Skip to Content

Search

Luis Zea
Aerospace Engineering
University of Colorado Boulder
Home
Luis Zea
Aerospace Engineering
University of Colorado Boulder
Search

Main menu

  • Home
  • Luis Zea
  • Projects

Search

Mobile menu

  • Home
  • Luis Zea
  • Projects

Breadcrumb

Home Projects

Projects

Antibiotic Effectiveness in Space (AES-1)

Go to AES-1

Previous experiments conducted in space have shown that under certain conditions, bacteria can grow to larger numbers and need more drugs to be killed in space with respect to how they behave on Earth. Why is this? Is it because they become "resistant" to antibiotics, or these are less "effective" in killing bugs? Can we use this knowledge in our fight against drug-resistant bacteria on Earth?

Biofilm in Space (BFS)

Go to BFS

Biofilms are groups of bacteria or fungi that stick together and to a surface. We can see them in our bathroom tiles or even on our teeth (that's why we brush!), but they are a bigger problem than that, as a large percent of infectious pathogens (microorganisms that can get us sick) use biofilms to become more virulent (have an improved ability to cause disease) and can become resistant to antibiotics when they grow in biofilms. This problem is especially true in hospitals. Biofilms also form in spacecraft, potentially degrading materials and increasing the risk of disease among astronauts. How do biofilms form in space? Do the molecules that 'make them tick' operate differently in the microgravity environment of space? Are there materials that can be 'biofilm resistant'? Can biofilms that grow in space teach us new ways to fight them on Earth? 

Simulated Micro-, Lunar, and Martian Gravity Microbial Research

Go to this Project

Humans will soon explore, live, and work on the Moon and Mars. How do microbes behave when they grow at those gravities (the Moon has about on sixth of Earth gravitational pull, while Mars has about a third)? Will we need different doses of antibiotics to fight a bacterial infections depending on where (Earth, lower Earth orbit, the Moon or Mars) they are occurring?  What changes at the molecular level under each of these environments? Do the genes associated with resistance to antibiotics or the microbes' ability to cause disease change depending on the gravitational environment? Micro- (as astronauts currently experience on board the International Space Station), Lunar, and Martian gravities are simulated using a device called Clinostat, which doesn't remove the gravitational pull of Earth but allows scientists to replicate some aspects of the environment around cells at different gravitational environments. 

Luis Zea Aerospace Engineering

Luis.Zea@Colorado.edu

University of Colorado Boulder

University of Colorado Boulder
© Regents of the University of Colorado
Privacy • Legal & Trademarks • Campus Map

Return to the top of the page