Hendrik Heinz
Professor
Chemical and Biological Engineering

JSCBB C126

MSE Areas: Multi-scale simulation, catalysts, biomaterials, alloys, composites, machine learning 

Hendrik Heinz develops and applies computational and data science tools to investigate the assembly of biological and nanostructured material at length scales from atoms to 1000 nm. His team has developed the first uniform all-atom force field for inorganic and organic materials, the INTERFACE force field (IFF) along with a comprehensive surface model database. The atomistic potentials cover oxides, metals, polymers, 2D materials, and gases and can be utilized to solve challenges in materials design in order-of-magnitude higher accuracy than possible before. Use of new chemical theory, consistency across the periodic table, and carefully curated experimental reference data lead to significant improvements relative to density functional theory (DFT), including million times lower computational speed and access to much larger length and time scales. Example applications include selective binding of biomolecules to mineral surfaces, nanocrystal growth and catalytic activity, energy materials (batteries and solar cells), alloys, and mechanical properties of polymer composites. His research involves extensive collaborations with experimental groups and theory groups in diverse areas enabled by the new computational tools and cyberinfrastructure. Hendrik is also a Senior Editor for the ACS Journal Langmuir and his research has supported developments by companies such as Sika AG, P&G, Corning, BASF, and Amazon.

Selected Publications and Accomplishments

Hierarchically Structured Bioinspired Nanocomposites
Nepal, D.;  Kang, S.;  Adstedt, K. M.;  Kanhaiya, K.;  Bockstaller, M. R.;  Brinson, L. C.;  Buehler, M. J.;  Coveney, P. V.;  Dayal, K.;  El-Awady, J. A.;  Henderson, L. C.;  Kaplan, D. L.;  Keten, S.;  Kotov, N. A.;  Schatz, G. C.;  Vignolini, S.;  Vollrath, F.;  Wang, Y.;  Yacobson, B. I.;  Tsukruk, V. V.; Heinz, H.
Nat. Mater. 2022 (in press) 

Adsorption and Diffusion of Oxygen on Pure and Partially Oxidized Metal Surfaces in Ultrahigh Resolution
Kanhaiya, K.; Heinz, H.
Nano Lett. 2022
DOI: 10.1021/acs.nanolett.2c00490 

Patterning of Self-Assembled Monolayers of Amphiphilic Multisegment Ligands on Nanoparticles and Design Parameters for Protein Interactions
Hoff, S. E.;  Di Silvio, D.;  Ziolo, R. F.;  Moya, S. E.; Heinz, H.
ACS Nano 2022, 16, 8766-8783.
DOI: 10.1021/acsnano.1c08695 

Surface Patterning in Alloys
Heinz, H.
Nat. Synthesis 2022, 1, 103-104.
DOI: 10.1038/s44160-022-00028-1 

Amyloid-like Amelogenin Nanoribbons Template Mineralization via a Low-energy Interface of Ion Binding Sites
Akkineni, S.; Zhu, C.; Chen, J.; Song, M.; Hoff, S. E.; Bonde, J.; Tao, J.; Heinz, H.; Habelitz, S.; De Yoreo James, J.
Proc. Natl. Acad. Sci. U. S. A. 2022, 119, e2106965119.
DOI: 10.1073/pnas.2106965119 

Accurate Compatible Force Fields for Molecular Oxygen, Nitrogen and Hydrogen to Simulate Heterogeneous Electrolytes and Interfaces
Wang, S.; Hou, K.; Heinz, H.
J. Chem. Theor. Comput. 2021, 17, 5198-5213.
DOI: 10.1021/acs.jctc.0c01132 

Direct Correlation of Oxygen Adsorption on Platinum Electrolyte Interfaces with the Activity in the Oxygen Reduction Reaction
Wang, S.; Zhu, E.; Huang, Y.; Heinz, H.
Sci. Adv.2021, 7, eabb1435.
DOI: 10.1126/sciadv.abb1435 

Interpretable Molecular Models for Molybdenum Disulfide and Insight into Selective Peptide Recognition
Liu, J.; Zeng, J.; Zhu, C.; Miao, J.; Huang, Y.; Heinz, H.
Chem. Sci. 2020, 11, 8708-8722.
DOI: 10.1039/D0SC01443E 

Mechanism of Molecular Interaction of Acrylate-Polyethylene Glycol Acrylate Copolymers with Calcium Silicate Hydrate Surfaces
Jamil, T.; Javadi, A.; Heinz, H.
Green Chem. 2020, 22, 1577-1593.
DOI: 10.1039/c9gc03287h 

Polyacrylonitrile Interactions with Carbon Nanotubes in Solution: Conformations and Binding as a Function of Solvent, Temperature, and Concentration
Pramanik, C.; Jamil, T.; Gissinger, J. R.; Guittet, D.; Arias-Monje, P. J.; Kumar, S.; Heinz, H.
Adv. Funct. Mater. 2019, 29, 1905247.
DOI: 10.1002/adfm.201905247 

Observing Crystal Nucleation in Four Dimensions using Atomic Electron Tomography
Zhou, J.; Yang, Y.; Yang, Y.; Kim, D. S.; Yuan, A.; Tian, X.; Ophus, C.; Sun, F.; Schmid, A. K.; Nathanson, M.; Heinz, H.; An, Q.; Zeng, H.; Ercius, P.; Miao, J.
Nature 2019, 570, 500-503.
DOI: doi:10.1038/s41586-019-1317-x 

Building Two-Dimensional Materials One Row at a Time: Avoiding the Nucleation Barrier
Chen, J.; Zhu, E.; Liu, J.; Zhang, S.; Lin, Z.; Duan, X.; Heinz, H.; Huang, Y.; De Yoreo, J. J.
Science 2018, 362, 1135-1139.
DOI: 10.1126/science.aau4146 

Thermodynamically Consistent Force Fields and Molecular Models for the Assembly of Inorganic, Organic, and Biological Hybrid Nanostructures: The INTERFACE Force Field
Heinz, H.; Lin, T. Z.; Mishra, R. K.; Emami, F. S.
Langmuir 2013, 29, 1754-1765. Invited Feature Article and Cover Art (Feb 12).
DOI: 10.1021/la3038846