Andrew Wilson Portrait

Office: 81-1A205, NIST, 325 Broadway

Research Interests  

My group performs quantum information experiments with trapped atomic ions.  High-fidelity coherent control of atoms is used to explore applications of quantum entanglement ranging from quantum logic and computing to quantum-enhanced precision measurement. A major focus of my research is the development of techniques and tools that will be needed in large-scale, fault-tolerant, quantum-information processors. My labs are part of the NIST Ion Storage Group and located on the NIST campus in Boulder.

Selected Publications

  1. K. C. McCormick, J. Keller, S. C. Burd, D. J. Wineland, A. C. Wilson, and D. Leibfried, Quantum-enhanced sensing of a mechanical oscillator, Nature 572, 86 (2019).
  2. Y. Wan, D. Kienzler, S. D. Erickson, K. H. Mayer, T. R. Tan, J. J. Wu, H. M. Vasconcelos, S. Glancy, E. Knill, D. J. Wineland, A. C. Wilson, D. Leibfried, Quantum gate teleportation between separated zones of a trapped-ion processor, Science 364, 875 (2019).
  3. R. Srinivas, S. C. Burd, R. T. Sutherland, A. C. Wilson, D. J. Wineland, D. Leibfried, D. T. C. Allcock, and D. H. Slichter, Trapped-ion spin-motion coupling with microwaves and a near-motional oscillating magnetic field gradient, Phys. Rev. Lett. 122, 163201 (2019).
  4. S. C. Burd, R. Srinivas, J. J. Bollinger, A. C. Wilson, D. J. Wineland, D. Leibfried, D. H. Slichter, D. T. C. Allcock, Quantum amplification of mechanical oscillator motion, Science 364, 1163 (2019).
  5. A.C. Wilson, Y. Colombe, K. R. Brown, E. Knill, D. Leibfried, and D. J. Wineland, Tunable spin–spin interactions and entanglement of ions in separate potential wells, Nature 512, 57 (2014).
  6. K.R. Brown, C. Ospelkaus, Y. Colombe, A.C. Wilson, D. Leifried, and D.J. Wineland, Coupled quantized mechanical oscillators, Nature 471, 196 (2011).