Daniel Slichter Portrait
Lecturer
Physics

Office: 81-1A205, NIST, 325 Broadway

Research Interests

My research interests lie in experimental quantum information processing with trapped atomic ions, with an emphasis on developing new paradigms for scalable trapped ion quantum computing.  Recent projects include performing high-fidelity two-ion entangling operations with microwave and rf fields instead of lasers, achieving entangled state fidelities rivaling those from best laser-based gates; using strong unitary squeezing of ion motion to enhance ion-ion interactions and to perform electric field sensing below the standard quantum limit; and integrating superconducting photon detectors into microfabricated ion traps as an initial step in building a fully chip-integrated trapped ion quantum processor.  In my previous research life, I worked in superconducting quantum information, where I performed the first continuous high-fidelity measurement of a superconducting qubit, and studied quantum feedback, measurement backaction, and parametric amplification. 

I am a staff physicist at the National Institute of Standards and Technology (NIST), where I am part of the Ion Storage Group.  Our group carries out experiments in trapped ion quantum information, as well as in quantum simulation, ultraprecise trapped-ion optical clocks, and precision metrology.  Our labs are located on the NIST campus.  We are always looking for skilled and motivated graduate students and postdocs. 

Selected publications

  • R. Srinivas, S. C. Burd, R. T. Sutherland, A. C. Wilson, D. J. Wineland, D. Leibfried, D. T. C. Allcock, and D. H. Slichter. “Trapped-ion spin-motion coupling with microwaves and a near-motional oscillating magnetic field gradient,” Phys. Rev. Lett. 122, 163201 (2019).
  • S. C. Burd, R. Srinivas, J. J. Bollinger, A. C. Wilson, D. J. Wineland, D. Leibfried, D. H. Slichter, and D. T. C. Allcock. “Quantum amplification of mechanical oscillator motion,” Science 364, 1163 (2019).
  • D. H. Slichter, V. B. Verma, D. Leibfried, R. P. Mirin, S. W. Nam, and D. J. Wineland.  “UV-sensitive superconducting nanowire single photon detectors for integration in an ion trap,” Optics Express 25, 8705 (2017).
  • Y. Colombe*, D. H. Slichter*, A. C. Wilson, D. Leibfried, and D. J. Wineland. “Single-mode optical fiber for high-power, low-loss UV transmission,” Optics Express 22, 19783 (2014).
  • R. Vijay, C. Macklin, D. H. Slichter, S. Weber, K. Murch, R. Naik, A. N. Korotkov, and I Siddiqi. “Stabilizing Rabi oscillations in a superconducting qubit using quantum feedback,” Nature 490, 77 (2012).
  • R. Vijay, D. H. Slichter, and I. Siddiqi. “Observation of quantum jumps in a superconducting artificial atom,” Phys. Rev. Lett. 106, 110502 (2011).