overall. Here, topological predictors include shortest-path betweenness centrality (SPBC), common neighbors (CN), Leicht-Holme-Newman index (LHN),
personalized page rank (PPR), shortest path (SP), the mean neighbor entries within a low rank approximation (mLRA), Jaccard coefficient (JC), and the Adamic-Adar index
(AA); embedding predictors include the L2 distance between embedded vectors under emb-DW (L2d-emb-DW), and the dot product (emb-vgae-dp) of embedded vectors
under emb-vgae; and, model-based predictors include Infomap (Infomap), stochastic block models with (MDL (DC-SBM), B-NR (DC-SBM)) and without degree corrections
(MDL (SBM), B-NR (SBM)), and modularity (Q). (A complete list of abbreviations is given in SI Appendix, Section A.)

is captured by its learned Gini importance (mean decrease
in impurity) (11) within the random forest: the higher the
Gini importance, the more generally useful the predictor is
for correctly identifying missing links on that network or that
domain. If all methods exploit a common missingness signal
(one method to rule them all), the same few predictors or pre-
dictor family will be assigned consistently greater importance
across networks and domains. However, if there are multiple
distinct signals (a diversity of errors), the learned importances
will be highly heterogeneous across inputs, and no predictor
or family will be best.

Across networks and domains, we find wide variation in
both individual and family-wise predictor importances, such
that no individual method and no family of methods is best,
or worst, on all networks. On individual networks, predictor
importances tend to be highly skewed, such that a relatively
small subset of predictors account for the majority of predic-
tion accuracy (SI Appendix, Table S4 and Fig. S2). However,
the precise composition of this subset varies widely across
both networks and families (SI Appendix, Tables S4–S5, and
Figs. S3–S4), implying a broad diversity of errors and multi-
ple distinct signals of missingness. At the same time, not all
predictors perform well on realistic inputs, e.g., a subset of
topological methods generally receive low importances, and
most embedding-based predictors are typically mediocre. Nev-
ertheless, each family contains some members that are ranked
among the most important predictors for many, but not all,
networks.

Across domains, predictor importances cluster in interest-
ing ways, such that some individual and some families of
predictors perform better on specific domains. For instance,
examining the 10 most-important predictors by domain (29
unique predictors; Fig. 1), we find that topological methods,
such as those based on common neighbors or localized random
walks, perform well on social networks but less well on net-
works from other domains. In contrast, model-based methods
perform relatively well across domains, but often perform less

well on social networks than do topological measures and some
embedding-based methods. Together, these results indicate
that predictor methods exhibit a broad diversity of errors,
which tend correlate somewhat with scientific domain.

This performance heterogeneity highlights the practical
relevance to link prediction of the general No Free Lunch the-
orem (19), which proves that across all possible inputs, every
machine learning method has the same average performance,
and hence accuracy must be assessed on a per dataset basis.
The observed diversity of errors indicates that none of the
203 individual predictors is a universally-best method for the
subset of all inputs that are realistic. However, that diversity
also implies that a nearly-optimal link prediction method for
realistic inputs could be constructed by combining individual
methods so that the best individual method is applied for each
given input. Such a meta-learning algorithm cannot circum-
vent the No Free Lunch theorem, but it can achieve optimal
performance on realistic inputs by effectively redistributing
its worse-than-average performance onto unrealistic inputs,
which are unlikely to be encountered in practice. In the fol-
lowing sections, we develop and investigate the near-optimal
performance of such an algorithm.

Stacking on Networks with Known Structure. Model “stack-
ing” is a meta-learning approach that learns to apply the
best individual predictor according to the input’s characteris-
tics (24). Here, we assess the accuracy of model stacking both
within and across families of prediction methods, which adds
seven more prediction algorithms to our evaluation set.

Because the optimality of an algorithm’s predictions can
only be assessed when the underlying data generating process
is known, we first characterize the accuracy of model stacking
using synthetic networks with known structure, for which we
calculate an exact upper bound on link prediction accuracy (see
SI Appendix, section B). To provide a broad range of realistic
variation in these tests, we use a structured random graph
model, in which we systematically vary its degree distribution’s

Ghasemian et al. 3

theoretical upper bound on AUC

Fig. 2. (A) On synthetic networks, the mean link prediction performance (AUC) of selected individual predictors and all stacked algorithms across three forms of structural
variability: (left to right, by subpanel) degree distribution variability, from low (Poisson) to high (power law); (top to bottom, by subpanel) fuzziness of community boundaries,
ranging from low to high (ε = mout/min, the fraction of a node’s edges that connect outside its community); and (left to right, within subpanel) the number of communities k.
Across settings, the dashed line represents the theoretical maximum performance achievable by any link prediction algorithm (SI Appendix, section B). In each instance,
stacked models perform optimally or nearly optimally, and generally perform better when networks exhibit heavier-tailed degree distributions and more communities with distinct
boundaries. Table S11 lists the top five topological predictors for each synthetic network setting, which vary considerably. (B) On real-world networks, the mean link prediction
performance for the same predictors across all domains, and by individual domain. Both overall and within each domain, stacked models, particularly the across-family versions,
exhibit superior performance, and they achieve nearly perfect accuracy on social networks. The performance, however, varies considerably across domains, with biological and
technological networks exhibiting the lowest link predictability. Due to space limitations here, more complete results for individual topological and model-based predictors are
shown in SI Appendix, Figs. S8 and S9, respectively.

variance, the number of communities k, and the fuzziness of
those community boundaries ε.

Across these structural variables, the upper limit on link
predictability varies considerably (Fig. 2A), from no better
than chance in a simple random graph (k = 1; Poisson) to
nearly perfect in networks with many distinct communities
and a power-law degree distribution. Predictability is gener-
ally lower (no methods can do well) with fewer communities
(low k) or with more fuzzy boundaries (high ε), but higher
with increasing variance in the degree distribution (Weibull or
power law). Most methods, whether stacked or not, perform
relatively well when predictability is low. However, as po-
tential predictability increases, methods exhibit considerable
dispersion in their accuracy, particularly among topological
and embedding-based methods.

Regardless of the synthetic network’s structure, however,
we find that stacking methods are typically among the most
accurate prediction algorithms, and they often achieve optimal
or nearly-optimal prediction accuracy (Fig. 2A). For instance,
the best model stacking method exhibits a substantially smaller
gap between practical and optimal performance (all topol.,
model & embed., ∆AUC = 0.04; SI Appendix, Table S8) than
the best individual predictor (MDL (DC-SBM), ∆AUC = 0.07;
SI Appendix, Table S9), and is far better than the average non-
stacked topological and model-based methods (〈∆AUC〉 =
0.23; SI Appendix, Table S8). Moreover, in all structural
settings, stacking across families tends to produce slightly more

accurate predictions (〈AUC〉 = 0.83; SI Appendix, Table S10)
than stacking within families (〈AUC〉 = 0.80), and only one
stacked model (all embed.) is less accurate than the best
individual predictor (marginally, with ∆AUC = 0.01, and
Table S10).

Stacking on Real-world Networks. To characterize the real-
world accuracy of model stacking, we apply these methods,
along with the individual predictors, to our corpus of 548 struc-
turally diverse real-world networks. We analyze the results
both within and across scientific domains, and as a function
of network size.

Both across all networks, and within individual domains,
model stacking methods produce the most accurate predictions
of missing links (Fig. 2B and Table 1), and some individual
predictors perform relatively well, particularly model-based
ones. Applied to all networks, the best model-stacking method
achieves slightly better average performance (all topol. &
model, 〈AUC〉 = 0.87± 0.10) than the best individual method
(MDL (DC-SBM), 〈AUC〉 = 0.84±0.10), and far better perfor-
mance than the average individual topological or model-based
predictor (〈AUC〉 = 0.63; and see Tables 1 and S6). However,
model stacking also achieves substantially better precision in
its predictions (Table 1), which can be a desirable property in
practice. We note that these stacking results were obtained
by optimizing the standard F measure to choose the random
forest’s parameters. Alternatively, we may optimize the AUC

4 Ghasemian et al.

Table 1. Link prediction performance (mean±std. err.), measured by
AUC, precision, and recall, for link prediction algorithms applied to
the 548 structurally diverse networks in our corpus.

algorithm AUC precision recall

Q 0.7± 0.14 0.14± 0.17 0.67± 0.15
Q-MR 0.67± 0.15 0.12± 0.17 0.63± 0.13
Q-MP 0.64± 0.15 0.09± 0.11 0.59± 0.17
B-NR (SBM) 0.81± 0.13 0.13± 0.12 0.65± 0.22
B-NR (DC-SBM) 0.7± 0.2 0.12± 0.12 0.61± 0.24
cICL-HKK 0.79± 0.13 0.14± 0.14 0.58± 0.25
B-HKK 0.77± 0.13 0.11± 0.1 0.51± 0.26
Infomap 0.73± 0.14 0.12± 0.12 0.68± 0.13
MDL (SBM) 0.79± 0.15 0.14± 0.13 0.57± 0.3
MDL (DC-SBM) 0.84± 0.1 0.13± 0.11 0.78± 0.12
S-NB 0.71± 0.19 0.12± 0.13 0.66± 0.17
mean model-based 0.74± 0.16 0.12± 0.13 0.63± 0.21
mean indiv. topol. 0.6± 0.13 0.09± 0.16 0.53± 0.35
mean indiv. topol. & model 0.63± 0.15 0.09± 0.16 0.55± 0.33
emb-DW 0.63± 0.23 0.17± 0.19 0.42± 0.35
emb-vgae 0.69± 0.19 0.05± 0.05 0.69± 0.21
all topol. 0.86± 0.11 0.42± 0.33 0.44± 0.32
all model-based 0.83± 0.12 0.39± 0.34 0.3± 0.29
all embed. 0.77± 0.16 0.32± 0.32 0.32± 0.31
all topol. & model 0.87± 0.1 0.48± 0.36 0.35± 0.35
all topol. & embed. 0.84± 0.13 0.4± 0.34 0.39± 0.33
all model & embed. 0.84± 0.13 0.36± 0.32 0.36± 0.31
all topol., model & embed. 0.85± 0.14 0.42± 0.34 0.39± 0.33

itself, which produces similar results, but with slightly lower
precisions in exchange for slightly higher AUC scores (see
Table S18).

Among the stacked models, the highest accuracy on real-
world networks is achieved by stacking model-based and topo-
logical predictor families. Adding embedding-based predictors
does not significantly improve accuracy, suggesting that the
network embeddings do not capture more structural informa-
tion than is represented by the model-based and topological
families. This behavior aligns with our results on synthetic
networks above, where the performances of stacking all predic-
tors and stacking only model-based and topological predictors
were nearly identical (SI Appendix, Tables S8 and S9).

Applied to individual scientific domains, we find consider-
able variation in missing link predictability, which we take to
be approximated by the most-accurate stacked model (Fig. 2B).
In particular, most predictors, both stacked and individual
(SI Appendix, Figs. S8 and S9), perform well on social net-
works, and on these networks, model stacking achieves nearly
perfect link prediction (up to AUC = 0.98± 0.06; Table S12).
In contrast, this upper limit is substantially lower in non-
social domains, being lowest for biological and technological
networks (AUC = 0.83 ± 0.10; Tables S13 and S15), while
marginally higher for economic and information networks
(AUC = 0.88± 0.10; SI Appendix, Tables S14 and S16).

Stacked models also exhibit superior performance on link
prediction across real-world networks of different scales (num-
ber of edges m; Fig. 3), and generally exhibit more accurate
predictions as network size increases, where link prediction
is inherently harder. We note, however, that on small net-
works (m < 200), an alternative algorithm based on a simple
majority-vote among model-based predictors slightly outper-

Fig. 3. Mean link prediction performance (AUC) as a function of network size (number
of edges m) for stacked models and select individual predictors, applied to 548 real-
world networks. Generally, stacking topological predictors, model-based predictors,
or both yields superior performance, but especially on larger networks where link
prediction is inherently more difficult.

forms all stacking methods, but performs substantially worse
than the best stacked model on larger networks (m > 1000).
And, embedding-based methods perform poorly at most scales,
suggesting a tendency to overfit, although stacking within that
family produces higher accuracies on larger networks, but still
lower than other stacked models.

Sufficiency and Optimality. In practice, the optimality of a
meta-learning method can only be established indirectly, over
a set of considered predictors applied to a sufficiently diverse
range of empirical tests cases (19). We assess this indirect
evidence for stacked link-prediction models through two nu-
merical experiments.

In the first, we consider how performance varies as a func-
tion of the number of predictors stacked, either within or
across families. Evidence for optimality here appears as an
early saturation, in which performance achieves its maximum
prior to the inclusion of all available individual predictors.
This behavior would indicate that a subset of predictors is
sufficient to capture the same information as the total set. To
test for this early-saturation signature, we first train a random
forest classifier on all predictors in each of our stacked models
and calculate each predictor’s within-model Gini importance.
For each stacked model, we then build a new sequence of sub-
models in which we stack only the k most important predictors
at a time and assess its performance on the test corpus.

In each of the stacked models, performance exhibits a clas-
sic saturation pattern: it increases quickly as the 10 most-
important predictors are included, and then stabilizes by
around 30 predictors (Fig. 4 and SI Appendix, Fig. S5). Perfor-
mance then degrades slightly beyond 30–50 included predictors,

Ghasemian et al. 5

Fig. 4. Mean link prediction performance (AUC) as a function of the number of
stacked features, for within- and across-family stacked models, applied to 548 real-
world networks. The shaded regions show the standard error, and the early saturation
behavior (at between 10 and 50 predictors) indicates that a small subset of predictors
is sufficient to capture the same information as the total set.

suggesting a slight degree of overfitting in the full models. No-
tably, each within and across family model exhibits a similar
saturation curve, except for the embedding-only model, which
saturates early and at a lower level than other stacked models.
This similar behavior suggests that these families of predictors
are capturing similar missingness signals, despite their differ-
ent underlying representations of the network structure. As
in other experiments, the best saturation behavior is achieved
by stacking model-based and topological predictors.

In the second, we evaluate whether individual predictors
represent “weak” learners in the sense that their link-prediction
performance is better than random. In general, we find that
nearly all of the predictors satisfy this condition (SI Appendix,
Figs. S6 and S7), implying that they can be combined ac-
cording to the Adaboost theorem to construct an optimal
algorithm (27). Replacing the random forest algorithm within
our stacking approach with a standard boosting algorithm also
produces nearly identical performance on our test corpus (see
Tables S19–S22). The similar performance between the two
methods suggests that relatively little additional performance
is likely possible using other meta-learning approaches over
the same set of predictors.

Discussion

Developing more accurate methods for predicting missing
links in networks would help reduce the use of scarce resources
in collecting network data, and would provide more powerful
tools for evaluating and comparing network models of complex
systems. The literature on such methods gives an unmistakable
impression that most published algorithms produce reasonably
accurate predictions. However, relatively few of these studies
present systematic comparisons across different families of
methods and they typically draw their test cases from a narrow
set of empirical networks, e.g., social networks. As a result,
it has remained unknown whether a single best predictor or
family of predictors exists, how link predictability itself varies
across different methods and scientific domains, or how close

to optimality current methods may be.
Our broad analysis of individual link prediction algorithms,

representing three large and popular families of such meth-
ods, applied to a large corpus of structurally diverse networks,
shows definitively that common predictors in fact exhibit a
broad diversity of errors across realistic inputs (Fig. 1 and SI
Appendix, Fig. S2). Moreover, this diversity is such that no
one predictor, and no family of predictors is overall best, or
worst, in practice (SI Appendix, Table S4 and Fig. S3). The
common practice of evaluating link prediction algorithms us-
ing a relatively narrow range of test cases is thus problematic.
The far broader range of empirical networks and algorithms
considered here shows that, generally speaking, good perfor-
mance on a few test cases does not generalize across inputs.
The diversity of errors we find serves to highlight the practical
relevance of the No Free Lunch theorem (19) for predicting
missing links in complex networks, and suggests that opti-
mal performance on realistic inputs may only be achieved
by combining methods, e.g., via meta-learning, to construct
an ensemble whose domain of best performance matches the
particular structural diversity of real-world networks.

Model stacking is a popular meta-learning approach, and
our results indicate that it can produce highly accurate pre-
dictions of missing links by combining either topological pre-
dictors alone, model-based predictors alone, or both. Applied
to structurally diverse synthetic networks, for which we may
calculate optimal performance, stacking achieves optimal or
near-optimal accuracy, and accuracy is generally closer to per-
fect when networks exhibit a highly variable degree distribution
and/or many, structurally distinct communities (Fig. 2A).

Similarly, applied to empirical networks, stacking pro-
duces more accurate predictions than any individual predictor
(Fig. 2B and Table 1), and these predictions appear to be
nearly optimal, i.e., we find little evidence that further accu-
racy can be achieved using this set of predictors (Fig. 4), even
under alternative meta-learning approaches. Of course, we
cannot rule out the possibility that more accurate predictions
overall could be obtained by incorporating, within the stacked
models, specific new predictors or new families, if they provide
better prediction coverage of some subset of input networks
than do the currently considered predictors. Given the diverse
set of predictors and families considered here, this possibility
seems unlikely without fundamentally new ideas about how to
represent the structure of networks, and therefore also signals
of missingness.

Across networks drawn from different scientific domains,
e.g., social vs. biological networks, we find substantial variation
in link predictor performance, both for individual predictors
and for stacked models. This heterogeneity suggests that the
basic task of link prediction may be fundamentally harder
in some domains of networks than others. Most algorithms
produce highly accurate predictions in social networks, which
are stereotypically rich in triangles (local clustering), exhibit
broad degree distributions, and are composed of assortative
communities, suggesting that link prediction in social networks
may simply be easier (28) than in non-social network settings.
In fact, stacked models achieve nearly perfect accuracy at
distinguishing true positives (missing links) from true negatives
(non-edges) in social networks (Fig. 2B and SI Appendix,
Table S12). An alternative interpretation of this difference is
that the existing families of predictors exhibit some degree

6 Ghasemian et al.

of selective inference, i.e., they work well on social networks
because social network data is the most common inspiration
and application for link prediction methods. Our results make
it clear that developing more accurate individual predictors
for non-social networks, e.g., biological and informational
networks, is an important direction of future work. Progress
along these lines will help clarify whether link prediction is
fundamentally harder in non-social domains, and why.

Across our analyses, embedding-based methods, which are
instances of representation learning on networks, generally
perform more poorly than do either topological or model-
based predictors. This behavior is similar to recent results in
statistical forecasting, which found that neural network and
other machine learning methods perform less well by them-
selves than when combined with other, conventional statistical
methods (29, 30). A useful direction of future work on link pre-
diction would specifically investigate tuning embedding-based
methods to perform better on the task of link prediction.

Only strong theoretical guarantees, which currently seem
out of reach, would allow us to say for certain whether the
stacked models presented here actually achieve the upper
bound on link prediction performance in complex networks.
However, the evidence suggests that stacking achieves nearly
optimal performance across a wide variety of realistic inputs.
It is likely that efforts to develop new individual link pre-
diction algorithms will continue, and these efforts will be
especially beneficial in specific application domains, e.g., pre-
dicting missing links in genetic regulatory networks or in food
webs. Evaluations of new predictors, however, should be car-
ried out in the context of meta-learning, in order to assess
whether they improve the overall prediction coverage embod-
ied by the state-of-the-art stacked models applied to realistic
inputs. Similarly, these evaluations should be conducted on
a large and structurally diverse corpus of empirical networks,
like the one considered here. More narrow evaluations are un-
likely to produce reliable estimates of predictor generalization.
Fortunately, stacked models can easily be extended to incor-
porate any new predictors, as they are developed, providing
an incremental path toward fully optimal predictions.

ACKNOWLEDGMENTS. The authors thank David Wolpert,
Brendan Tracey, and Cristopher Moore for helpful conversations,
acknowledge the BioFrontiers Computing Core at the University
of Colorado Boulder for providing High Performance Computing
resources (NIH 1S10OD012300) supported by BioFrontiers IT,
and thank the Information Sciences Institute at the University
of Southern California for hosting AGh during this project. Fi-
nancial support for this research was provided in part by Grant
No. IIS-1452718 (AGh, AC) from the National Science Foun-
dation. Data and code for replication purposes are provided at
[https://github.com/Aghasemian/OptimalLinkPrediction].

1. Kossinets G (2006) Effects of missing data in social networks. Social Networks 28(3):247–
268.

2. Fire M, et al. (2013) Computationally efficient link prediction in a variety of social networks.
ACM Transactions on Intelligent Systems and Technology (TIST) 5(1):10.

3. Lü L, Zhou T (2011) Link prediction in complex networks: A survey. Physica A: statistical
mechanics and its applications 390(6):1150–1170.

4. Nagarajan M, et al. (2015) Predicting future scientific discoveries based on a networked anal-
ysis of the past literature in Proceedings of the 21th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. (ACM), pp. 2019–2028.

5. Kane GC, Alavi M, Labianca GJ, Borgatti S (2014) What’s different about social media net-
works? a framework and research agenda. MIS Quarterly 38(1):274–304.

6. Burgess M, Adar E, Cafarella M (2016) Link-prediction enhanced consensus clustering for
complex networks. PLoS ONE 11(5):e0153384.

7. Mirshahvalad A, Lindholm J, Derlen M, Rosvall M (2012) Significant communities in large
sparse networks. PloS one 7(3):e33721.

8. Ghasemian A, Hosseinmardi H, Clauset A (2019) Evaluating overfit and underfit in models of
network community structure. IEEE Trans. Knowledge and Data Engineering (TKDE).

9. Vallès-Català T, Peixoto TP, Sales-Pardo M, Guimerà R (2018) Consistencies and incon-
sistencies between model selection and link prediction in networks. Physical Review E
97(6):062316.

10. Arlot S, Celisse A, , et al. (2010) A survey of cross-validation procedures for model selection.
Statistics Surveys 4:40–79.

11. Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining,
inference, and prediction. (New York, NY: Springer).

12. Clauset A, Moore C, Newman MEJ (2008) Hierarchical structure and the prediction of missing
links in networks. Nature 453(7191):98.

13. Martínez V, Berzal F, Cubero JC (2017) A survey of link prediction in complex networks. ACM
Computing Surveys (CSUR) 49(4):69.

14. Al Hasan M, Zaki MJ (2011) A survey of link prediction in social networks in Social Network
Data Analytics. (Springer), pp. 243–275.

15. Liben-Nowell D, Kleinberg J (2007) The link-prediction problem for social networks. Journal
of the Association for Information Science and Technology 58(7):1019–1031.

16. Zhou T, Lü L, Zhang YC (2009) Predicting missing links via local information. The European
Physical Journal B 71(4):623–630.

17. Grover A, Leskovec J (2016) node2vec: Scalable feature learning for networks in Proceed-
ings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. (ACM), pp. 855–864.

18. Cai H, Zheng VW, Chang KCC (2018) A comprehensive survey of graph embedding: Prob-
lems, techniques, and applications. IEEE Transactions on Knowledge and Data Engineering
30(9):1616–1637.

19. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Transac-
tions on Evolutionary Computation 1(1):67–82.

20. Peel L, Larremore DB, Clauset A (2017) The ground truth about metadata and community
detection in networks. Science Advances 3(5):e1602548.

21. Schapire RE (1990) The strength of weak learnability. Machine Learning 5(2):197–227.
22. Breiman L (1996) Bagging predictors. Machine Learning 24(2):123–140.
23. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a sim-

ple way to prevent neural networks from overfitting. Journal of Machine Learning Research
15(1):1929–1958.

24. Wolpert DH (1992) Stacked generalization. Neural Networks 5(2):241–259.
25. Schapire RE (1999) A brief introduction to boosting in Proceedings of the 16th International

Joint Conference on Artificial intelligence, Volume 2. (Morgan Kaufmann Publishers Inc.), pp.
1401–1406.

26. Koren Y (2009) The BellKor solution to the Netflix Grand Prize. Netflix prize documentation
81 pp. 1–10.

27. Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of Computer and System Sciences 55:119–139.

28. Epasto A, Perozzi B (2019) Is a single embedding enough? Learning node representations
that capture multiple social contexts in The World Wide Web Conference. (ACM), pp. 394–
404.

29. Makridakis S, Spiliotis E, Assimakopoulos V (2018) The M4 competition: Results, findings,
conclusion and way forward. International Journal of Forecasting 34(4):802–808.

30. Makridakis S, Spiliotis E, Assimakopoulos V (2018) Statistical and machine learning forecast-
ing methods: Concerns and ways forward. PLoS ONE 13(3):e0194889.

31. Newman M (2019) Networks. (Oxford University Press).
32. Cukierski W, Hamner B, Yang B (2011) Graph-based features for supervised link prediction

in Neural Networks (IJCNN), The 2011 International Joint Conference on. (IEEE), pp. 1237–
1244.

33. Hagberg A, Swart P, S Chult D (2008) Exploring network structure, dynamics, and function us-
ing networkx, (Los Alamos National Lab.(LANL), Los Alamos, NM (United States)), Technical
report.

34. Leicht EA, Holme P, Newman MEJ (2006) Vertex similarity in networks. Physical Review E
73(2):026120.

35. Newman MEJ, Girvan M (2004) Finding and evaluating community structure in networks.
Phys. Rev. E 69(2):026113.

36. Newman MEJ (2016) Community detection in networks: Modularity optimization and maxi-
mum likelihood are equivalent. arXiv:1606.02319.

37. Zhang P, Moore C (2014) Scalable detection of statistically significant communities and hier-
archies, using message passing for modularity. Proc. Natl. Acad. Sci. USA 111(51):18144–
18149.

38. Newman MEJ, Reinert G (2016) Estimating the number of communities in a network. Phys.
Rev. Lett. 117(7):078301.

39. Hayashi K, Konishi T, Kawamoto T (2016) A tractable fully Bayesian method for the stochastic
block model. arXiv:1602.02256.

40. Rosvall M, Bergstrom CT (2008) Maps of random walks on complex networks reveal commu-
nity structure. Proc. Natl. Acad. Sci. USA 105(4):1118–1123.

41. Peixoto TP (2013) Parsimonious module inference in large networks. Phys. Rev. Lett.
110(14):148701.

42. Krzakala F, et al. (2013) Spectral Redemption in Clustering Sparse Networks. Proc. Natl.
Acad. Sci. 110(52):20935–20940.

43. Perozzi B, Al-Rfou R, Skiena S (2014) Deepwalk: Online learning of social representations
in Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. (ACM), pp. 701–710.

44. Kipf TN, Welling M (2016) Variational graph auto-encoders. preprint arXiv:1611.07308.
45. Hamilton WL, Ying R, Leskovec J (2017) Representation learning on graphs: Methods and

applications. preprint arXiv:1709.05584.
46. Dietterich T (2000) Ensemble methods in machine learning. Multiple Classifier Systems pp.

1–15.
47. Sewell M (2008) Ensemble learning. RN 11(02).
48. Chen T, Guestrin C (2016) Xgboost: A scalable tree boosting system in Proceedings of the

22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. pp.

Ghasemian et al. 7

785–794.
49. Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an

application to boosting. Journal of computer and system sciences 55(1):119–139.
50. Karrer B, Newman MEJ (2011) Stochastic blockmodels and community structure in networks.

Physical review E 83(1):016107.
51. Decelle A, Krzakala F, Moore C, Zdeborová L (2011) Asymptotic Analysis of the Stochas-

tic Block Model for Modular Networks and Its Algorithmic Applications. Phys. Rev. E
84(6):066106.

52. Clauset A, Tucker E, Sainz M (2016) The Colorado Index of Complex Networks. (https://icon.
colorado.edu/).

53. Al Hasan M, Chaoji V, Salem S, Zaki M (2006) Link prediction using supervised learning in
SDM06: workshop on link analysis, counter-terrorism and security.

54. Ahmed C, ElKorany A, Bahgat R (2016) A supervised learning approach to link prediction in
twitter. Social Network Analysis and Mining 6(1):24.

55. Lichtenwalter RN, Lussier JT, Chawla NV (2010) New perspectives and methods in link pre-
diction in Proceedings of the 16th ACM SIGKDD international conference on Knowledge
discovery and data mining. (ACM), pp. 243–252.

56. Cover TM, Thomas JA (2012) Elements of information theory. (John Wiley & Sons).

Supporting Information

1. Methods for predicting missing links

Here, we describe in detail the three families of link predictors
and their specific members used in the analysis, including the
abbreviations used in the main text. In addition, we describe
in more detail the setup of the supervised stacked generalization
algorithm we use to combine individual predictors into a single
algorithm.

Topological predictors. Topological predictors are simple functions
of the observed network topology, e.g., counts of edges, measures
of overlapping sets of neighbors, and measures derived from simple
summarizations of the network’s structure. We consider 42 topo-
logical predictors, which come in three types: global, pairwise, and
node-based. Within these groups, the “pairwise” predictors include
a number of topological features that are often used in the literature
to directly predict missing links (15), e.g., the number of shared
neighbors of i, j. A listing of all topological predictors is given in
Table S1, along with corresponding literature references.
Global predictors. These predictors quantify various network-level
statistics and are inherited by each pair of nodes i, j that is a
candidate missing link. Their primary utility is to provide global
context to other predictors under supervised learning. For example,
a predictor that performs well on small networks, but poorly on
larger networks, can be employed appropriately under a supervised
model when the global measure of the network’s size is available.
Or, a large variance in the degree distribution would imply that
a predictor based on degree product may be useful. Or, a large
clustering coefficient would imply that an assortative community
detection algorithm like modularity is likely to be useful. For
this reason, global predictors are not expected by themselves to
be accurate predictors of missing links (see Figs. S3 and S4 and
Tables S6 and S7). These global predictors are generally useful
in capturing missingness in unseen networks and not on the same
network link prediction experiments. These features help to learn
from existing configurations in training networks and generalize
them to unseen networks in experiments like Fig. 1 in the main
text.

The 8 global predictors are the number of nodes (N), number of
observed edges (OE), average degree (AD), variance of the degree
distribution (VD), network diameter (ND), degree assortativity of
graph (DA), network transitivity or clustering coefficient (NT), and
average (local) clustering coefficient (ACC) (14, 15, 31, 32).
Pairwise predictors. These predictors are functions of the joint
topological properties of the pair of nodes i, j being considered.

The 14 pairwise predictors are the number of common neighbors
of i, j (CN), shortest path between i, j (SP), Leicht-Holme-Newman
index of neighbor sets of i, j (LHN), personalized page rank (PPR),∗
preferential attachment or degree product of i, j (PA), Jaccard
coefficient of the neighbor sets of i, j (JC), Adamic-Adar index of

∗By using a biased random walk we can find the personalized PageRank algorithm. This centrality
could reflect the importance of nodes with respect to a biased set of specific nodes or a single spe-
cific node. In this paper using personalized page rank we consider j-th entry of the personalized
page rank for node i as one of the edge-based features.

i, j (AA), resource allocation index of i, j (RA), the entry i, j in a
low rank approximation (LRA) via a singular value decomposition
(SVD) (LRA), the dot product of the i, j columns in the LRA via
SVD (dLRA), the mean of entries i and j’s neighbors in the LRA
(mLRA), and simple approximations of the latter three predictors
(LRA-approx, dLRA-approx, mLRA-approx) (14, 15, 31, 32).

We omit from consideration several pairwise predictors found in
the literature, e.g. edge betweenness centrality, due to their large
computational complexity for an evaluation as large as ours.
Node-based predictors. These predictors are functions of the in-
dependent topological properties of the individual nodes i and j,
and thus produce a pair of predictor values. Unlike many of the
pairwise predictors, which can be used as standalone algorithms to
predict missing links, these node-based predictors do not directly
score the likelihood that i, j is a missing link. Instead, the particular
function that converts the pair of node-based predictors into a score
is learned within the supervised framework.

The 20 node-based predictors are two instance each of the lo-
cal clustering coefficient (LCC), average neighbor degree (AND),
shortest-path betweenness centrality (SPBC), closeness centrality
(CC), degree centrality (DC), eigenvector centrality (EC), Katz
centrality (KC), local number of triangles (LNT), Page rank (PR),
and load centrality (LC) (14, 15, 31, 32).

Model-based predictors. Model-based predictors are a broad class
of prediction algorithms that rely on models of large-scale network
structure to score pairs i, j that are more or less likely to be missing.
To make link predictions, model-based algorithms employ one of two
strategies: likelihood or optimization. In the first case, a method
estimates a parametric probability Pr(i → j | θ) that a node pair
should be connected, given a decomposition of a network into
communities, as in the stochastic block model and its variants. In
the second it predicts a link as missing if it would improve its
measure of community structure, as in Infomap and modularity.

We consider 11 model-based predictors for missing links, which
include many state-of-the-art in community detection algorithms (8),
are sufficiently scalable to be applied in an evaluation as large as
ours, and each of which has previously been used as a standalone
link prediction algorithm. A listing of all model-based predictors is
given in Table S2, along with the corresponding literature references.

For the model-based predictors that make predictions by likeli-
hood, we follow Ref. (8) to employ a “model-specific” score function
for each method. Under this approach, a particular method first
decomposes the network into a set of communities using its cor-
responding parametric model, and then extracts from that same
parametric model a score Pr(i→ j | θ) for each candidate pair i, j.
See Ref. (8) for additional details.

Embedding-based predictors. Embedding-based predictors are de-
rived from graph embedding techniques, which attempt to automate
the feature engineering phase of learning with graphs by projecting a
network’s nodes into a relatively low-dimensional latent space, with
the goal of locally preserving the node neighborhoods. Embedding-
based predictors are thus either node coordinates in such an embed-
ding, or measure of distance between embedded pairs. We consider a
total of 150 embedding-based predictors, all derived from 2 popular
graph embedding algorithms, DeepWalk (emb-DeepWalk) (43)—a
special case of node2vec (emb-node2vec) (17)—and the variational
graph auto encoder (emb-vgae) (44).

Using emb-DeepWalk and emb-vgae, we embed each network
into a 128-dimensional and 16-dimensional space, respectively. For
each pair of nodes i, j, we then apply a Hadamard product function
to the corresponding pair of coordinates to obtain 144 link predictors
as features for supervised learning (45). To these, we add 6 more
predictors by applying, for each of the 2 embedding methods, a
different distance or similarity function to the corresponding pair
of coordinate vectors: an inner product, an inner product with a
sigmoid function, and Euclidean distance.

Stacked generalization and meta-learning for link prediction. Meta-
learning or ensemble techniques are a powerful class of supervised
machine learning algorithms that can learn from data how to
combine individual predictors into a single, more accurate algo-
rithm (22, 25, 46, 47). By treating the output of individual pre-
diction algorithms as features of the input instances themselves,

8 Ghasemian et al.

https://icon.colorado.edu/
https://icon.colorado.edu/

a supervised meta-learning algorithm can construct a correlation
function that relates which individual algorithm is most accurate
on which subset of inputs. Of the several approaches to meta-
learning, we focus on the approach of stacked generalization or
model “stacking” (24), and we consider two boosting approaches
(see below) as a robustness check. We leave further investigation of
other meta-learning algorithms for future work.

Stacking aims to minimize the generalization error of a set of
component learners. In the classic setting, the two training levels
can be summarized as follows. Given a dataset D = {(y`, x`), ` ∈
{1, ..., L}}, where x` is the feature vector of the `-th example and
y` is its label, randomly split D into J “folds” appropriate for J-fold
cross validation. Each fold j contributes once as a test set Dj and
the rest contributes once as a training set D−j = D rDj . For each
base classifier r, where r ∈ {1, ..., R}, called a level-0 generalizer,
we fit it to the jth fold in the training set D−j to build a model
M−jr , called a level-0 model. Now for each data point x` in the jth
test set, we employ these level-0 modelsM−jr to predict the output
zr`. The new data set DCV = {(y`, z1`, ..., zR`), ` ∈ {1, ..., L}}, is
now prepared for the next training level, called a level-1 generalizer.
In the second training phase, an algorithm learns a new model from
this data, denoted as M̃. Now, we again train the base classifiers
using the whole data D, noted as Mr, we complete the training
phase and the models are ready to classify a new data point x. The
new data point will first be fed into the trained base classifiersMr

and then the output of these level-0 models will construct the input
for the next level model M̃.

In the network setting of link prediction, the classifiers (predic-
tors) in the first level are all unsupervised, and therefore, we alter

the stacked generalization algorithm as follows to account for this
difference and to adapt it to a network setting. For a given net-
work G = (V,E), we sample the edges uniformly and construct the
observed network G′ = (V,E′), where |E| = α|E| (α = 0.8 in our
experiments). Here, we use only the uniform edge-removal model
and leave the analysis of any non-uniform edge removal model for
future work. The removed edges E \ E′ are considered as held-out
data in the link prediction task. Then, in order to train a model,
we remove 1− α′ (α′ = 0.8 in our experiments) of the edges as our
positive examples and take all non-edges in the observed network G′
as negative examples. Although this procedure makes the negative
samples noisy, since the networks are sparse, it introduces a negligi-
ble error in the learned model, and should not significantly effect
the model’s performance. In our setting, the unsupervised classifiers
in the first level are our level-0 predictors, and we use the scores
coming from these link prediction techniques as our meta features.
The second training phase is conducted through supervised learning
with 5-fold cross validation on the training set. We use a standard
supervised random forest algorithm for the meta-learning step, and
assess the learning process on 3 within-family models (topol. only,
model-based only, and embed. only) and on 4 across-family models
(all families, and each of topol. & model, topol. & embed, and model
& embed.), for a total of 7 stacked models.
Model selection. In order to choose the best parameters of the
model using 5-fold cross validation, we can choose the parameters
of the model through optimizing the AUC performance or the
F measure. In the main text all figures and tables show results
for a standard random forest with the parameters chosen through
F measure optimization and the results are reported on the test

Table S1. Abbreviations and descriptions of 42 topological predictors, across three types: global predictors (7), which are functions of
the entire network and whose utility is in providing context to other predictors; pairwise predictors (15), which are functions of the joint
topological properties of the pair i, j; and node-based predictors (20), which are functions of the independent topological properties of the
nodes i and j, producing one value for each node in the pair i, j.

Abbreviation Description Global Pairwise Node-based Ref.

N number of nodes • (31)
OE number of observed edges • (31)
AD average degree • (31)
VD variance of degree distribution • (31)
ND network diameter • (31)
DA degree assortativity of graph • (33)
NT network transitivity (clustering coefficient) • (31)
ACC average (local) clustering coefficient • (31)

CN common neighbors of i, j • (15)
SP shortest path between i, j • (15)
LHN Leicht-Holme-Newman index of neighbor sets of i, j • (34)
PPR j-th entry of the personalized page rank of node i • (33)
PA preferential attachment (degree product) of i, j • (15)
JC Jaccard’s coefficient of neighbor sets of i, j • (15)
AA Adamic/Adar index of i, j • (15)
RA resource allocation index of i, j • (33)
LRA entry i, j in low rank approximation (LRA) via singular value decomposition (SVD) • (32)
dLRA dot product of columns i and j in LRA via SVD for each pair of nodes i, j • (32)
mLRA average of entries i and j’s neighbors in low rank approximation • (32)
LRA-approx an approximation of LRA • (32)
dLRA-approx an approximation of dLRA • (32)
mLRA-approx an approximation of mLRA • (32)

LCCi, LCCj local clustering coefficients for i and j • (33)
ANDi, ANDj average neighbor degrees for i and j • (33)
SPBCi, SPBCj shortest-path betweenness centralities for i and j • (33)
CCi, CCj closeness centralities for i and j • (33)
DCi, DCj degree centralities for i and j • (33)
ECi, ECj eigenvector centralities for i and j • (33)
KCi, KCj Katz centralities for i and j • (33)
LNTi, LNTj local number of triangles for i and j • (33)
PRi, PRj Page rank values for i and j • (33)
LCi, LCj load centralities for i and j • (33)

Ghasemian et al. 9

Table S2. Abbreviations and descriptions of 11 model-based predictors, across two types: likelihood predictors (7), which score each pair
i, j according to a parametric model Pr(i → j | θ) learned by decomposing the network under a probabilistic generative model of network
structure such as the stochastic block model or its variants; and, optimization predictors (4), which score each pair i, j according to whether
adding them would increase a corresponding (non-probabilistic) community structure objective function, as in the Map Equation or the
modularity function.

Abbreviation Description Likelihood Optimization Ref.

Q modularity, Newman-Girvan • (35)
Q-MR modularity, Newman’s multiresolution • (36)
Q-MP modularity, message passing • (37)
B-NR (SBM) Bayesian stochastic block model, Newman and Reinert • (38)
B-NR (DC-SBM) Bayesian degree-corrected stochastic block model, Newman and Reinert • (38)
B-HKK (SBM) Bayesian stochastic block model, Hayashi, Konishi and Kawamoto • (39)
cICL-HKK (SBM) Corrected integrated classification likelihood, stochastic block model • (39)
Infomap Map equation • (40)
MDL (SBM) Minimum description length, stochastic block model • (41)
MDL (DC-SBM) Minimum description length, degree-corrected stochastic block model • (41)
S-NB Spectral with non-backtracking matrix • (42)

set. Results for, instead, optimizing using the AUC are given in
Table S18 which can be compared with Table 1 in the main text.
Alternative meta-learning algorithms. In addition to a standard ran-
dom forest, we also evaluate two methods of boosting, XGBoost (48)
and AdaBoost (49), for learning a single algorithm over the individ-
ual predictors. The results from these meta-learning algorithms are
provided in Tables S19-S22 for different choices of model selection
through AUC or F measure.

2. Tests on synthetic data

We evaluate individual predictors and their stacked general-
ization on a set of synthetic networks with known structure that
varies along three dimensions: (i) the degree distribution’s variabil-
ity, being low (Poisson), medium (Weibull), or high (power law);
(ii) the number of “communities” or modules k ∈ {1, 2, 4, 16, 32};
and (iii) the fuzziness of the corresponding community boundaries
ε = mout/min, the fraction of a node’s edges that connect out-
side its community, being low, medium, or high. These synthetic
networks thus range from homogeneous to heterogeneous random
graphs (degree distribution), from no modules to many modules
(k), and from weakly to strongly modular structure (ε).

We generate these networks using the degree-corrected stochas-
tic block model (DC-SBM) (50), which allows us to systematically
control each of these parameters to generate a synthetic network.
Moreover, because both the data generating process and the missing
function f (here, uniform at random) are known, we may exactly
calculate the theoretical upper limit that any link prediction algo-
rithm could achieve for a given parameterization of the generative
process. This upper bound provides an unambiguous reference point
for how optimal any particular link prediction algorithm is, and
the three structural dimensions of the synthetic networks allow us
to extract some general insights as to what properties increase or
decrease the predictability of missing links.

In this section, we first describe the generative processes, and
then detail the calculations for optimal predictions. For complete-
ness, we first specify the mathematical forms of the Weibull and
power-law degree distributions used in some settings. The Pois-
son distribution is fully specified by the choice of the mean degree
parameter c.

The Weibull distribution can be written as

f(r) = crβ−1e−λr
β
, [1]

where the constant c is the corresponding normalization constant
when r is the degree of a node, and the parameters λ, β specify the
shape of the distribution. When β < 1, this distribution decays
more slowly than simple exponential, meaning it exhibits greater
variance, but not as much variance as can a power-law distribution.
See Table S3 for the particular values used in our synthetic data.

The power-law distribution can be written as

f(r) = cr−γ , [2]

where, again, c is the corresponding normalization constant when r
is the degree of a node, and γ is the “scaling” exponent that governs
the shape of the distribution. When γ ∈ (2, 3), the mean is finite
but the variance is infinite. See Table S3 for the particular values
used in our synthetic data.

Generating synthetic networks. Although each type of synthetic net-
work can be generated under the DC-SBM model, for some choices
of the number of communities k and degree distribution, the gener-
ative process simplifies greatly. Below, we describe the generation
procedures for the synthetic networks according to the simplest
generative model available for a given choice of parameters, which
is noted in the subsection heading.

Generating ER networks (k = 1, Poisson)
• choose number of nodes n, and average degree c, or the inter-

action probability p = c/(n− 1),
• connect each pair of nodes independently with probability p.

Generating DC-ER networks (k = 1, Weibull or power law)
• choose number of nodes n, and average degree c,
• compute the parameters of degree distribution for the average

degree c,
• generate a degree sequence with length n with the computed

parameters in the previous step,

• compute the number of edges for the network as m = 1
2
∑

i
di,

• make a multi-edge between each pair of nodes i, j indepen-
dently with the Poisson probability with rate λ = di

dgi

dj

dgj
ω,

where ω = 2m.
We then convert this multigraph into a simple (unweighted)
network by collapsing multi-edges. Because these networks are
parameterized to be sparse, this operation does not substan-
tially alter the network’s structure, as only a small fraction of
all edges are multi-edges.

Generating SBM networks (k > 1, Poisson)
• choose number of nodes n, number of clusters k, average degree

c, and ε̃, the ratio of number of edges connected to a node
outside and inside its cluster, i.e., ε̃ = pout(n/k)

pin(n/k)
= pout

pin
;

by choosing c and ε̃, the mixing probabilities can then be
computed as pin = c

(n/k)(1 + ε̃(k − 1))
and pout = ε̃ pin,

• generate the type of the nodes independently with prior prob-
abilities qr for r = {1, ..., k},

• connect each pair of nodes i, j independently with probability
pgigj , where

pgi,gj =
{
pin if gi = gj
pout if gi 6= gj

.

10 Ghasemian et al.

Table S3. Parameters used to generate the synthetic networks, via the DC-SBM structured random graph model, used to evaluate the link
prediction methods studied here. Redundant information (derivable from the other parameters) is listed parenthetically, for convenience. See
Section 2.

Region Model Number of modules k Parameters

low ε Poisson 1 n = 505, p = 0.008
low ε Poisson 2 n = 512, pin = 0.03, pout = 0.0003 (ε = 0.009)
low ε Poisson 4 n = 512, pin = 0.06, pout = 0.0003 (ε = 0.015)
low ε Poisson 16 n = 512, pin = 0.25, pout = 0.0003 (ε = 0.015)
low ε Poisson 32 n = 512, pin = 0.49, pout = 0.0003 (ε = 0.019)
low ε Weibull 1 n = 497, λ = 1, β = 0.5, ω = 2350
low ε Weibull 2 n = 520, λ = 1, β = 0.4, ε = 0.002
low ε Weibull 4 n = 604, λ = 1, β = 0.4, ε = 0.002
low ε Weibull 16 n = 773, λ = 1, β = 0.4, ε = 0.04
low ε Weibull 32 n = 939, λ = 1, β = 0.15, ε = 0.0005
low ε power law 1 n = 507, β = 1.6, ω = 5436
low ε power law 2 n = 511, β = 1.7, ε = 0.0003
low ε power law 4 n = 511, β = 1.8, ε = 0.002
low ε power law 16 n = 983, β = 1.6, ε = 0.0015
low ε power law 32 n = 1029, β = 1.41, ε = 0.0015
moderate ε Poisson 1 n = 511, p = 0.016
moderate ε Poisson 2 n = 512, pin = 0.03, pout = 0.005 (ε = 0.20)
moderate ε Poisson 4 n = 512, pin = 0.04, pout = 0.006 (ε = 0.39)
moderate ε Poisson 16 n = 512, pin = 0.16, pout = 0.006 (ε = 0.6)
moderate ε Poisson 32 n = 511, pin = 0.31, pout = 0.006 (ε = 0.62)
moderate ε Weibull 1 n = 510, λ = 1, β = 0.7, ω = 1424
moderate ε Weibull 2 n = 501, λ = 1, β = 0.4, ε = 0.06
moderate ε Weibull 4 n = 593, λ = 1, β = 0.4, ε = 0.08
moderate ε Weibull 16 n = 589, λ = 1, β = 0.4, ε = 0.2
moderate ε Weibull 32 n = 640, λ = 1, β = 0.22, ε = 0.05
moderate ε power law 1 n = 545, β = 1.9, ω = 1428
moderate ε power law 2 n = 506, β = 1.7, ε = 0.05
moderate ε power law 4 n = 540, β = 1.8, ε = 0.05
moderate ε power law 16 n = 655, β = 1.7, ε = 0.01
moderate ε power law 32 n = 702, β = 1.41, ε = 0.01
high ε Poisson 1 n = 512, p = 0.03
high ε Poisson 2 n = 512, pin = 0.025, pout = 0.006 (ε = 0.25)
high ε Poisson 4 n = 512, pin = 0.04, pout = 0.007 (ε = 0.48)
high ε Poisson 16 n = 512, pin = 0.14, pout = 0.007 (ε = 0.75)
high ε Poisson 32 n = 512, pin = 0.27, pout = 0.007 (ε = 0.93)
high ε Weibull 1 n = 489, λ = 1, β = 0.9, ω = 1216
high ε Weibull 2 n = 506, λ = 1, β = 0.4, ε = 0.2
high ε Weibull 4 n = 590, λ = 1, β = 0.4, ε = 0.32
high ε Weibull 16 n = 600, λ = 1, β = 0.4, ε = 0.5
high ε Weibull 32 n = 631, λ = 1, β = 0.22, ε = 0.13
high ε power law 1 n = 514, β = 2.2, ω = 1722
high ε power law 2 n = 536, β = 1.7, ε = 0.08
high ε power law 4 n = 526, β = 1.8, ε = 0.14
high ε power law 16 n = 626, β = 1.7, ε = 0.1
high ε power law 32 n = 673, β = 1.5, ε = 0.05

Generating DC-SBM networks (k > 1, Weibull or power law)
• choose number of nodes n, average degree c, and ε, the ratio of

number of edges between the clusters and inside the clusters,
i.e., ε = mout/min, where min is the number of edges inside
the clusters, and mout is the number of edges between the
clusters,

• generate the type of nodes independently with prior probabili-
ties qr for r = {1, ..., k},

• compute the parameters of degree distribution for average
degree c,

• generate a degree sequence with length n with the computed
parameters in previous step, and compute the aggregate degrees
for each cluster noted as dr =

∑
i:gi=r

di,
• compute the total number of edges for the network as m =

1
2
∑

i
di,

• using ε, compute the number of edges inside and outside the
clusters, denoted as min, and mout, as min = m/(1 + ε) and
mout = εmin,

• because we do not assume heterogeneity for the size and volume
of clusters in the generating process (node types are randomized
uniformly and edges are created uniformly inside and between
clusters), then we may approximate the number of edges inside
each cluster r as m(r)

in = min/k, the number of edges between
cluster r and any other cluster as m(r)

out = mout
k/2

, and the

number of edges between each pair of clusters r and s as
m

(rs)
out = mout

/(
k
2

)
,

Ghasemian et al. 11

• make a multi-edge between each pair of nodes i, j with types
r, s, independently with the Poisson probability with rate
λr,s(di, dj) = di

dr

dj

ds
ωr,s, where

ωr,s =
{

2m(r)
in if r = s

m
(rs)
out if r 6= s

.

We then convert this multigraph into a simple (unweighted)
network by collapsing multi-edges. Because these networks are
parameterized to be sparse, this operation does not substan-
tially alter the network’s structure, as only a small fraction of
all edges are multi-edges.

It is worthwhile to mention that ε in DC-SBM is related to ε̃ in
SBM as ε = mout/min = (k − 1)pout/pin = (k − 1)ε̃. Therefore, for
the results, we used ε = mout/min for both SBM and DC-SBM.

Optimal link prediction accuracy on a synthetic network. To calculate
an upper bound on link prediction accuracy that any algorithm
could achieve in one of our synthetic networks, we exploit the
mathematical equivalence of the Area Under the ROC Curve (AUC)
and the binary classification probability that a prediction algorithm
A assigns a higher score to a missing link (true positive) than to a
non-edge (true negative):

AUC = Pr(tes > tnes) , [3]
where tes and tnes denote the scores assigned to a missing edge (te;
true positive) and to a non-edge (tne; true negative). To derive the
optimal AUC for any possible link prediction algorithm, it suffices
to calculate this probability under a given parametric generative
modelM(θ) and missingness function f .
Assumptions and definitions. In the calculations that follow,
we treat separately the three generative process subcases of the

DC-SBM described above, and we define n = |V |, m = |E|. If two
edges assigned the same score by the generative model, we assume
that such ties are broken uniformly at random.

For these calculations, we also assume that algorithm A has
access to the planted partition assignment P of the k clusters used
to generate the edges. In practice, this assumption implies that our
upper bound may be unachievable in cases where the detectability
of P is either computational hard or information-theoretically im-
possible (see Ref. (51)), e.g., when community boundaries are fuzzy
(high ε).

Given this partition, we define ni, mi, and m̃i to be the number
of nodes, number of edges, and number of non-edges, respectively,
within community i. And, we define mij and m̃ij to be the number
of edges and non-edges, respectively, that span communities i and
j.

Finally, when we estimate Eq. (3) via Monte Carlo sampling, we
select 100,000 uniformly random te (true positive) and tne (true
negative) pairs.

Optimal AUC for ER. The AUC for an Erdős-Rényi random graph
is

AUC = Pr(tes > tnes) = 1/2 . [4]
In words: because the generative model assigns the same score
p = c/(n− 1) to every edge and every non-edge, and because ties
are broken at random, the maximum AUC can be no better than
chance.

Optimal AUC for DC-ER. As in the ER case, this random graph has
k = 1 communities, but unlike the ER case, the degree distribution
here is heterogeneous (Weibull or power law). We calculate the
maximum AUC for any algorithm A on this synthetic network via
Eq. (5) (below), which we estimate numerically via Monte Carlo
sampling on Eq. (3).

AUC = Pr(tes > tnes)

=
∑

u1.v1,u2,v2

p(u1v1 > u2v2, di1 = u1, dj1 = v1, di2 = u2, dj2 = v2 | (i1, j1) ∈ E, (i2, j2) /∈ E)

=
∑

u1,v1,u2,v2

1(u1v1 > u2v2)p(di1 = u1, dj1 = v1, di2 = u2, dj2 = v2 | (i1, j1) ∈ E, (i2, j2) /∈ E)

(Bayes Thm.)
=

∑
u1,v1,u2,v2

1(u1v1 > u2v2)
p((i1, j1) ∈ E, (i2, j2) /∈ E | di1 = u1, dj1 = v1, di2 = u2, dj2 = v2)

p((i1, j1) ∈ E, (i2, j2) /∈ E)

× p(di1 = u1)p(dj1 = v1)p(di2 = u2)p(dj2 = v2) . [5]

Optimal AUC for SBM. In the general case (k > 1) of the stochastic
block model (SBM), the te and tne probabilities under the generative
model depend on the mixing matrix of edge densities between and
within communities. When these densities are set such that the

planted partition P is easily recoverable by a community detection
algorithm (a range of parameters called the “deep detectable regime”
(DDR) (51), where ε→ 0), Eq. (3) can be rewritten as Eq. (6):

AUC = Pr(tes > tnes)
= Pr(tes > tnes|both inside) Pr(both inside)× number of possibilities

+ Pr(tes > tnes|both outside) Pr(both outside)× number of possibilities
+ Pr(tes > tnes|te inside, tne outside) Pr(te inside, tne outside)× number of possibilities
+ Pr(tes > tnes|te outside, tne inside) Pr(te outside, tne inside)× number of possibilities . [6]

12 Ghasemian et al.

The four terms of Eq. (6) can then be computed as follows, where α is the sampling rate of observed edges:

• First term:

Pr(tes > tnes | both inside) Pr(both inside)

= miα∑
i
miα+

∑
i 6=j mijα

×
m̃i∑

i
m̃i +

∑
i 6=j m̃ij

=

(
ni
2

)
pin∑

i

(
ni
2

)
pin +

∑
i6=j ninjpout

×

(
ni
2

)
(1− pin)(

ni
2

)
(1− pin) + ninj(1− pout)

= 1
2

(
pin

k3(pin + (k − 1)pout)

)
= cin

2k4c
, † [7]

Finally, because the number of possibilities is k2, the first term simplifies as 1
2

(
pin

k3(pin+(k−1)pout)

)
× k2 ≈ 1/2k.

• Second term:

Pr(tes > tnes | both outside) Pr(both outside)

=
mijα∑

i
miα+

∑
i 6=j mijα

×
m̃ij∑

i
m̃i +

∑
i 6=j m̃ij

=
ninjpout∑

i

(
ni
2

)
pin +

∑
i6=j ninjpout

×
ninj(1− pout)(

ni
2

)
(1− pin) + ninj(1− pout)

= 2
(

pout
k3(pin + (k − 1)pout)

)
= 2cout

k4c
. [8]

Finally, because the number of possibilities is
(
k
2

)2
≈ k4

4 the second term simplifies as 2pout
k3(pin+(k−1)pout)×

k4
4 = kpout

(pin+(k−1)pout) ≈ 0.

• Third term:

Pr(tes > tnes | tes inside, tnes outside) Pr(tes inside, tnes outside)

= miα∑
i
miα+

∑
i 6=j mijα

×
m̃ij∑

i
m̃i +

∑
i 6=j m̃ij

=

(
ni
2

)
pin∑

i

(
ni
2

)
pin +

∑
i6=j ninjpout

×
ninj(1− pout)(

ni
2

)
(1− pin) + ninj(1− pout)

= 2
(

pin
k3(pin + (k − 1)pout)

)
= 2cin

k4c
. [9]

Finally, because the number of possibilities is k
(
k
2

)
= k2(k−1)/2 the third term simplifies as 2pin

k3(pin+(k−1)pout)×
k2(k−1)

2 = (k−1)/k.

• Last term:

Pr(tes > tnes | tes outside, tnes inside) Pr(tes outside, tnes inside) = 0 [10]

Finally, when the SBM parameters are such that the model is in the deep detectable regime (DDR), the fourth term is zero, because
the assigned scores to the outer edges are smaller than the assigned scores to inner edges, under the assumption that the algorithm A
can recover the planted partition (which occurs with probability 1 in DDR).

Ghasemian et al. 13

Given the above simplifications, we arrive at the final expression
to compute the optimal AUC for the SBM in the DDR:

AUC = Pr(tes > tnes)

= 1
2k

+ k − 1
k

= 2k − 1
2k

. [11]

For example, the upper bounds on link predictability un-
der this model for k = {2, 4, 8, 16, 32} are AUC =
{0.75, 0.875, 0.94, 0.97, 0.98}, respectively. Because these values
are computed in the deep detectable regime, they are accurate only
when ε is low (sharp community boundaries, or P is known or
recoverable).

For any value of ε, we may numerically calculate the upper
bound on AUC using Monte Carlo sampling via the Eq. (3),
applied to the generated networks. The corresponding values
represent conservative upper bounds on the maximum AUC

because under Monte Carlo because we assume that P is known.
In practice, a community detection algorithm would need to

infer that from the observed data, and this event is not guaranteed
when ε is higher (51), due to a phase transition in the detectability
(recoverability) of the planted partition structure that maximizes
the predictability of missing links. We suggest that the gap observed
in Fig. 2 between this conservative upper bound and accuracy of
the best stacked models in the high-ε settings can be attributed to
this difference. That is, the stacked models are closer to the true
upper bound than our calculations suggest.

Optimal AUC for DC-SBM. In the general case (k > 1) of the degree-
corrected SBM, the te and tne probabilities under the generative
model depend on the specified degree distribution (Weibull or power
law) and the mixing matrix of edge densities between and within
communities.

In this setting, Eq. (3) can be rewritten as Eq. (6) when ε→ 0;
however to compute each term we must also condition on the degrees
of the nodes. Following the same logic as in the SBM analysis, we
compute each term separately as follows.

• First term:

Pr(tes > tnes | both inside)

=
∑

u1,v1,u2,v2

1(u1v1 > u2v2)
p((i1, j1) ∈ E, (i2, j2) /∈ E | di1,2 = u1,2, dj1,2 = v1,2)

p((i1, j1) ∈ E, (i2, j2) /∈ E)

× p(di1 = u1)p(dj1 = v1)p(di2 = u2)p(dj2 = v2) , [12]

where di1,2 = u1,2 means di1 = u1 and di2 = u2.
• Second term:

Pr(tes > tnes | both outside)

=
∑

u1,v1,u2,v2

1(u1v1 > u2v2)
p((i1, j1) ∈ E, (i2, j2) /∈ E | di1,2 = u1,2, dj1,2 = v1,2)

p((i1, j1) ∈ E, (i2, j2) /∈ E)

× p(di1 = u1)p(dj1 = v1)p(di2 = u2)p(dj2 = v2) . [13]

• Third term:

Pr(tes > tnes | te inside, tne outside)

=
∑

u1,v1,u2,v2

1(u1v1mrr > u2v2mrs)
p((i1, j1) ∈ E, (i2, j2) /∈ E | di1,2 = u1,2, dj1,2 = v1,2)

p((i1, j1) ∈ E, (i2, j2) /∈ E)

× p(di1 = u1)p(dj1 = v1)p(di2 = u2)p(dj2 = v2) . [14]

• Fourth term:

Pr(tes > tnes | te outside, tne inside)

=
∑

u1,v1,u2,v2

1(u1v1mrs > u2v2mrr)
p((i1, j1) ∈ E, (i2, j2) /∈ E | di1,2 = u1,2, dj1,2 = v1,2)

p((i1, j1) ∈ E, (i2, j2) /∈ E)

× p(di1 = u1)p(dj1 = v1)p(di2 = u2)p(dj2 = v2) . [15]

We compute these terms numerically using Monte Carlo samples
of the generated networks to calculate Eq. (3).

3. Empirical corpus for link prediction evaluations

To evaluate and compare the different link prediction algorithms
in a practical setting, we have selected 548 networks‡ from the “Com-
munityFitNet corpus,” a novel data set§ containing 572 real-world

‡Available at https://github.com/Aghasemian/OptimalLinkPrediction
§Available at https://github.com/AGhasemian/CommunityFitNet

networks drawn from the Index of Complex Networks (ICON) (52).
This corpus spans a variety of network sizes and structures, with
22% social, 21% economic, 34% biological, 12% technological, 4%
information, and 7% transportation graphs (Fig. S1).

4. Evaluation of the link prediction algorithms

In practical settings, the true missingness function f may not
be known, and f is likely to vary with the scientific domain, the
manner in which the network data is collected, and the scientific

14 Ghasemian et al.

https://github.com/Aghasemian/OptimalLinkPrediction
https://github.com/AGhasemian/CommunityFitNet

102 103

number of nodes

101

av
er

ag
e

de
gr

ee

social
biological
economic
technological
information
transportation

0

50

nu
m

be
r o

f
 n

et
wo

rk
s

0 100
number of
 networks

Fig. S1. Average degree versus number of nodes for a subset of CommunityFitNet corpus (8) consisting of 548 real-world networks drawn from the Index of Complex Networks
(ICON) (52), including social, biological, economic, technological, information, and transportation graphs.

question of interest. Here, we do not consider all possible functions
f , and instead analyze an f that samples edges uniformly at random
from E so that each edge (i, j) ∈ E is observed with probability
α.¶ This choice presents a hard test for link prediction algorithms,
as f is independent of both observed edges and metadata. Other
models of f , e.g., in which missingness correlates with edge or node
characteristics, may better capture particular scientific settings and
are left for future application-specific work. Our results thus provide
a general, application-agnostic assessment of link predictability and
method performance.

Most of the predictors we consider are predictive only under a
supervised learning approach, in which we learn a model of how
these node-pair features correlate with edge missingness. This su-
pervised approach to link prediction poses one specific technical
challenge. Under supervised learning, we train a method using 5-fold
cross validation by choosing as positive examples a subset of edges
E′′ ⊂ E′ according to the same (uniformly random) missingness
model f . But applying this missingness function can only create
positive training examples (missing links), while supervised learning
also needs negative examples (non-links). Other approaches to su-
pervised link prediction have made specific assumptions to mitigate
this issue. For example, in a temporal network, an algorithm can
be trained using the links and non-links observed during an earlier
training time frame (53, 54), or if some missing links are known a
priori, they may be used as training examples (55). However, such
approaches require information, e.g., the evolution of a network
over time, that are not commonly available, and thus they do not
generalize well to the broad evaluation setting of this study. Here,
we use a different, more general approach to evaluate and compare
supervised link prediction methods on a large set of static networks.

Specifically, we exploit two features of our empirical networks
(Fig. S1) to construct reasonably reliable training sets. First, all
observed non-edges V × V − E′ in observed graph G′ = (V,E′)
are taken as negative examples (non-links). If G is a snapshot of
an evolving network, then links that form in the future of G will
form between pairs that are not currently connected. Therefore, the
non-links of G can reasonably be considered as negative examples
up to the time of observation. Second, most real-world networks, for
which link prediction is relevant, are sparse. In this case, considering
the non-links as negative examples includes only a small number
of negative examples in the training set, which are in fact positive
examples in the test set. Although these mislabeled edges are not
true negative examples, their sparsity in the training set (because
the size of the non-links set is O(n2) compared to the O(n) size
of the missing links set, this approach can only induce a O(1/n)
bias in the learning) is likely compensated for by the improved
generalizability of taking a supervised learning approach compared
to an unsupervised approach.

¶Unless otherwise specified, results reflect a choice ofα = 0.8, i.e., 20% of edges are unobserved
(holdout set); other values produce qualitatively similar results.

5. Diversity in prediction error

A Lorenz curve is a standard method to visualize the skewness
of predictor importances on individual networks. Fig. S2 shows
the set of 548 curves for the learned importances for each of the
networks in our empirical corpus, along with the average curve
across the ensemble (red solid line). This ensemble exhibits a mean
Gini coefficient of 0.64± 0.14 (mean±stddev), and illustrates that
the importances tend to be highly skewed, such that a relatively
small subset of predictors account for the majority of prediction
accuracy.

The entropy of a distribution is a standard summary statistic
of such variation, and provides a compact measure for compar-
ing different distributions. Given a discrete random variable X
drawn from a probability distribution p, the entropy is defined as
H(X) = Ep(X)[− log(p(X))], and can be interpreted as the amount
of uncertainty in X, the average number of bits we need to store X,
or the minimum number of binary questions on average to guess
a draw from X (56). The maximum entropy of discrete random
variable occurs for a uniform distribution, and is simply log2(L)
where L is the number of possible outcomes for X.

We begin by computing the learned feature importance entropies
for each domain in each family (Table S4). To calculate these, we
first choose all the networks in a domain j, as either social, biological,
economic, technological, information, or transportation networks)
and a set of predictors `, as either (i) all 203 predictors, (ii) the 42
topological predictors, (iii) the 11 model-based predictors, or (iv) the
150 embedding predictors. We then learn the feature importances
of this set for each domain via supervised learning, as described
above.‖ We denote the feature importances of all predictors in
a family ` and for networks in domain j by a vector X(`)

j . The
“probability” associated with the i-th predictor in family ` and for
networks in domain j is then computed as p(`)

ij = X
(`)
ij

/∑
i
X

(`)
ij .

For each setting, the entropy of the corresponding distribution is
reported in Table S4.

Comparing the entropy of the learned importances with the
simple upper-limit entropy given by a uniform distribution illustrates
the diversity of learned importances among the predictors. To
provide a more intuitive sense of how skewed the distribution is, we
compare the empirical entropy value with that of a simple piece-wise
artificial distribution. Specifically, we consider a distribution in
which at least 90% of the density is allocated uniformly across the
best x% of the predictors, with the remaining density allocated
uniformly across the rest. We then choose the x that minimizes the
difference between this model entropy and the empirical entropy.

All predictors. Applied to the importances of all predictors, only 9%
of predictors account for 90% of the importance in social networks.
Other domains require far more predictors, e.g., 37% for biological

‖Unless otherwise noted, the reported results are based on a training a random forest. We also
used AdaBoost and XGBoost and similar results have been observed (see Tables S19-S22).

Ghasemian et al. 15

Table S4. Predictor importance entropy for each domain in each family. For each family, the “entropy” column measures the uncertainty
in predictor importance of each domain. Also we consider an artificial distribution on predictors that explain (uniformly) the 90% of the
probability by the best x% of the predictors, and (uniformly) 10% of the probability by the rest. We choose x such that the artificial entropy
be as close as possible to the empirical entropy. The column “top x%”, shows the percentage of best predictors with 90% probability. The (n)
value shows the corresponding number for the top x%. The “uniform” column reports the entropy if predictor importance were uniform. The
“feature-wise” row within each family reports the entropy held by each predictor, summing across domains. Entropies are reported in units
of bits.

Family Domain Entropy Top x% (n) Uniform

al
lt

op
ol

.,
m

od
el

,
an

d
em

be
d.

pr
ed

ic
to

rs
(2

03
)

social 5.03 9.36(19)

7.66

biology 6.79 37.44(76)
economy 6.57 31.03(63)
technology 7 44.83(91)
information 6.41 27.59(56)
transportation 6.67 33.99(69)
feature-wise 6.71 34.98(71)

Family Domain Entropy Top x% (n) Uniform
al

lt
op

ol
.

pr
ed

ic
to

rs
(4

2)
social 3.85 21.43(9)

5.39

biology 5.09 61.9(26)
economy 4.65 42.86(18)
technology 5.01 57.14(24)
information 4.81 47.62(20)
transportation 4.9 52.38(22)
feature-wise 5.08 61.9(26)

Family Domain Entropy Top x% (n) Uniform

al
lm

od
el

-b
as

ed
pr

ed
ic

to
rs

(1
1)

social 3.14 63.64(7)

3.46

biology 3.35 72.73(8)
economy 3.36 72.73(8)
technology 3.37 72.73(8)
information 2.94 54.55(6)
transportation 3.24 63.64(7)
feature-wise 3.31 72.73(8)

Family Domain Entropy Top x% (n) Uniform

al
le

m
be

d.
pr

ed
ic

to
rs

(1
50

) social 4.65 9.33(14)

7.23

biology 6.51 42.67(64)
economy 6.38 38.67(58)
technology 6.74 52(78)
information 5.19 14.67(22)
transportation 6.62 46.67(70)
feature-wise 6.23 34(51)

and 45% for technological networks. Notably, the top x% in each
family of predictors are different across domains. The values in
Table S4 show that most of the variation in importances can be
explained by at most 91 of 203 total predictors for technological
networks, 26 out of 42 topol. predictors for biological networks, 8 of
11 model-based predictors for biological, economic, and technological
networks, and 78 of 150 embed. predictors for technological networks.
Also we see that across these predictor sets most of the uncertainty
can be explained by at least 19 out of 203, 9 out of 42, 7 out of 11,
and 14 out of 150 predictors for social networks, which illustrates
the simplicity of link prediction in social networks.
Feature-wise entropy. We also compute the feature-wise entropy for
each family `, which captures the distribution of learned predictor
importances, summing across domains. We denote the predictor
importance of all predictors in a family ` by a vector X`. The impor-
tance “probability” in the i-th entry of this vector for family ` can
be computed as p(`)

i =
∑

j
X

(`)
ij

/∑
ij
X

(`)
ij , which quantifies the

proportion of total importance of predictor i in all domains versus
the total importance of all predictors. For each family, the entropy
of the corresponding probability distribution is reported in Table S4.
And, as before, comparing the entropy of the learned importances
with the simple upper-limit entropy given by a uniform distribution
illustrates that regardless of the domain, the importances are spread
widely across predictors.
Family-wise entropy. Finally, we compute the family-wise entropies
for each domain j, under an alternative formulation. Denoting the
importance of predictor i in domain j as Xij , and the set of all

predictors in family ` as P`, we compute the importance “probabil-
ity” of the predictor i in domain j as pij =

∑
i∈P` Xij

/∑
i
Xij .

Then, the family-wise entropy can be defined using this distribution
(see Table S5). As before, comparing the entropy of each domain j
with the simple upper-limit entropy given by a uniform distribution
illustrates the variance of predictor importances among different
families. Moreover, these entropies also illustrate that the variation
of importances in social networks is smaller (the most important
predictors are in topological and embedding families [see Fig. 2 in
the main text]), compared to that of non-social networks.

Table S5. Family wise entropy. Importance entropy of all features in
a family for each domain. The “uniform” column reports the entropy
if predictor importance were uniform. Entropies are reported in units
of bits.

Domain Entropy Uniform

fa
m

ily
w

is
e

social 1.27

1.58

biology 1.57
economy 1.58
technology 1.55
information 1.58
transportation 1.56

Taking the learned importances for all predictors, Fig. S3 plots
the distributions of the importance-ranks (how often predictor i was

16 Ghasemian et al.

the jth most important predictor) for all 203 predictors, applied to
all 548 networks. This visualization reveals that among the most
important predictors (high importance-rank across networks) are
those in the model-based family, along with a subset of topolog-
ical predictors, and the six notions of distance or similarity for
embedding-based predictors. The least important predictors (low
importance-rank across networks) fall primarily in the topologi-
cal family and a few model-based predictors. None of embedding
predictors ranked among the least important, and instead nearly
all of them rank in the broad middle of overall importance. Most
embedding-based predictors do rank highly for a few individual
networks, but it is a different subset of embedding predictors for
each network. Thus, across networks, embedding predictors are
uniformly middling in their importance, and none are dominant in
a network domain.

Categorizing predictors by their importance-rank distributions. To
analyze and identify the most important predictors in comparison
with the least important predictors on average, we extract a hierar-
chical clustering of the rank similarities of Fig. S3, which is shown in
Fig. S4. The large group of predictors (green cluster) on the left of
the hierarchy correspond to the embedding-based predictors, whose
distribution of importances is concentrated in the middle range
(Fig. S4, inset panel 1). A second group (red cluster) corresponds
to the predictors that are nearly always the least important across
networks, such as VD, OE, DA, and ACC (Fig. S4, inset panel 2).
And a third group (cyan cluster) includes to predictors that receive
high importance across nearly all 548 networks (Fig. S4, inset panels
7–9), as well as some with more bimodal importance (Fig. S4, inset
panels 4–6).

Minimal number of features for stacking. Fig. S5 shows the dis-
tribution of the minimum number of predictors k∗, that is needed
to achieve at least 95% of final AUC for each family of stacking
methods. These curves highlight that in a large portion of networks,
we can achieve high predictability using roughly 10 predictors.

Performance as weak learners. Considering each predictor as
a “weak learner” from the perspective of the Adaboost theorem,
Figs. S6 and S7 show the histogram of AUC performances of all
model-based and topological individual predictors across the 548
networks in our empirical corpus. The large majority of these predic-
tors have AUC larger than 0.5, while a modest portion of individual
topological predictors fall below this threshold, meaning that they
are not useful in link prediction for a given network. (These topolog-
ical predictors are of the “global” type (see SI Appendix, section 1
and Table S1) and are not expected to be individually predictive.
We note, however, that these predictors are likely to be useful in any
transfer learning setting, in which we train on a subset of networks
and apply the model to unseen networks. Transfer learning for link
prediction is out of scope of the present work and we leave it for
future study.

AUC, precision, and recall across tests. Tables S6 and S7 present
the link prediction performance measured by AUC, precision, and
recall, for all individual topological predictors applied to the 548
real-world networks in our empirical corpus and the 45 generated
synthetic data.

Ghasemian et al. 17

0.0 0.2 0.4 0.6 0.8 1.0
richest fraction of features

0.0

0.2

0.4

0.6

0.8

1.0

fra
ct

io
n

of
 to

ta
l i

m
po

rta
nc

e

Fig. S2. Lorenz curves of the importance of the features. These curves illustrate that in a large portion of empirical networks, a very large fraction of learned “importance”
belongs to a small fraction of predictors. The red solid line shows the average Lorenz curve over the 548 networks.

Fig. S3. Distribution of the importance ranks of each predictor across 548 networks. The most important features typically belong to model-based and topological predictor
families. Among embedding predictor, the most important correspond to the distance measures among the embedded vectors. Almost all vector embedding predictors have
middling levels of importance, although they are rarely the worst predictors. The distribution of the ranks is logarithmic (base 10).

18 Ghasemian et al.

Fig. S4. A clustering of features based on the similarities of their rank in Gini importance. Clusters show similar importance distribution among 548 networks. Embedding
predictors appear in middle ranks uniformly for different networks (inset 1). The red cluster shows the worst importance among different networks (insets 2–3). The cyan cluster
shows better importance and the most important features are located to the right of this group (insets 4–9).

Ghasemian et al. 19

100 101 102

k *

0.00

0.05

0.10

di
st

rib
ut

io
n

of
 k

*

all topol. predictors
all model-based
all embed. predictors
all topol. & model predictors
all topol. & embed. predictors
all model & embed. predictors
all topol., model, & embed. predictors

Fig. S5. Distribution of the minimum number of features k∗ that is needed to achieve at least 95% of final AUC for each family of stacking methods.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
AUC

0

2

4

6

8

10

12

de
ns

ity

Q
Q-MR
Q-MP
B-NR (SBM)
B-NR (DC-SBM)
B-HKK (SBM)
cICL-HKK (SBM)
Infomap
MDL (SBM)
MDL (DC-SBM)
S-NB
emb-DW
emb-vgae

Fig. S6. Histogram of AUC performances on 548 empirical networks for all 11 model-based “weak learners” and two embedding link predictors used in model stacking.

20 Ghasemian et al.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
AUC

0

10

20

30

40

50
de

ns
ity

ACC
AD
ANDi

ANDj

SPBCi

SPBCj

CCi

CCj

LCCi

LCCj

CN
LHN
DA
DCi

DCj

ND
ECi

ECj

KCi

KCj

LCi

LCj

LNTi

LNTj

PRi

PRj

PPR
PA

SP
LRA
LRA-approx
dLRA
dLRA-approx
mLRA
mLRA-approx
NT
VD
JC
RA
AA
N
OE

Fig. S7. Histogram of AUC performances on 548 empirical networks for all 42 individual topological “weak learners” used in model stacking.

theoretical upper bound on AUC

Fig. S8. (A) On synthetic networks, the mean link prediction performance (AUC) of topological individual predictors and all stacked algorithms across three forms of structural
variability: (left to right, by subpanel) degree distribution variability, from low (Poisson) to high (power law); (top to bottom, by subpanel) fuzziness of community boundaries,
ranging from low to high (ε = mout/min, the fraction of a node’s edges that connect outside its community); and (left to right, within subpanel) the number of communities k.
Across settings, the dashed line represents the theoretical maximum performance achievable by any link prediction algorithm (SI Appendix, section B). In each instance,
stacked models perform optimally or nearly optimally, and generally perform better when networks exhibit heavier-tailed degree distributions and more communities with
distinct boundaries. (B) On real-world networks, the mean link prediction performance for the same predictors across all domains, and by individual domain. Both overall and
within each domain, stacked models, particularly the across-family versions, exhibit superior performance, and they achieve nearly perfect accuracy on social networks. The
performance, however, varies considerably across domains, with biological, technological, transportation, and information networks exhibiting the lowest link predictability.

Ghasemian et al. 21

Table S6. Link prediction performance (mean±std. err.), measured by AUC, precision, and recall, for individual topological predictors applied
to the 548 structurally diverse networks in our corpus.

algorithm AUC precision recall

ACC 0.5± 0.0 0.01± 0.02 0.48± 0.5
AD 0.5± 0.0 0.02± 0.02 0.51± 0.5
ANDi 0.6± 0.12 0.05± 0.04 0.46± 0.21
ANDj 0.61± 0.12 0.05± 0.05 0.48± 0.2
SPBCi 0.58± 0.09 0.06± 0.06 0.44± 0.16
SPBCj 0.55± 0.08 0.05± 0.06 0.41± 0.24
CCi 0.56± 0.08 0.04± 0.03 0.5± 0.23
CCj 0.6± 0.1 0.05± 0.03 0.54± 0.21
LCCi 0.55± 0.07 0.05± 0.07 0.44± 0.36
LCCj 0.53± 0.05 0.04± 0.06 0.45± 0.37
CN 0.68± 0.19 0.21± 0.27 0.7± 0.37
LHN 0.66± 0.18 0.25± 0.3 0.68± 0.37
DA 0.5± 0.0 0.01± 0.02 0.49± 0.5
DCi 0.68± 0.11 0.06± 0.05 0.61± 0.2
DCj 0.68± 0.1 0.06± 0.04 0.58± 0.18
ND 0.5± 0.0 0.02± 0.02 0.52± 0.5
ECi 0.56± 0.09 0.05± 0.06 0.37± 0.17
ECj 0.6± 0.08 0.05± 0.05 0.5± 0.21
KCi 0.56± 0.09 0.05± 0.06 0.47± 0.19
KCj 0.59± 0.1 0.05± 0.06 0.54± 0.22
LCi 0.58± 0.09 0.06± 0.06 0.44± 0.16
LCj 0.55± 0.07 0.05± 0.06 0.41± 0.24
LNTi 0.55± 0.07 0.04± 0.05 0.51± 0.35
LNTj 0.54± 0.07 0.04± 0.05 0.51± 0.36
PRi 0.64± 0.1 0.06± 0.05 0.48± 0.18
PRj 0.63± 0.11 0.06± 0.04 0.51± 0.18
PPR 0.75± 0.15 0.21± 0.26 0.57± 0.28
PA 0.69± 0.1 0.06± 0.05 0.61± 0.19
SP 0.76± 0.15 0.15± 0.18 0.73± 0.3
LRA 0.5± 0.0 0.01± 0.02 0.51± 0.5
LRA-approx 0.67± 0.15 0.17± 0.19 0.42± 0.3
dLRA 0.68± 0.19 0.2± 0.27 0.71± 0.36
dLRA-approx 0.69± 0.14 0.15± 0.19 0.56± 0.31
mLRA 0.67± 0.19 0.21± 0.28 0.68± 0.38
mLRA-approx 0.68± 0.14 0.14± 0.18 0.56± 0.3
NT 0.5± 0.0 0.01± 0.02 0.48± 0.5
VD 0.5± 0.0 0.01± 0.02 0.46± 0.5
JC 0.67± 0.19 0.23± 0.29 0.68± 0.38
RA 0.67± 0.19 0.24± 0.31 0.68± 0.38
AA 0.67± 0.19 0.24± 0.31 0.68± 0.38
N 0.5± 0.0 0.02± 0.02 0.52± 0.5
OE 0.5± 0.0 0.01± 0.02 0.45± 0.5

22 Ghasemian et al.

Table S7. Link prediction performance (mean±std. err.), measured by AUC, precision, and recall, for individual topological predictors applied
to the 45 synthetic networks.

algorithm AUC precision recall

ACC 0.5± 0.0 0.02± 0.02 0.44± 0.5
AD 0.5± 0.0 0.02± 0.02 0.49± 0.5
ANDi 0.57± 0.07 0.06± 0.03 0.41± 0.16
ANDj 0.56± 0.07 0.06± 0.03 0.4± 0.12
SPBCi 0.61± 0.1 0.09± 0.06 0.44± 0.13
SPBCj 0.61± 0.1 0.08± 0.06 0.46± 0.17
CCi 0.61± 0.11 0.05± 0.03 0.59± 0.22
CCj 0.6± 0.11 0.05± 0.03 0.63± 0.23
LCCi 0.6± 0.1 0.09± 0.07 0.51± 0.2
LCCj 0.62± 0.1 0.08± 0.05 0.48± 0.21
CN 0.71± 0.14 0.19± 0.15 0.54± 0.28
LHN 0.7± 0.14 0.22± 0.16 0.55± 0.29
DA 0.5± 0.0 0.02± 0.02 0.49± 0.5
DCi 0.67± 0.13 0.08± 0.05 0.55± 0.16
DCj 0.67± 0.12 0.08± 0.05 0.57± 0.16
ND 0.5± 0.0 0.02± 0.02 0.47± 0.5
ECi 0.62± 0.11 0.08± 0.05 0.46± 0.14
ECj 0.62± 0.12 0.08± 0.05 0.46± 0.16
KCi 0.57± 0.08 0.07± 0.08 0.42± 0.11
KCj 0.57± 0.09 0.06± 0.03 0.44± 0.16
LCi 0.61± 0.1 0.09± 0.06 0.45± 0.13
LCj 0.61± 0.1 0.08± 0.05 0.46± 0.14
LNTi 0.63± 0.11 0.08± 0.07 0.57± 0.21
LNTj 0.63± 0.11 0.07± 0.04 0.57± 0.2
PRi 0.65± 0.12 0.09± 0.06 0.51± 0.14
PRj 0.65± 0.12 0.09± 0.06 0.5± 0.15
PPR 0.74± 0.14 0.16± 0.14 0.54± 0.23
PA 0.72± 0.16 0.1± 0.07 0.62± 0.18
SP 0.75± 0.14 0.13± 0.13 0.72± 0.18
LRA 0.5± 0.0 0.01± 0.02 0.38± 0.48
LRA-approx 0.69± 0.14 0.15± 0.16 0.51± 0.21
dLRA 0.71± 0.14 0.18± 0.14 0.54± 0.27
dLRA-approx 0.73± 0.13 0.17± 0.12 0.51± 0.19
mLRA 0.68± 0.13 0.18± 0.15 0.51± 0.28
mLRA-approx 0.7± 0.12 0.12± 0.11 0.49± 0.19
NT 0.5± 0.0 0.02± 0.02 0.49± 0.5
VD 0.5± 0.0 0.02± 0.02 0.6± 0.49
JC 0.69± 0.14 0.21± 0.16 0.5± 0.29
RA 0.7± 0.14 0.21± 0.16 0.52± 0.28
AA 0.71± 0.14 0.21± 0.16 0.51± 0.28
N 0.5± 0.0 0.02± 0.02 0.62± 0.48
OE 0.5± 0.0 0.02± 0.02 0.49± 0.5

Ghasemian et al. 23

theoretical upper bound on AUC

Fig. S9. (A) On synthetic networks, the mean link prediction performance (AUC) of model-based individual predictors and all stacked algorithms across three forms of structural
variability: (left to right, by subpanel) degree distribution variability, from low (Poisson) to high (power law); (top to bottom, by subpanel) fuzziness of community boundaries,
ranging from low to high (ε = mout/min, the fraction of a node’s edges that connect outside its community); and (left to right, within subpanel) the number of communities k.
Across settings, the dashed line represents the theoretical maximum performance achievable by any link prediction algorithm (SI Appendix, section B). In each instance,
stacked models perform optimally or nearly optimally, and generally perform better when networks exhibit heavier-tailed degree distributions and more communities with
distinct boundaries. (B) On real-world networks, the mean link prediction performance for the same predictors across all domains, and by individual domain. Both overall and
within each domain, stacked models, particularly the across-family versions, exhibit superior performance, and they achieve nearly perfect accuracy on social networks. The
performance, however, varies considerably across domains, with technological networks exhibiting the lowest link predictability.

Table S8. Mean performance gap for each method in synthetic data.

Algorithm Average gap〈∆AUC〉
Q 0.187
Q-MR 0.198
Q-MP 0.191
B-NR (SBM) 0.085
B-NR (DC-SBM) 0.123
cICL-HKK 0.09
B-HKK 0.12
Infomap 0.083
MDL (SBM) 0.075
MDL (DC-SBM) 0.071
S-NB 0.138
mean indiv. model. 0.124
mean indiv. topol. 0.257
mean indiv. topol. & model 0.229
emb-DW 0.2
emb-vgae 0.172
all topol. 0.066
all model-based 0.069
all embed. 0.09
all topol. & model 0.049
all topol. & embed. 0.057
all model & embed. 0.05
all topol., model & embed. 0.044

24 Ghasemian et al.

Table S9. The AUC gap of the best 10 predictors with the upper-bound AUC for synthetic data.

Rank Algorithm Average gap (〈∆AUC〉)
1 MDL (DC-SBM) 0.071
2 MDL (SBM) 0.075
3 Infomap 0.083
4 B-NR (SBM) 0.085
5 cICL-HKK 0.09
6 B-HKK 0.12
7 SP 0.121
8 B-NR (DC-SBM) 0.123
9 S-NB 0.138
10 PPR 0.139

Table S10. Link prediction performance (mean±std. err.), measured by AUC, precision, and recall, for link prediction algorithms applied to
the 45 synthetic networks.

Algorithm AUC Precision Recall

Q 0.69± 0.16 0.11± 0.14 0.66± 0.15
Q-MR 0.68± 0.17 0.11± 0.14 0.66± 0.15
Q-MP 0.69± 0.13 0.11± 0.1 0.65± 0.15
B-NR (SBM) 0.79± 0.14 0.16± 0.12 0.67± 0.24
B-NR (DC-SBM) 0.75± 0.15 0.17± 0.12 0.7± 0.16
cICL-HKK 0.79± 0.15 0.17± 0.14 0.61± 0.27
B-HKK 0.76± 0.15 0.13± 0.1 0.56± 0.26
Infomap 0.79± 0.17 0.18± 0.17 0.75± 0.16
MDL (SBM) 0.8± 0.16 0.17± 0.13 0.65± 0.3
MDL (DC-SBM) 0.8± 0.16 0.15± 0.11 0.76± 0.16
S-NB 0.74± 0.15 0.14± 0.13 0.67± 0.15
mean model-based 0.75± 0.16 0.15± 0.13 0.67± 0.21
mean indiv. topol. 0.62± 0.13 0.09± 0.11 0.51± 0.3
mean indiv. topol. & model 0.65± 0.15 0.1± 0.11 0.54± 0.29
emb-DW 0.68± 0.14 0.15± 0.14 0.36± 0.28
emb-vgae 0.7± 0.16 0.06± 0.03 0.72± 0.17
all topol. 0.81± 0.16 0.4± 0.26 0.46± 0.21
all model-based 0.81± 0.15 0.51± 0.33 0.38± 0.28
all embed. 0.79± 0.15 0.35± 0.27 0.29± 0.26
all topol. & model 0.83± 0.14 0.49± 0.33 0.42± 0.25
all topol. & embed. 0.82± 0.15 0.41± 0.28 0.42± 0.23
all model & embed. 0.83± 0.15 0.47± 0.31 0.36± 0.26
all topol., model & embed. 0.83± 0.15 0.48± 0.3 0.4± 0.24

Ghasemian et al. 25

Table S11. The detailed information of the top 5 topological predictors for synthetic data as presented in Fig. 2 in the manuscript.

Region Model Number of clusters k Predictors

low ε Poisson 1 [mLRA-approx., PPR, PA, dLRA-approx., PR-j]
low ε Poisson 2 [PPR, SP, dLRA-approx., LRA-approx., mLRA-approx.]
low ε Poisson 4 [PPR, SP, LRA-approx., mLRA-approx., dLRA-approx.]
low ε Poisson 16 [PPR, SP, dLRA-approx., mLRA-approx., LRA-approx.]
low ε Poisson 32 [PPR, SP, RA, LHN, mLRA]
low ε Weibull 1 [PR-i, PA, DC-j, EC-i, KC-j]
low ε Weibull 2 [SP, PA, PPR, LRA-approx., DC-i]
low ε Weibull 4 [SP, dLRA-approx., LRA-approx., mLRA-approx., PA]
low ε Weibull 16 [SP, dLRA-approx., mLRA-approx., PPR, LRA-approx.]
low ε Weibull 32 [PPR, SP, dLRA-approx., AA, LRA-approx.]
low ε power law 1 [PA, LHN, CN, dLRA, dLRA-approx.]
low ε power law 2 [PA, DC-i, PR-j, LHN, AND-i]
low ε power law 4 [PA, PR-i, SP, DC-i, AA]
low ε power law 16 [SP, LRA-approx., dLRA-approx., PPR, PA]
low ε power law 32 [dLRA-approx., SP, PPR, LRA-approx., PA]
moderate ε Poisson 1 [EC-i, SPBC-i, LNT-j, EC-j, AA]
moderate ε Poisson 2 [LRA-approx., SP, AND-i, PPR, KC-i]
moderate ε Poisson 4 [dLRA-approx., SP, mLRA-approx., LRA-approx., PPR]
moderate ε Poisson 16 [mLRA-approx., dLRA-approx., LRA-approx., SP, PPR]
moderate ε Poisson 32 [PPR, SP, LRA-approx., dLRA, CN]
moderate ε Weibull 1 [PA, DC-i, dLRA-approx., SPBC-j, mLRA-approx.]
moderate ε Weibull 2 [PA, SP, PPR, CN, dLRA]
moderate ε Weibull 4 [SP, PA, mLRA-approx., dLRA-approx., PPR]
moderate ε Weibull 16 [PPR, SP, dLRA-approx., LRA-approx., PA]
moderate ε Weibull 32 [dLRA-approx., AA, dLRA, CN, PPR]
moderate ε power law 1 [PA, EC-i, CC-i, JC, DC-j]
moderate ε power law 2 [PA, AA, RA, LHN, CN]
moderate ε power law 4 [PA, LHN, SP, AA, RA]
moderate ε power law 16 [PPR, dLRA-approx., SP, mLRA-approx., LRA-approx.]
moderate ε power law 32 [PPR, SP, CN, LHN, JC]
high ε Poisson 1 [EC-i, DC-j, KC-j, LCC-j, RA]
high ε Poisson 2 [PA, EC-i, DC-j, dLRA, KC-j]
high ε Poisson 4 [LRA-approx., SP, PPR, DC-j, LNT-j]
high ε Poisson 16 [SP, PPR, dLRA-approx., LRA-approx., mLRA-approx.]
high ε Poisson 32 [PPR, SP, mLRA-approx., dLRA-approx., AA]
high ε Weibull 1 [SP, dLRA-approx., mLRA-approx., PPR, DC-i]
high ε Weibull 2 [PA, dLRA-approx., SP, DC-j, PR-i]
high ε Weibull 4 [PA, dLRA-approx., SP, DC-i, DC-j]
high ε Weibull 16 [SP, PPR, dLRA-approx., PA, AA]
high ε Weibull 32 [RA, AA, PA, CN, dLRA]
high ε power law 1 [PA, DC-i, PR-i, LCC-i, LNT-i]
high ε power law 2 [PA, LHN, AA, dLRA, CN]
high ε power law 4 [PA, SP, LHN, AA, RA]
high ε power law 16 [PPR, PA, SP, AA, CN]
high ε power law 32 [PA, SP, CN, dLRA, JC]

26 Ghasemian et al.

Table S12. Average AUC, precision, and recall performances of the link prediction algorithms over 124 social networks as a subset of
CommunityFitNet corpus. A random forest is used for supervised stacking of methods. Here, the predictors are adjusted for maximum F
measure using a model selection through a cross validation on training set. The results are reported on 20% holdout test set.

Algorithm AUC Precision Recall

Q 0.89± 0.07 0.42± 0.13 0.85± 0.08
Q-MR 0.87± 0.07 0.38± 0.16 0.78± 0.07
Q-MP 0.86± 0.08 0.25± 0.07 0.83± 0.09
B-NR (SBM) 0.93± 0.06 0.3± 0.08 0.85± 0.12
B-NR (DC-SBM) 0.93± 0.07 0.28± 0.08 0.88± 0.08
cICL-HKK 0.93± 0.08 0.34± 0.1 0.85± 0.14
B-HKK 0.88± 0.07 0.17± 0.05 0.79± 0.17
Infomap 0.91± 0.04 0.29± 0.08 0.83± 0.05
MDL (SBM) 0.94± 0.07 0.31± 0.09 0.87± 0.16
MDL (DC-SBM) 0.93± 0.09 0.26± 0.09 0.89± 0.11
S-NB 0.94± 0.07 0.3± 0.1 0.87± 0.08
mean model-based 0.91± 0.08 0.3± 0.12 0.84± 0.12
mean indiv. topol. 0.64± 0.19 0.2± 0.27 0.56± 0.33
mean indiv. topol. & model 0.7± 0.21 0.22± 0.25 0.62± 0.32
emd-DW 0.95± 0.1 0.45± 0.16 0.92± 0.13
emb-vgae 0.95± 0.08 0.09± 0.02 0.96± 0.09
all topol. 0.97± 0.08 0.89± 0.21 0.88± 0.2
all model-based 0.95± 0.07 0.76± 0.2 0.68± 0.17
all embed. 0.95± 0.11 0.75± 0.23 0.74± 0.23
all topol. & model 0.98± 0.06 0.89± 0.22 0.88± 0.19
all topol. & embed. 0.96± 0.1 0.86± 0.22 0.83± 0.25
all model & embed. 0.96± 0.09 0.78± 0.21 0.74± 0.22
all topol., model & embed. 0.97± 0.09 0.86± 0.23 0.84± 0.23

Table S13. Average AUC, precision, and recall performances of the link prediction algorithms over 179 biological networks as a subset of
CommunityFitNet corpus. A random forest is used for supervised stacking of methods. Here, the predictors are adjusted for maximum F
measure using a model selection through a cross validation on training set. The results are reported on 20% holdout test set.

Algorithm AUC Precision Recall

Q 0.61± 0.12 0.06± 0.09 0.58± 0.13
Q-MR 0.57± 0.11 0.05± 0.09 0.56± 0.12
Q-MP 0.59± 0.09 0.06± 0.07 0.52± 0.13
B-NR (SBM) 0.78± 0.13 0.09± 0.09 0.6± 0.21
B-NR (DC-SBM) 0.72± 0.17 0.1± 0.09 0.63± 0.21
cICL-HKK 0.74± 0.13 0.09± 0.09 0.47± 0.24
B-HKK 0.72± 0.14 0.11± 0.12 0.39± 0.26
Infomap 0.7± 0.12 0.07± 0.09 0.68± 0.11
MDL (SBM) 0.77± 0.14 0.11± 0.1 0.51± 0.29
MDL (DC-SBM) 0.82± 0.09 0.09± 0.07 0.75± 0.11
S-NB 0.72± 0.14 0.09± 0.1 0.64± 0.16
mean model-based 0.7± 0.15 0.08± 0.09 0.58± 0.21
mean indiv. topol. 0.59± 0.11 0.06± 0.08 0.51± 0.35
mean indiv. topol. & model 0.62± 0.13 0.06± 0.08 0.52± 0.32
emd-DW 0.59± 0.15 0.07± 0.08 0.39± 0.25
emb-vgae 0.63± 0.16 0.04± 0.06 0.62± 0.2
all topol. 0.83± 0.1 0.27± 0.23 0.34± 0.24
all model-based 0.79± 0.12 0.29± 0.29 0.24± 0.25
all embed. 0.68± 0.16 0.17± 0.25 0.12± 0.17
all topol. & model 0.83± 0.1 0.35± 0.31 0.23± 0.23
all topol. & embed. 0.79± 0.13 0.23± 0.27 0.18± 0.2
all model & embed. 0.79± 0.14 0.23± 0.26 0.18± 0.2
all topol., model & embed. 0.79± 0.15 0.25± 0.27 0.18± 0.2

Ghasemian et al. 27

Table S14. Average AUC, precision, and recall performances of the link prediction algorithms over 122 economic networks as a subset of
CommunityFitNet corpus. A random forest is used for supervised stacking of methods. Here, the predictors are adjusted for maximum F
measure using a model selection through a cross validation on training set. The results are reported on 20% holdout test set.

Algorithm AUC Precision Recall

Q 0.69± 0.06 0.04± 0.02 0.69± 0.08
Q-MR 0.7± 0.06 0.05± 0.02 0.67± 0.06
Q-MP 0.53± 0.06 0.03± 0.02 0.51± 0.11
B-NR (SBM) 0.8± 0.05 0.07± 0.05 0.6± 0.16
B-NR (DC-SBM) 0.51± 0.1 0.04± 0.05 0.35± 0.13
cICL-HKK 0.79± 0.06 0.06± 0.04 0.45± 0.12
B-HKK 0.79± 0.06 0.06± 0.03 0.44± 0.11
Infomap 0.66± 0.05 0.05± 0.04 0.62± 0.06
MDL (SBM) 0.78± 0.05 0.07± 0.05 0.49± 0.14
MDL (DC-SBM) 0.85± 0.06 0.09± 0.04 0.79± 0.06
S-NB 0.49± 0.11 0.03± 0.05 0.55± 0.07
mean model-based 0.69± 0.14 0.05± 0.04 0.56± 0.16
mean indiv. topol. 0.58± 0.12 0.04± 0.06 0.6± 0.39
mean indiv. topol. & model 0.6± 0.13 0.04± 0.05 0.59± 0.35
emd-DW 0.37± 0.11 0.09± 0.06 0.12± 0.16
emb-vgae 0.56± 0.07 0.03± 0.02 0.55± 0.1
all topol. 0.83± 0.05 0.31± 0.08 0.28± 0.14
all model-based 0.84± 0.07 0.27± 0.26 0.14± 0.17
all embed. 0.78± 0.07 0.17± 0.1 0.34± 0.18
all topol. & model 0.87± 0.05 0.38± 0.25 0.12± 0.15
all topol. & embed. 0.86± 0.07 0.3± 0.1 0.41± 0.15
all model & embed. 0.87± 0.09 0.21± 0.12 0.42± 0.23
all topol., model & embed. 0.88± 0.1 0.31± 0.11 0.41± 0.18

Table S15. Average AUC, precision, and recall performances of the link prediction algorithms over 67 technological networks as a subset of
CommunityFitNet corpus. A random forest is used for supervised stacking of methods. Here, the predictors are adjusted for maximum F
measure using a model selection through a cross validation on training set. The results are reported on 20% holdout test set.

Algorithm AUC Precision Recall

Q 0.63± 0.11 0.04± 0.03 0.58± 0.12
Q-MR 0.56± 0.11 0.03± 0.02 0.54± 0.09
Q-MP 0.62± 0.08 0.04± 0.03 0.57± 0.08
B-NR (SBM) 0.74± 0.11 0.06± 0.05 0.62± 0.2
B-NR (DC-SBM) 0.67± 0.12 0.06± 0.06 0.63± 0.13
cICL-HKK 0.75± 0.1 0.08± 0.08 0.59± 0.18
B-HKK 0.71± 0.11 0.08± 0.08 0.5± 0.2
Infomap 0.67± 0.13 0.05± 0.04 0.6± 0.12
MDL (SBM) 0.7± 0.15 0.07± 0.07 0.45± 0.32
MDL (DC-SBM) 0.77± 0.1 0.07± 0.07 0.68± 0.12
S-NB 0.65± 0.09 0.04± 0.04 0.56± 0.1
mean model-based 0.68± 0.13 0.06± 0.06 0.58± 0.17
mean indiv. topol. 0.58± 0.09 0.05± 0.07 0.48± 0.34
mean indiv. topol. & model 0.6± 0.11 0.05± 0.07 0.5± 0.31
emd-DW 0.65± 0.1 0.07± 0.1 0.26± 0.17
emb-vgae 0.64± 0.1 0.03± 0.02 0.63± 0.12
all topol. 0.79± 0.1 0.24± 0.19 0.27± 0.22
all model-based 0.72± 0.13 0.28± 0.33 0.13± 0.15
all embed. 0.71± 0.11 0.2± 0.21 0.13± 0.13
all topol. & model 0.79± 0.09 0.32± 0.31 0.18± 0.17
all topol. & embed. 0.77± 0.11 0.24± 0.23 0.17± 0.15
all model & embed. 0.77± 0.11 0.24± 0.23 0.16± 0.16
all topol., model & embed. 0.78± 0.1 0.27± 0.23 0.17± 0.15

28 Ghasemian et al.

Table S16. Average AUC, precision, and recall performances of the link prediction algorithms over 18 information networks as a subset of
CommunityFitNet corpus. A random forest is used for supervised stacking of methods. Here, the predictors are adjusted for maximum F
measure using a model selection through a cross validation on training set. The results are reported on 20% holdout test set.

Algorithm AUC Precision Recall

Q 0.61± 0.1 0.06± 0.08 0.58± 0.13
Q-MR 0.59± 0.1 0.04± 0.05 0.57± 0.15
Q-MP 0.59± 0.1 0.06± 0.07 0.54± 0.11
B-NR (SBM) 0.79± 0.14 0.13± 0.2 0.58± 0.2
B-NR (DC-SBM) 0.72± 0.14 0.12± 0.19 0.61± 0.17
cICL-HKK 0.8± 0.12 0.15± 0.2 0.59± 0.24
B-HKK 0.76± 0.13 0.18± 0.19 0.46± 0.24
Infomap 0.79± 0.08 0.09± 0.1 0.74± 0.11
MDL (SBM) 0.8± 0.13 0.16± 0.2 0.57± 0.25
MDL (DC-SBM) 0.81± 0.12 0.13± 0.2 0.75± 0.13
S-NB 0.7± 0.12 0.08± 0.08 0.6± 0.14
mean model-based 0.72± 0.15 0.11± 0.16 0.6± 0.2
mean indiv. topol. 0.61± 0.12 0.07± 0.13 0.48± 0.31
mean indiv. topol. & model 0.63± 0.13 0.08± 0.14 0.51± 0.29
emd-DW 0.61± 0.15 0.08± 0.13 0.33± 0.21
emb-vgae 0.65± 0.15 0.04± 0.04 0.65± 0.19
all topol. 0.83± 0.12 0.32± 0.25 0.39± 0.25
all model-based 0.8± 0.11 0.38± 0.33 0.18± 0.18
all embed. 0.77± 0.12 0.3± 0.28 0.17± 0.27
all topol. & model 0.84± 0.11 0.39± 0.3 0.23± 0.23
all topol. & embed. 0.81± 0.15 0.32± 0.27 0.27± 0.26
all model & embed. 0.83± 0.12 0.34± 0.32 0.2± 0.22
all topol., model & embed. 0.83± 0.12 0.36± 0.28 0.26± 0.27

Table S17. Average AUC, precision, and recall performances of the link prediction algorithms over 38 transportation networks as a subset
of CommunityFitNet corpus. A random forest is used for supervised stacking of methods. Here, the predictors are adjusted for maximum F
measure using a model selection through a cross validation on training set. The results are reported on 20% holdout test set.

Algorithm AUC Precision Recall

Q 0.68± 0.09 0.07± 0.07 0.6± 0.09
Q-MR 0.63± 0.08 0.05± 0.04 0.54± 0.08
Q-MP 0.63± 0.1 0.07± 0.07 0.56± 0.11
B-NR (SBM) 0.68± 0.14 0.09± 0.11 0.44± 0.31
B-NR (DC-SBM) 0.55± 0.23 0.09± 0.1 0.48± 0.25
cICL-HKK 0.69± 0.13 0.1± 0.14 0.52± 0.26
B-HKK 0.65± 0.13 0.09± 0.15 0.36± 0.28
Infomap 0.6± 0.13 0.08± 0.1 0.53± 0.12
MDL (SBM) 0.64± 0.15 0.08± 0.11 0.33± 0.35
MDL (DC-SBM) 0.81± 0.07 0.09± 0.1 0.72± 0.1
S-NB 0.66± 0.12 0.07± 0.08 0.61± 0.1
mean model-based 0.66± 0.15 0.08± 0.1 0.52± 0.24
mean indiv. topol. 0.58± 0.1 0.09± 0.15 0.48± 0.35
mean indiv. topol. & model 0.6± 0.12 0.09± 0.14 0.49± 0.33
emd-DW 0.62± 0.15 0.2± 0.21 0.29± 0.2
emb-vgae 0.66± 0.11 0.04± 0.04 0.67± 0.14
all topol. 0.82± 0.09 0.29± 0.28 0.34± 0.25
all model-based 0.76± 0.11 0.29± 0.28 0.22± 0.23
all embed. 0.73± 0.1 0.33± 0.28 0.18± 0.16
all topol. & model 0.83± 0.09 0.34± 0.33 0.25± 0.24
all topol. & embed. 0.79± 0.12 0.33± 0.28 0.24± 0.22
all model & embed. 0.78± 0.11 0.35± 0.27 0.22± 0.21
all topol., model & embed. 0.81± 0.11 0.35± 0.28 0.24± 0.21

Ghasemian et al. 29

Table S18. Average AUC performance of the link prediction supervised stacking methods over 548 networks as a subset of CommunityFitNet
corpus. A random forest is used for supervised stacking of methods. Here, the predictors are adjusted for maximum AUC using a model
selection through a cross validation on training set. The results are reported on 20% holdout test set.

Algorithm AUC Precision Recall

all topol. 0.88± 0.1 0.32± 0.31 0.65± 0.27
all model-based 0.87± 0.11 0.25± 0.26 0.64± 0.28
all embed. 0.78± 0.17 0.27± 0.33 0.25± 0.35
all topol. & model 0.89± 0.09 0.33± 0.32 0.64± 0.28
all topol. & embed. 0.85± 0.15 0.35± 0.33 0.47± 0.35
all model & embed. 0.85± 0.14 0.31± 0.31 0.46± 0.34
all topol., model & embed. 0.87± 0.13 0.36± 0.32 0.51± 0.34

Table S19. Average AUC, precision, and recall performances of the link prediction algorithms over 548 networks as a subset of Community-
FitNet corpus. A XGBoost is used for supervised stacking of methods. Here, the predictors are adjusted for maximum F measure using a
model selection through a cross validation on training set. The results are reported on 20% holdout test set.

Algorithm AUC Precision Recall

all topol. 0.85± 0.11 0.45± 0.32 0.39± 0.33
all model-based 0.82± 0.13 0.31± 0.27 0.37± 0.31
all embed. 0.77± 0.16 0.32± 0.3 0.35± 0.33
all topol. & model 0.85± 0.12 0.45± 0.33 0.38± 0.34
all topol. & embed. 0.83± 0.14 0.41± 0.34 0.38± 0.34
all model & embed. 0.82± 0.14 0.34± 0.3 0.39± 0.33
all topol., model & embed. 0.84± 0.13 0.41± 0.34 0.38± 0.35

Table S20. Average AUC, precision, and recall performances of the link prediction algorithms over 548 networks as a subset of Community-
FitNet corpus. A XGBoost is used for supervised stacking of methods. Here, the predictors are adjusted for maximum AUC using a model
selection through a cross validation on training set. The results are reported on 20% holdout test set.

Algorithm AUC Precision Recall

all topol. 0.86± 0.11 0.38± 0.32 0.5± 0.35
all model-based 0.84± 0.12 0.24± 0.25 0.55± 0.34
all embed. 0.77± 0.16 0.31± 0.31 0.32± 0.36
all topol. & model 0.87± 0.11 0.38± 0.33 0.49± 0.36
all topol. & embed. 0.84± 0.14 0.43± 0.34 0.36± 0.37
all model & embed. 0.83± 0.13 0.31± 0.3 0.44± 0.36
all topol., model & embed. 0.84± 0.13 0.43± 0.35 0.36± 0.37

Table S21. Average AUC, precision, and recall performances of the link prediction algorithms over 548 networks as a subset of Community-
FitNet corpus. An AdaBoost is used for supervised stacking of methods. Here, the predictors are adjusted for maximum F measure using a
model selection through a cross validation on training set. The results are reported on 20% holdout test set.

Algorithm AUC Precision Recall

all topol. 0.82± 0.13 0.4± 0.34 0.42± 0.33
all model-based 0.79± 0.14 0.31± 0.31 0.4± 0.31
all embed. 0.74± 0.16 0.27± 0.32 0.36± 0.3
all topol. & model 0.81± 0.13 0.38± 0.36 0.43± 0.34
all topol. & embed. 0.8± 0.14 0.33± 0.35 0.45± 0.32
all model & embed. 0.79± 0.14 0.29± 0.33 0.46± 0.32
all topol., model & embed. 0.81± 0.14 0.33± 0.35 0.44± 0.33

Table S22. Average AUC, precision, and recall performances of the link prediction algorithms over 548 networks as a subset of Community-
FitNet corpus. An AdaBoost is used for supervised stacking of methods. Here, the predictors are adjusted for maximum AUC using a model
selection through a cross validation on training set. The results are reported on 20% holdout test set.

Algorithm AUC Precision Recall

all topol. 0.86± 0.12 0.3± 0.3 0.62± 0.3
all model-based 0.83± 0.13 0.25± 0.29 0.57± 0.32
all embed. 0.76± 0.16 0.25± 0.33 0.41± 0.32
all topol. & model 0.85± 0.12 0.32± 0.35 0.58± 0.34
all topol. & embed. 0.82± 0.14 0.31± 0.36 0.51± 0.35
all model & embed. 0.8± 0.14 0.26± 0.31 0.5± 0.33
all topol., model & embed. 0.82± 0.13 0.29± 0.35 0.51± 0.36

30 Ghasemian et al.

	1 Methods for predicting missing links
	2 Tests on synthetic data
	3 Empirical corpus for link prediction evaluations
	4 Evaluation of the link prediction algorithms
	5 Diversity in prediction error

