Peer-reviewed Articles (*articles by graduate students or postdocs mentored by Tomoko Matsuo)
[73] Tang*, T., P. Alken, T. C. M. Lee, T. Matsuo, and D. Paul (2024), Modeling Vector Fields On An Annular Shell Using Needlets and Applications to Lithospheric Magnetic Fields, Annals of Applied Statistics, under review.
[72] Gilpin*, S., T. Matsuo, and S. E. Cohn (2023), A generalized, compactly-supported correlation function for data assimilation applications, Quarterly Journal of the Royal Meteorological Society, 149(754), 1953–1989, https://doi.org/10.1002/qj.4490.
[71] Svaldi*, V., T. Matsuo, L. Kilcommons, and B. Gallardo-Lacourt (2023), High Latitude Ionospheric Electrodynamics During STEVE and non-STEVE Substorm Events, J. Geophys. Res. Space Physics, doi.org/10.1029/2022JA030277.
[70] Sarris, T. E., S. Tourgaidis, P. Pirnaris, D. Baloukidis, K. Papadakis, C. Psychalas, S. C. Buchert, E. Doornbos, M. A. Clilverd, P. T. Verronen, D. Malaspina, N. Ahmadi, I. Dandouras, A. Kotova, W. J. Miloch, D. Knudsen, N. Olsen, O. Marghitu, T. Matsuo, G. Lu , A. Marchaudon, A. Hoffmann, D. Lajas, A. Strømme, M. Taylor, A. Aikio, M. Palmroth, R. Heelis, N. Ivchenko, C. Stolle, G. Kervalishvili, T. Moretto-Jørgensen, R. Pfaff, C. Siemes, P. Visser, J. van den Ijssel, H.-L. Liu, I. Sandberg, C. Papadimitriou, J. Vogt, A. Blagau, and N. Stachlys (2023), Daedalus MASE (mission assessment through simulation exercise): A Toolset for Analysis of In-situ Missions and for Processing Global Circulation Model Outputs in the Lower Thermosphere-Ionosphere, Front. Astron. Space Sci., 9:1048318, doi:10.3389/fspas.2022.1048318.
[69] Bossert, K., L. J. Paxton, T. Matsuo, L. Goncharenko, K. Kumari, and M. Conde (2022), Large Scale Travelling Atmospheric and Ionospheric Disturbances observed in GUVI, Geophysical Research Letters, doi:10.1029/2022GL099901.
[68] Rajesh, P. K., C. H. Lin, J. T. Lin, C. Y. Lin J. Y. Liu, T. Matsuo, C. Y. Huang, M. Y. Chou, J. Yue, H. Jin, J. M. Choi, S. P. Chen, M. Chou, and H. F. Tsai, Extreme poleward expanding super plasma bubbles triggered by Tonga volcano eruption during the recovery phase of a geomagnetic storm, Geophysical Research Letters, 49, e2022GL099798, https://doi.org/10.1029/2022GL099798.
[67] Dietrich*, N., T. Matsuo, and C.-H. Hsu (2022), Specifying Satellite Drag Through Coupled Thermosphere-Ionosphere Data Assimilation of Radio Occultation Electron Density Profiles, Space Weather, https://doi.org/10.1029/2022SW003147.
[66] Liu, J. Y., C. H. Lin, C. Y. Lin, I. T. Lee, Y.-Y. Sun, S. P. Chen, F. Y. Chang, P. K. Rajesh, C.-T. Hsu, T. Matsuo, C. H. Chen, and H. F. Tsai (2022), Retrospect and Prospect of Ionospheric Weather Observed by FORMOSAT-3/COSMIC and FORMOSAT-7/COSMIC-2, Terrestrial, Atmospheric and Oceanic Sciences, 22 (20), https://doi.org/10.1007/s44195-022-00019-x.
[65] Gilpin*, S., T. Matsuo, and S. E. Cohn (2022), Continuum Covariance Propagation for Understanding Variance Loss in Advective Systems, SIAM / ASA Journal of Uncertainty Quantification, 3(3), 886-914, https://doi.org/10.1137/21M1442449.
[64] Li*, J., T. Matsuo, and L. Kilcommons (2022), Assimilative Mapping of Auroral Electron Energy Flux using SSUSI Lyman-Birge-Hopfield (LBH) Emissions, J. Geophys. Res. Space Physics, 127, e2021JA029739, https://doi.org/10.1029/2021JA029739.
[63] Cantrall*, C., and T. Matsuo (2021), Deriving column-integrated thermospheric temperature with the N2 Lyman-Birge-Hopfield (2,0) band, Atmospheric Measurements Technique, https://doi.org/10.5194/amt-2021-75.
[62] Rajesh, P. K., C. H. Lin, J. T. Lin, C. Y. Lin, J. Yue, T. Matsuo, and S. P. Chen, (2021), Day-to-day Variability of Ionosphere Electron Density During Solar Minimum Derived from FORMOSAT-7/COSMIC-2 Measurements, Terrestrial, Atmospheric and Oceanic Sciences, doi: 10.3319/TAO.2021.08.01.01.
[61] Matsuo, T., M. Fan, X. Shi, C. Miller, J. M. Ruohoniemi, D. Paul, and T. C. M. Lee (2021), Multiresolution Modeling of high-latitude ionospheric electric field variability and impact on Joule heating using SuperDARN data, J. Geophys. Res. Space Physics, http://doi.org/10.1029/2021JA029196.
[60] Palmroth, M., Grandin, M., Sarris, T., Doornbos, E., Tourgaidis, S., Aikio, A., Buchert, S., Clilverd, M. A., Dandouras, I., Heelis, R., Hoffmann, A., Ivchenko, N., Kervalishvili, G., Knudsen, D. J., Kotova, A., Liu, H.-L., Malaspina, D. M., March, G., Marchaudon, A., Marghitu, O., Matsuo, T., Miloch, W. J., Moretto-Jørgensen, T., Mpaloukidis, D., Olsen, N., Papadakis, K., Pfaff, R., Pirnaris, P., Siemes, C., Stolle, C., Suni, J., van den IJssel, J., Verronen, P. T., Visser, P., and Yamauchi, M. (2021): Lower thermosphere – ionosphere (LTI) quantities: Current status of measuring techniques and models, Ann. Geophys., 39, 189-237, https://doi.org/10.5194/angeo-39-189-2021.
[59] Matsuo, T., and C.-H. Hsu (2021), Inference of hidden states by coupled thermosphere-ionosphere data assimilation, In W. Wang and Y. Zhang (Eds.), In Upper Atmosphere Dynamics and Energetics, Geophysical Monograph Series: Space Physics and Aeronomy, 4 (18), 343-363, American Geophysical Union, https://doi.org/10.1002/9781119815631.ch18.
[58] Hsu*, C.-H., T. Matsuo, A. Maute, R. Stoneback, and C.-P. Lien (2021), Data-Driven Ensemble Modeling of Equatorial Ionospheric Electrodynamics: A Case Study During a Minor Storm Period Under Solar Minimum Conditions, J. Geophys. Res. Space Physics, 126, e2020JA028539, https://doi.org/10.1029/2020JA028539.
[57] Lin, J. T., C. H. Lin, P. K. Rajesh, J. Yue, C. Y. Lin, and T. Matsuo (2020), Local-Time and Vertical Characteristics of Quasi-6-Day Oscillation in the Ionosphere during the 2019 Antarctic Sudden Stratospheric Warming, Geophysical Research Letters, 47, e2020GL090345, https://doi.org/10.1029/2020GL090345.
[56] Rajesh, P. K., C. H. Lin, C. Y. Lin, C. H. Chen, J. Y. Liu, T. Matsuo, S. P. Chen, W. H. Yeh, and C. Y. Huang (2020), Extreme Positive Ionosphere Storm Triggered by a Minor Magnetic Storm in Deep Solar Minimum Revealed by FORMOSAT-7/COSMIC-2 and GNSS Observations, J. Geophys. Res. Space Physics, 125, e2020JA028261, https://doi.org/10.1029/2020JA028261.
[55] Lin, C. Y., C. H. Lin, J. Y. Liu, P. K. Rajesh, T. Matsuo, M. Y. Chou, H. F. Tsai, and W. H. Yeh (2020), The Early Results and Validation of FORMOSAT-7/COSMIC-2 Space Weather Products: Global Ionospheric Specification and Ne-Aided Abel Electron Density Profile, J. Geophys. Res. Space Physics, 125, e2020JA028028, https://doi.org/10.1029/2020JA028028.
[54] Mutschler*, S., P. Axelrad, and T. Matsuo (2020), A Partially Orthogonal EnKF Approach to Atmospheric Density Estimation using Orbital Debris, Advances in Space Research, 65, 8,1965-1980, https://doi.org/10.1016/j.asr.2020.01.021.
[53] Matsuo, T. (2020), Recent progress on inverse and data assimilation procedure for high-latitude ionospheric electrodynamics, In M. Dunlop and H. Luhr (Eds.) Ionospheric Multi Satellite Analysis Tools: Approaches for Deriving Ionospheric Parameters, ISSI Scientific Report Series, 17, Springer, Cham, https://doi.org/10.1007/978-3-030-26732-2_10.
[52] Shi*, Y., D. J. Knipp, T. Matsuo, L. Kilcommons, and B. J. Anderson (2020), Event studies of high-latitude field-aligned currents (FACs) with inverse and assimilative analysis of AMPERE magnetometer data, J. Geophys. Res. Space Physics, 125, e2019JA027266. https://doi.org/10.1029/2019JA027266.
[51] Shi*, Y., D. J. Knipp, T. Matsuo, L. Kilcommons, and B. J. Anderson (2020), Modes of field-aligned currents (FACs) variability and their hemispheric asymmetry revealed by inverse and assimilative analysis of Iridium magnetometer data, J. Geophys. Res. Space Physics, 125, e2019JA027265, https://doi.org/10.1029/2019JA027265.
[50] Shi*, Y., D. M. Oliveira, D. J. Knipp, E. Zesta, T. Matsuo, and B. J. Anderson (2019), Effects of Nearly Frontal and Highly Inclined Interplanetary Shocks on High-latitude Field-aligned Currents (FACs), Space Weather, 17,1659-1673, https://doi.org/10.1029/2019SW002367.
[49] Cantrall*, C., T. Matsuo, and S. Solomon (2019), Upper atmosphere radiance data assimilation: A feasibility study for GOLD far ultraviolet observations, J. Geophys. Res. Space Physics, 124, 8145-8164, https://doi.org/10.1029/2019JA026910.
[48] Lin, J. T., C. H. Lin, C. Y. Lin, N. M. Pedatella, R. K. Rajesh, T. Matsuo, and J.-Y. Liu (2019), Revisiting the modulations of ionospheric solar and lunar migrating tides during the 2009 stratospheric sudden warming by using global ionosphere specification, Space Weather, 17, 767-777, https://doi.org/10.1029/2019SW002184.
[47] Chen, C. H., C. H. Lin, and T. Matsuo (2019), Ionospheric responses to the 21 August 2017 solar eclipse by using data assimilation approach, Progress in Earth and Planetary Science, 6:13, https://doi.org/10.1186/s40645-019-0263-4.
[46] Hsu*, C.-H., T. Matsuo, and J. Y. Liu (2018), Observation impact of the FORMOSAT-3/COSMIC and FORMOSAT-7/COSMIC-2 missions on the mid- and low-latitude ionospheric specification, Earth and Space Science, 5, 875-890, https://doi.org/10.1029/2018EA000447.
[45] Fang, T.-W., T. J. Fuller-Rowell, V. Yudin, T. Matsuo, and R. Viereck (2018), Quantifying the sources of ionosphere day-to-day variability, J. Geophys. Res. Space Physics, 123, 9682-9696, https://doi.org/10.1029/2018JA025525.
[44] Flynn*, S., D. J. Knipp, T. Matsuo, M. Mlynczak, and L. Hunt (2018), Understanding the global variability in thermospheric nitric oxide flux using empirical orthogonal functions (EOFs), J. Geophys. Res. Space Physics, 123, 4150-4170, https://doi.org/10.1029/2018JA025353.
[43] Hsu*, C.-H., T. Matsuo, X. Yue, T.-W. Fang, T. Fuller-Rowell, K. Ide, and J.-Y. Liu, (2018). Assessment of the impact of FORMOSAT-7/COSMIC-2 GNSS RO observations on midlatitude and low-latitude ionosphere specification: Observing system simulation experiments using Ensemble Square Root Filter, J. Geophys. Res. Space Physics, 123, 2296-2314, https://doi.org/10.1002/2017JA025109.
[42] Mlynczak, M. G, D. J. Knipp, L. A. Hunt, J. Gaebler, T. Matsuo, L. M. Kilcommons, and C. L. Young (2018), Space-based sentinels for measurement of infrared cooling in the thermosphere for space weather nowcasting and forecasting, Space Weather, 16, 363-375, https://doi.org/10.1002/2017SW001757.
[41] Fan*, M., D. Paul, T. C. M. Lee, and T. Matsuo (2018), A multi-resolution model for non-Gaussian random fields on a sphere with application to ionospheric electrostatic potentials, Annals of Applied Statistics, 12, 1, 459-489, https://doi.org/10.1214/17-AOAS1104.
[40] Fan*, M., D. Paul, T. C. M. Lee, and T. Matsuo (2018), Modeling tangent vector fields on the sphere, Journal of the American Statistical Association, 113, 1625-1636, doi:10.1080/01621459.2017.1356322.
[39] McGranaghan, R. M., Bhatt, A., Matsuo, T., Mannucci, A. J., Semeter, J. L., and Datta-Barua, S. (2017), Ushering in a new frontier in geospace through data science, J. Geophys. Res. Space Physics, 122, 12,586-12,590, https://doi.org/10.1002/2017JA024835.
[38] Lin*, C.-Y., T. Matsuo, J. Y. Liu, C. H. Lin, J. D. Huba, H. F. Tsai, and C. Y. Chen (2017), Data assimilation of ground-based GPS and radio occultation total electron content for global ionospheric specification, J. Geophys. Res. Space Physics, 122, 10,876-10,886, doi:10.1002/ 2017JA024185.
[37] Rajesh, P. K., C. H. Lin, C. H. Chen, J. T. Lin, T. Matsuo, M. Y. Chou, W. H. Chen, M. T. Chang, and C. F. You (2017), Equatorial plasma bubble generation/inhibition during 2015 St. Patrick’s day storm, Space Weather, 15, 1141-1150, doi:10.1002/2017SW001641.
[36] Smith, A. K., N. M. Pedatella, D. R. Marsh, and T. Matsuo (2017), On the dynamical control of the mesosphere-lower thermosphere by the lower and middle atmosphere, Journal of the Atmospheric Sciences, 74, 933-947, doi:10.1175/JAS-D-16-0226.1.
[35] Chen, C. H., C. H. Lin, W. H. Chen, and T. Matsuo (2017), Modeling the ionospheric pre-reversal enhancement using coupled thermosphere-ionosphere data assimilation, Geophys. Res. Lett., 44, 1652-1659, doi:10.1002/2016GL071812.
[34] Chen, C. H., C. H. Lin, J. Y. Liu, T. Matsuo, W. H. Chen (2017), The impact of FORMOSAT-5/AIP on the ionospheric space weather, Terrestrial Atmospheric and Oceanic Sciences Journal, 28, 129-137, doi: 10.3319/TAO.2016.09.30.01(EOF5).
[33] Chen, C. H., C. H. Lin, T. Matsuo, W. H. Chen (2016), Ionosphere data assimilation modeling of 2015 St. Patrick’s day geomagnetic storm, J. Geophys. Res. Space Physics, J. Geophys. Res. Space Physics, 121, 11,549-11,559, doi:10.1002/2016JA023346.
[32] McGranaghan*, R., D. J. Knipp, and T. Matsuo (2016), High-latitude ionospheric conductivity variability in three dimensions, Geophysical Research Letters, 43, 7867-7877, doi:10.1002/2016GL070253.
[31] McGranaghan*, R., D. J. Knipp, T. Matsuo, and E. Cousins (2016), Optimal interpolation analysis of high-latitude ionospheric Hall and Pedersen conductivities: Application to assimilative ionospheric electrodynamics reconstruction, J. Geophys. Res. Space Physics, 121, 4898-4923, doi:10.1002/2016JA022486.
[30] Chen, C. H., C. H. Lin, T. Matsuo, W. H. Chen, I. T. Lee, J. Y. Liu, J. T. Lin, and C. T. Hsu (2016), Ionospheric data assimilation with thermosphere-ionosphere-electrodynamics general circulation model and GPS-TEC during geomagnetic storm conditions, J. Geophys. Res. Space Physics, 121, 5708-5722, doi:10.1002/2015JA021787.
[29] Chartier*, A., T. Matsuo, J. L. Anderson, G. Lu, T. Hoar, N. Collins, A. Coster, C. Mitchell, L. Paxton, G. Bust (2016), Ionospheric data assimilation and forecasting during storms, J. Geophys. Res. Space Physics, 121, 764-778, doi:10.1002/2014JA020799.
[28] McGranaghan*, R., D. J. Knipp, T. Matsuo, H. Godinez, R. J. Redmon, S. C. Solomon, and S. K. Morley (2015), Modes of high-latitude auroral conductance variability derived from DMSP energetic electron precipitation observations: Empirical Orthogonal Function (EOF) analysis, J. Geophys. Res. Space Physics, 120, 11,013-11,031, doi:10.1002/2015JA021828.
[27] Cousins*, E. D. P., T. Matsuo, and A. D. Richmond (2015), Mapping high-latitude ionospheric electrodynamics with SuperDARN and AMPERE, J. Geophys. Res. Space Physics, 120, 5854-5870, doi:10.1002/2014JA020463.
[26] Cousins*, E. D. P., T. Matsuo, A. D. Richmond, and B. J. Anderson (2015), Dominant modes of variability in large-scale Birkeland currents, J. Geophys. Res. Space Physics, 120, 6722-6735, doi:10.1002/2014JA020462.
[25] Matsuo, T., D. J. Knipp, A. D. Richmond, L. Kilcommons, and B. J. Anderson (2015), Inverse procedure for high-latitude ionospheric electrodynamics: Analysis of satellite-borne magnetometer data, J. Geophys. Res. Space Physics, 120, 5241-5251, doi:10.1002/2014JA020565.
[24] Sun*, Y.-Y., T. Matsuo, N. Maruyama and J. Y. Liu (2015), Field-aligned neutral wind bias correction scheme for global ionospheric modeling at midlatitudes by assimilating FORMOSAT-3/COSMIC hmF2 data under geomagnetically quiet conditions, J. Geophys. Res. Space Physics, 120, 3130-3149, doi:10.1002/2014JA020768.
[23] Lin*, C.-Y., T. Matsuo, J. Y. Liu, C. H. Lin, H. F. Tsai and E. A. Araujo-Pradere (2015), Ionospheric assimilation of radio occultation and ground-based GPS data using non-stationary background model error covariance, Atmospheric Measurement Techniques, 8, 171-182, doi:10.5194/amt-8-171-2015.
[22] Hsu*, C.-H., T. Matsuo, W. Wang, and J. Y. Liu (2014), Effects of inferring unobserved thermospheric and ionospheric state variables by using an Ensemble Kalman Filter on global ionospheric specification and forecasting, J. Geophys. Res. Space Physics, 119, 9256-9267, doi:10.1002/2014JA020390.
[21] Matsuo, T. (2014), Upper atmosphere data assimilation with an ensemble Kalman filter, in modeling the ionosphere-thermosphere system, Geophys, AGU Monogr. Ser., vol. 201, edited by J. Huba, R. Schunk, and G. Khazanov, pp. 273-282, John Wiley & Sons, Ltd, Chichester, UK, doi:10.1002/9781118704417.
[20] Knipp, D. J., T. Matsuo, L. Kilcommons, A. D. Richmond, H. Korth, B. Anderson, N. Parrish, B. Mero, R. Redmon, and F. Rich (2013), Comparison of magnetic perturbation data from LEO satellite constellations: Statistics of DMSP and AMPERE, Space Weather, 12, 2-23, doi:10.1002/2013SW00098.
[19] Cousins*, E. D. P., T. Matsuo, A. D. Richmond (2013), Mesoscale and large-scale variability in high-latitude ionospheric convection: dominant modes and spatial/temporal coherence, J. Geophys. Res. Space Physics, 118, 7895-7904, doi:10.1002/2013JA019319.
[18] Cousins*, E. D. P., T. Matsuo, A. D. Richmond (2013), SuperDARN assimilative mapping, J. Geophys. Res. Space Physics, 118, 7954-7962, doi:10.1002/2013JA019321.
[17] Lee*, I. T., H. F. Tsai, J. Y. Liu, Matsuo, T., and L. C. Chang (2013), Modeling impact of FORMOSAT-7/COSMIC-2 mission on ionospheric space weather monitoring, J. Geophys. Res. Space Physics, 118, 6518-6523, doi: 10.1002/jgra.50538.
[16] Sun*, Y.-Y., T. Matsuo, E. A. Araujo-Pradere, and J. Y. Liu (2013), Ground-based GPS observation of SED associated irregularities over CONUS, J. Geophys. Res. Space Physics, 118, 2478-2489, doi:10.1029/2012JA018103.
[15] Matsuo, T., I. T. Lee, and J. L. Anderson (2013), Thermospheric mass density specification using an ensemble Kalman filter, J. Geophys. Res. Space Physics, 118, 1339-1350, doi:10.1002/jgra.50162.
[14] Lee*, I. T., T. Matsuo, A. D. Richmond, J. Y. Liu, W. Wang, C. H. Lin, J. L. Anderson, and M. Q. Chen (2012), Assimilation of FORMOSAT-3/COSMIC electron density profiles into thermosphere/ionosphere coupling model by using ensemble Kalman filter, J. Geophys. Res. Space Physics, 117, A10318, doi:10.1029/2012JA017700.
[13] Matsuo, T., M. Fedrizzi, T. J. Fuller-Rowell, and M. V. Codrescu (2012), Data assimilation of thermospheric mass density, Space Weather, 10, S05002, doi:10.1029/2012SW000773.
[12] Lei, J., T. Matsuo, X. Dou, E. Sutton, and X. Luan (2012), Annual and semiannual variations of thermospheric density: EOF analysis of CHAMP and GRACE data, J. Geophys. Res. Space Physics, 117, A01310, doi:10.1029/2011JA017324.
[11] Codrescu, M. V., C. Negrea, M. Fedrizzi, T. J. Fuller-Rowell, A. Dobin, N. Jakowsky, H. Khalsa, T. Matsuo, and N. Maruyama (2012), A real-time run of the Coupled Thermosphere Ionosphere Plasmasphere Electrodynamics (CTIPe) model, Space Weather, 10, S02001, doi:10.1029/2011SW000736.
[10] Matsuo, T., and E. A. Araujo-Pradere (2011), Role of thermosphere-ionosphere coupling in a global ionospheric specification, Radio Science, 46, RS0D23, doi:10.1029/2010RS004576.
[9] Matsuo, T., D. W. Nychka, and D. Paul (2011), Nonstationary covariance modeling for incomplete data: Monte Carlo EM approach, Computational Statistics and Data Analysis, 55, 2059-2073, doi: 10.1016/j.csda.2010.12.002.
[8] Matsuo, T., and J. Forbes (2010), Principal modes of thermospheric density variability: Empirical orthogonal function analysis of CHAMP 2001-2008 data, J. Geophys. Res. Space Physics, 115, A07309, doi:10.1029/2009JA015109.
[7] Cosgrove, R. B., G. Lu, H. Bahcivan, T. Matsuo, C. J. Heinselman, and M. A. McCready (2009), Comparison of AMIE modeled and Sondrestrom measured Joule heating: a study in model resolution and electric field/conductivity correlation, J. Geophys. Res. Space Physics, 114, A04316, doi:10.1029/2008JA013508.
[6] Amm, O., A. Aruliah, S. C. Buchert, R. Fujii, J. W. Gjerloev, A. Ieda, T. Matsuo, C. Stolle, H. Vanhamaki, and A. Yoshikawa (2008), Understanding the electrodynamics of the 3-dimensional high-latitude ionosphere: present and future, Ann. Geophys., 26, 3913-3932, doi: 10.5194/angeo-26-3913-2008.
[5] Matsuo, T., and A. D. Richmond (2008), Effects of high-latitude ionospheric electric field variability on global thermospheric Joule heating and mechanical energy transfer rate, J. Geophys. Res. Space Physics, 113, A07309, doi:10.1029/2007JA012993.
[4] Matsuo, T., A. D. Richmond, and G. Lu (2005), Optimal Interpolation analysis of high-latitude Ionospheric electrodynamics using empirical orthogonal functions: Estimation of dominant modes of variability and temporal scales of large-scale electric fields, J. Geophys. Res. Space Physics, 110, A06301, doi:10.1029/2004JA010531.
[3] Matsuo, T., A. D. Richmond, and K. Hensel (2003), High-latitude ionospheric electric field variability and electric potential derived from DE-2 plasma drift measurements: dependence on IMF and dipole tilt, J. Geophys. Res. Space Physics, 108, 1005, doi:10.1029/2002JA009429.
[2] Matsuo, T., A. D. Richmond, and D. W. Nychka (2002), Modes of high-latitude electric field variability derived from DE-2 measurements: Empirical Orthogonal Function (EOF) analysis, Geophysical Research Letters, 29, 1107, doi:10.1029/2001GL014077.
[1] Fuller-Rowell, T. J., T. Matsuo, M. V. Codrescu, and F. A. Marcos (1999), Modeling thermospheric neutral density waves and holes in response to high-latitude forcing, Advances in Space Research, 24, 11, 1447-1458, doi:10.1016/S0273-1177(99)00705-X.