Conventional circuit boards rely on thin traces, which limits the complexity and accuracy when applied to paper circuits. To address this issue, we propose a method that uses large conductive zones in paper circuits and performs subtractive processing during their fabrication. This approach eliminates design barriers and allows for more flexibility in circuit design. We introduce PaperCAD, a software tool that simplifies the design process by converting traditional circuit design to paper circuit design. We demonstrate our technique by creating two paper circuit boards. Our approach has the potential to promote the development of new applications for paper circuits.
ACME Lab