Scott Diddams Portrait
Professor - Electrical, Computer & Energy Engineering

Research Interests:

My main area of research relates to the development of laser and parametric optical frequency combs and their application to optical atomic clocks, tests of fundamental physics, trace gas sensing, astronomical spectroscopy, and ultralow noise frequency synthesis. A particular emphasis is understanding and pushing the technical and fundamental measurement limits of these systems. Additionally, I am interested in the physics and technology of ultrafast lasers, including the generation of ultrashort optical pulses in the mid- and near-infrared using various solid-state laser systems and nonlinear optical techniques. More recent work has focused on exploiting the high-quality factor of whispering gallery microresonators for nonlinear optics, including the development of chip-scale frequency combs.

Selected Publications:

  1. F. Quinlan, T. Fortier, H. Jiang, A. Hati, C. Nelson, Y. Fu, J. Campbell and S. A. Diddams, “Exploiting shot noise correlations in the photodetection of ultrashort optical pulse trains,” Nature Photonics 7, 290 (2013).
  2. S. B. Papp, P. Del'Haye, S. A. Diddams, "Mechanical control of a microrod-resonator optical frequency comb" Phys Rev X 3, 031003 (2013).
  3. G.G. Ycas, F. Quinlan, S.A. Diddams, S. Osterman, C. Bender, B. Botzer, L. Ramsey, R. Terrien, S. Mahadevan, and S. Redman, “Demonstration of on-sky calibration of astronomical spectra using a 25 GHz near-IR laser frequency comb,” Opt. Express 20, 6631 (2012).
  4. T. J. Kippenberg, R.L. Holzwarth and S.A. Diddams, “Microresonator based optical frequency combs,” Science 332, 555 (2011).
  5. T. Fortier, M. Kirchner, F. Quinlan, J. Taylor, J.C. Bergquist, Y. Jiang, A. Ludlow, C.W. Oates, T. Rosenband, and S.A. Diddams, “Photonic generation of ultrastable microwave signals,” Nature Photonics 5, 425 (2011).
  6. S.A. Diddams, “The evolving optical frequency comb,” JOSA B 27, B51 (2010).
  7. S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with spectrally-resolved modes of a femtosecond laser frequency comb,” Nature 445, 627 (2007).
  8. L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10-19 level,” Science, 303, 1843 (2004).
  9. S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293, 825 (2001).
  10. S. A. Diddams, D. J. Jones, Jun Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102 (2000).

A complete list of publications can be found here.