Applications and Data Analysis Tools

Conference Summaries

  • Knipp, D., and Mannucci, A. 2020. Table of contents in Meeting artifacts from Chapman Conference on scientific challenges pertaining to space weather forecasting including extremes (Version V1.0), [Data set]. Zenodo. http://doi.org/10.5281/zenodo.3693004

Deep Learning Laboratory

  • Deshmukh, V., Berger, T. E., Bradley, E., et. al. 2020. Leveraging the Mathematics for Shape for Solar Magnetic Eruption Prediction, Journal of Space Weather and Space Climate, 10, 13. https://doi.org/10.1051/swsc/2020014

Education

  • Knipp, D.J., Bernstein, V., Wahl, K. and Hayakawa, H. 2021. Timelines as a tool for learning about space weather storms. J. Space Weather Space Clim, 11, 29. https://doi.org/10.1051/swsc/2021011
  • Knipp, D., Gross, N., and Hughes, J. 2020. A case study for space weather evidenced-based teaching and learning: The storm events during early September 2017 (Version V1.0). Zenodo. http://doi.org/10.5281/zenodo.3661545

Global Electric and Magnetic Perturbations

Global Navigation Satellite Systems (GNSS) Impacts

  • Breitsch, B., Morton, Y., Rino, C., Xu, D.. 2020. GNSS carrier phase transitions due to diffractive ionosphere scintillation: simulation and characterization. IEEE Trans. Aero. Elec. Sys., 56(5).  DOI:10.1109/TAES.2020.2979025.
  • Breitsch, B., Morton, Y., Xu, D., Yang, R. 2020. Ionosphere scintillation-induced phase transitions in triple-frequency GPS measurements. Proceedings of ION ITM/PTTI, San Diego, CA.
  • Breitsch, B., Morton, Y., Xu, D., Yang, R. 2020. Triple-Frequency GNSS Cycle Slip Detection Performance in the Presence of Diffractive Ionosphere Scintillation. Proceedings of IEEE/ION PLANS, 263-269. Virtual.
  • Breitsch, B., Wang, Y., Morton, Y. 2020. Performance of cycle slip filtering algorithm during ionosphere scintillation. Proceedings of ION GNSS+, 3132-3139. Virtual, Sept.
  • Jakowski, N., Hoque, M.M, Morton, Y. 2021. Instantaneous GNSS-based indices for estimating spatial structures and dynamics of the ionosphere. Proceedings of COSPAR, Jan.-Feb. Virtual, Jan-Feb.
  • Krier, W. and Morton, Y. 2020. Conjugate transfer function compensation of ionospheric refractive effects. Proceedings of IEEE/ION PLANS, 259-262. Virtual.
  • Morton, Y., Liu, Y., Yang, Z., et al. 2020. Expected and unexpected findings in mining massive GNSS data for ionospheric effects. Proceedings of European Navigation Conference. Virtual.
  • Morton, Y., Yang. Z, Breitsch. B, et al. 2020. Ionospheric Effects, Monitoring, and Mitigation Techniques, in Position, Navigation, and Timing Technologies, in the 21st Century: Integrated Satellite Navigation, Sensor Systems, and Civil Applications, 1, Wiley-IEEE Press (Eds. Y. J. Morton, F. van Diggelen, J. J., Spilker, B. Parkinson, et al.). Ch. 31. https://doi.org/10.1002/9781119458449.ch31.
  • Rino, C., Breitsch, B., Morton, Y., et al. 2020. GNSS signal phase, TEC, and phase scintillation. Navigation, J. Institute of Navigation, 67(4). http://doi.org/10.1002/navi.396.
  • Sun, K., Lee, J., Seo, J., Morton, Y., Pullen, S. 2020. Performance benefit from dual-frequnecy GNSS-based aviation applications under ionospheric scintillation: a new approach on fading process modeling. Proceedings of ION ITM/PTTI, San Diego, CA.
  • Xu, D., Morton, Y., Rino, C., et al. 2020. A two-parameter multifrequency GPS signal simulator for strong equatorial ionospheric scintillation: modeling and parameter characterization. Navigation, J. Institute of Navigation, 67(1), 181-195. http://doi.org/10.1002/navi.350.
  • Yang, R., Zhan, X, Huang, J., Morton, Y. 2020. GNSS multi-frequency carrier tracking with cycle slip detection and mitigation under strong ionosphere scintillation. Proceedings of ION GNSS+, 2795-2802. Virtual, Sept. 2020.
  • Yang, Z., Morton, Y, Zakharenkova, I., et al. 2020. Global view of ionospheric disturbances impacts on kinematic GPS positioning solutions during the 2015 St. Patrick’s Day storm. J. Geophy. Res., Space Sci., 125(7). DOI: 10.1029/2019JA027681.
  • Yang, Z., Morton, Y. 2020. Low-latitude ionospheric scintillations of multi-constellation GNSS signals in relation to magnetic field orientation. J. of Geodesy, 94(59), 1-15. https://doi.org/10.1007/s00190-020-01391-7.
  • Yang, Z., Morton, Y. 2020. Time lags in ionospheric scintillation response to geomagnetic storms: Alaska observations,” Proceedings of ION GNSS+, 3494-3501. Virtual, Sept.
  • Yang, Z., Mrak,S., Morton, Y. 2020.  Geomagnetic storm induced mid-latitude ionospheric plasma irregularities and their implications for GPS positioning over North America: a case study. Proceedings of IEEE/ION PLANS, Virtual.
  • Yun J., Park, B., Morton, J. 2020. Detecting ionospheric irregularity based on ROT variation using Android devices cloud system. Proceedings of ION GNSS+, 1850-1872. Virtual, Sept.

Missions and Instruments

Research-to-Operations / Operations-to-Research

Solar Physics

  • Deshmukh, V., Berger, T. E., Bradley, E., et. al. 2020. Leveraging the Mathematics for Shape for Solar Magnetic Eruption Prediction, Journal of Space Weather and Space Climate, 10, 13. https://doi.org/10.1051/swsc/2020014
  • Judge, P., Rempel, M., Ezzeddine, R., Berger, T. et al. 2021. Measuring the Magnetic Origins of Solar Flares, Coronal Mass Ejections, and Space Weather. ApJ, 917 27. https://iopscience.iop.org/article/10.3847/1538-4357/ac081f
  • Plowman, J., and Berger, T. 2020a. Calibrating GONG magnetograms with end-to-end instrument simulation I. Background, the GONG instrument, and end-to-end simulation. Solar Physics, (in review).
  • Plowman, J., and Berger, T. 2020b. Calibrating GONG magnetograms with end-to-end instrument simulation II. Theory of calibration. Solar Physics, (in review).
  • Plowman, J., and Berger, T. 2020c. Calibrating GONG magnetograms with end-to-end instrument simulation III. Comparison, calibration, and results. Solar Physics, (in press).
  • Rast, M. P., Gonzales, N.G.,…Berger T.E., et al. 2021. Critical Science Plan for the Daniel K. Inouye Solar Telescope (DKIST). Sol Phys., 296, 70. https://doi.org/10.1007/s11207-021-01789-2

Space Domain Science

  • Berger, T. E., Holzinger, M. J., Sutton, E. S., et. al. 2020. Flying through uncertainty. Space Weather, 18(1). http://doi.org/10.1029/2019SW002373
  • Bernstein, V., Pilinski, M. D., Sutton, E. K. 2021. Assessing Thermospheric Densities Derived from Orbital Drag Data. Proceedings of the 31st AAS/AIAA SpaceFlight Mechanics Virtual Meeting, 1-3 February, Paper AAS-21-354.
  • Bruinsma, S., Boniface, C., Sutton, E. K., et al. 2021. Thermosphere modeling capabilities assessment: geomagnetic storms. Journal of Space Weather and Space Climate, 11(12). doi:10.1051/swsc/2021002.
  • Bruinsma, S., Sutton, E., Solomon, S.C, et al. 2018. Space weather modeling capabilities assessment: neutral density for orbit determination at low Earth orbit. Space Weather, 16, 1806-1816. doi:10.1029/2018SW002027 .
  • Jones, M., Sutton, E. K., Emmert, J. T., et al. 2021. On the Effects of Mesospheric and Lower Thermospheric Oxygen Chemistry on the Thermosphere and Ionosphere Semiannual Oscillation. Journal of Geophysical Research, Space Physics, 126, e28647. doi:10.1029/2020JA028647.
  • Kalafatoglu Eyiguler, E. C., Shim, J. S., Kuznetsova, M. M., et al. 2019. Quantifying the storm time thermospheric neutral density variations using model and observations. Space Weather, 17, 269-284. doi:10.1029/2018SW002033.
  • Knipp, D., Kilcommons, L., Hairston, M., & Coley, W. R. 2021. Hemispheric Asymmetries in Poynting Flux Derived from DMSP Spacecraft. Geophysical Research Letters, 48, e2021GL094781. https://doi.org/10.1029/2021GL094781 
  • Knipp, D.J., Bernstein, V., Wahl, K. and Hayakawa, H. 2021. Timelines as a tool for learning about space weather storms. J. Space Weather Space Clim, 11, 29. https://doi.org/10.1051/swsc/2021011
  • Mehta, P. M., Linares, R., & Sutton, E. K. 2019. Data-driven inference of thermosphere composition during solar minimum conditions. Space Weather, 17, 1364-1379. doi:10.1029/2019SW002264.
  • Mutschler, S., Axelrad, P., Matsuo, T., et al. 2019. Physics-Based approach to density estimation and prediction using orbital debris tracking data. Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, Maui, HI, 17-20 September.
  • Mutschler, S., Axelrad, P., Sutton, E. K. 2021. Application of SoleiTool for Density Estimation using CubeSat GPS Data. Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, Maui, HI, 14–17 September.
  • Pilinski, M., Crowley, G., Seaton, M., et al. 2019. Dragster: An assimilative tool for satellite drag specification. Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, Maui, HI, 17-20 September.
  • Sutton, E. K., Pilinski, M. D., Mutschler, S. M., Thayer, J. P., Berger, T. 2020. Improved Physics-Based Simulation of the LEO Space Environment. Proceedings of The Advanced Maui Optical and Space Surveillance Technologies Virtual Conference, 15-18 September.
  • Sutton, E. K., Thayer, J.P, Pilinski, M.D., Mutschler, S.M, Berger, T., Nguyen, V, Masters, D. 2021. Toward Accurate Physics-Based Specifications of Neutral Density using GNSS-Enabled Small. Space Weather. 19, e02736. doi:10.1029/2021SW002736.
  • Thayer J. P., Tobiska, W.K, Pilinski, M., and Sutton, E.K. 2020. Remaining Issues in Upper Atmosphere Satellite Drag. In Space Physics and Aeronomy, Volume 5, Space Weather Effects and Applications, Wiley Publishing (eds. A. J. Coster, P. J. Erickson, L. J. Lanzerotti, Y. Zhang, and L. J. Paxton), doi:10.1002/9781119815600.ch5.
  • Weimer, D. R., Mlynczak, M. G., Emmert, et al. 2018. Correlations between the thermosphere's semiannual density variations and infrared emissions measured with the SABER instrument. Journal of Geophysical Research, Space Physics, 123, 8850-8864. doi:10.1029/2018JA025668.