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ABSTRACT

A large amount of data has been generated by grid opera-
tors solving AC optimal power flow (ACOPF) throughout
the years, and we explore how leveraging this data can be
used to help solve future ACOPF problems. We use this
data to train a Random Forest to predict solutions of future
ACOPF problems. To preserve correlations and relation-
ships between predicted variables, we utilize a multi-target
approach to learn approximate voltage and generation so-
lutions to ACOPF problems directly by only using network
loads, without the knowledge of other network parameters
or the system topology. We explore the benefits of using the
learned solution as an intelligent warm start point for solv-
ing the ACOPF, and the proposed framework is evaluated
numerically using multiple IEEE test networks. The benefit
of using learned ACOPF solutions is shown to be solver and
network dependent, but shows promise for quickly finding
approximate solutions to the ACOPF problem.

1. INTRODUCTION AND MOTIVATION

Grid operators repeatedly solve optimal power flow across
transmission networks, multiple times throughout the day, ev-
ery day of the year, for decades, to ensure that the grid is oper-
ating reliably and safely. They do not stop for holidays, week-
ends, or even birthdays, adhering to the reliability standards
defined by the Energy Policy Act of 2005 and enforced by
the North American Electric Reliability Corporation (NERC).
The utility of this data has been recognized by power system
operators in the past, and has been used since the late 1960’s
to solve power system state estimation problems [1,2], whose
goal is to estimate the complex nodal voltages within a power
system. Inspired partially by these data-driven approaches, a
natural extension of this concept is to now leverage data for
estimating the solution of AC optimal power flow problems.

High-voltage transmission grids are typically modeled as
a set of N buses N , generators G ⊆ N where |G| > 0, and
a bus admittance matrix describing the topology of the net-
work, Y = G + jB ∈ C. The AC power flow (ACPF)
equations, which solve for complex voltages |vm|ejθvm ∈ C
throughout the network given injected complex powers sm =
pm+jqm ∈ C, represent the AC steady-state conditions of the

grid. These prototypical AC power flow equations in rectan-
gular coordinates are given in terms of the voltage magnitude
at each busm ∈ N as |vm|, voltage angle θvm , net real power
pm, and net reactive power qm as

pm = |vm|
∑
l∈N

vl(Gml cos(θml) +Bml sin(θml)), (1a)

qm = |vm|
∑
l∈N

vl(Gml sin(θml)−Bml cos(θml)), (1b)

where the angle difference θml := θm − θl. Using the ACPF
equations as physical constraints, the AC optimal power flow
(ACOPF) problem is thus created. A solution to this prob-
lem seeks to satisfy the physical power flows while minimiz-
ing generation cost and adhering to system constraints. This
problem can generally be written as

min
v∈V,pg

∑
j∈G

ajp
2
g,j + bjpg,j + cj (2a)

subject to : (1a), (1b) (2b)
p
g,j
≤ pg,j ≤ pg,j ,∀j ∈ G (2c)

q
g,j
≤ qg,j ≤ qg,j ,∀j ∈ G (2d)

where coefficients aj , bj , and cj represent the cost of gener-
ator j, V is the set of permissible complex voltages at each
node in N , pg,j (qg,j) is the controllable active (reactive)
power output of generator j, and p

g,j
(q
g,j

) and pg,j (qg,j)
are lower and upper limits on active (reactive) power genera-
tion, respectively.

In this paper, we investigate potential new ways of solv-
ing the ACOPF problem by leveraging machine learning tech-
niques to both expedite finding a solution of (2) and to find
approximate solutions to (2) that perform better than current
methods that grid operators rely on to solve this difficult prob-
lem. It is also worth noting that the method developed in this
paper is not specific to ACOPF problems, and learning ap-
proaches can be explored for obtaining better initial guesses
in many applications of optimization.

1.1. Challenges with solving ACOPF

Due to the nonconvex, nonlinear nature of the ACOPF prob-
lem and constraints, finding a solution with the use of iterative
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numerical methods may result in a failure of the method to
converge. Using warm start solutions to initialize the iterative
procedure (in traditional operation, this is usually a Newton-
Raphson based iterative method) of solving the power flow
equations can help ensure convergence [3], and is typically
performed by grid operators, generally by using the previous
timestep’s ACOPF solution to intialize the current timestep,
using a flat start, or by first solving an easier, linearized ver-
sion of the ACOPF equation under the presumption that these
solutions will be relatively close. However, a flat start may
not ensure a solution to (1); first solving a convex approx-
imation of (2) to obtain a better initial point requires extra
computational time; and using the previous timestep’s solu-
tion may not be a good approximation of the current solution,
especially as more intermittent renewable energy sources and
inverter-interfaced assets become grid connected.

In this paper, we aim to answer two research questions
that address the aforementioned challenges: How close can
learning-based approaches get us to the solution of the
ACOPF problem? Are purely data-driven methods worth
pursuing further?; and Can we use learning to find better
warm-start initial guesses when solving the ACOPF prob-
lem? In addition to these, using learning approaches to find
successful warm start points for iterative optimization al-
gorithms is scarcely mentioned in the literature, for power
systems problems or otherwise. We hope to help further the
work in this area outside of ACOPF problems.

1.2. Previous related efforts

The importance of finding robust solutions to (2) or finding
approximate solutions quickly has been an important topic in
power systems engineering since the development of the orig-
inal AC power flow equations. Perhaps the most well-known
method of addressing computational and convergence issues
is by reformulating the ACOPF as a linearized DC optimal
power flow problem (DCOPF), which involves various phys-
ical assumptions such as lossless lines, voltage magnitudes
equalling 1.0, and a lack of reactive power control or com-
pensation [4]. Other various linearizations of (1) have been
developed over the years for power system optimization, in-
cluding decoupled and fast decoupled loadflow [5], and data-
driven techniques that can estimate linearizations of (1) [6,7].

Quality and accuracy of the linearizations is highly depen-
dent on the scenario, usually rely on model-based solutions or
knowledge of the network topology, and can result in large er-
rors between the linearized model output and true ACOPF so-
lution. To maintain guaranteed convergence while preserving
the use of the original ACPF equations, some works address
the limitations of poor starting points in Newton-based meth-
ods through the use of continuation-based methods [8–10]
which alleviate many issues with poorly chosen initial con-
ditions. However, these methods are generally slow, greatly
favoring one side of the robustness versus speed tradeoff. In

[11], the benefits of warm-starting ACOPF problems with the
solution from convex relaxations is shown from both compu-
tational and optimality perspectives. In this work, they indi-
cated that improving the warm start point could have conver-
gence and computational speed benefits, and that the benefits
of a warm-start were solver dependent, which we also con-
clude in this work.

With these limitations and challenges in the current state-
of-the-art, we wish to pursue approximate solutions to the
original ACOPF problem while minimizing convergence is-
sues and pursuing a reasonable computation time. We at-
tempt to further the work in this area by using machine learn-
ing techniques. The power of using learning for power sys-
tems engineering has become evident in recent years [12–14].
In [13], a learning approach is applied to learning the active
sets of the linearized DC optimal power flow problem, with
promising results when the number of active sets is small.
Perhaps the closest previous work to this paper is [14], which
looked at the potential of predicting solutions to the ACOPF
problem on a small (30 bus) test network to improve com-
putation time. The main challenge of learning OPF solu-
tions directly is elucidated in this unpublished work: approx-
imately 60% of the time, constraints were violated in the op-
timization problem. This is also a large risk encountered in
learning which constraints are binding in linearized stochas-
tic ACOPF problems [15]. Thus, we aim to continue and im-
prove upon the limited work in this area by learning warm
start solutions to ACOPF, preserving the use of the original
ACPF equations but improving convergence properties and
computational speed, and by further analyzing the capabil-
ities of learning to contribute to the field of optimal power
flow. Towards these goals, we build an ensemble of learners
using a multi-target Random Forest algorithm [16], which is
a supervised machine learning method that combines the out-
put of multiple agents (individual Decision Trees) to produce
a more accurate prediction of the ACOPF solution.

2. LEARNING FRAMEWORK

In this framework, we assume no knowledge about the net-
work topology (i.e., we do not have access to the admittance
matrix or line parameters) other than the power demands,
knowledge of how many generators are in the network, and
how many buses are in the network. The inputs (features) to
the Random Forest are simply the loads at each bus. The out-
puts of the model are the optimal generation values p∗g,j and
the voltage magnitudes |v∗|. We also assume that we have
access to thousands of previous optimal power flow solutions
that we can use to train a Random Forest.

2.1. Multi-target Random Forests

Generally, machine learning problems, be it either regression
or classification, focus on situations where there are multiple



Fig. 1. The multi-target Random Forest combines the outputs
of multiple Decision Tree regressions (which are computed
in a distributed fashion) to produce a single predicted optimal
vector of voltages and generation.

independent variables (the predictors) and a single dependent
variable (what we want to predict or classify). In this prob-
lem, the voltages and optimal generation values we want to
predict can be correlated, and we wish to capitalize on this
fact to improve the accuracy of our learning approach. This
approach differs from [14]; in order to preserve correlations
between output variables (voltages and powers), we leverage
recent advancements in multi-output, or multi-target regres-
sion [17], which allows us to simultaneously predict multiple
outputs (in this case, the optimal voltage magnitudes and ac-
tive power generation in the ACOPF problem).

One benefit of using ensemble methods such as Random
Forests is that the individual Decision Tree regressions can be
done in a distributed and completely decentralized way, un-
like centralized learning approaches such as neural networks.
Each Decision Tree agent performs their individual regression
procedure separately, and then agents coordinate at the very
end for a final quick averaging procedure across soluions, al-
lowing for scalability towards large-scale transmission net-
works. In addition, the use of a Random Forest helps alleviate
risks of overfitting associated with individual Decision Trees.

2.2. Warm starts - preventing forest fires

After the Random Forest has been trained using the ACOPF
solutions in the training dataset, the model can now be used to
predict optimal voltage and generation values given the net-
work loading as an input. Naturally, even with a very low
error rate in the predicted variables, the Forest does not nec-
essarily ensure that the constraints in the original OPF prob-
lem are satisfied. This disconnect between regression and
constraint satisfaction is the motivation behind our focus on
learning solutions that result in better warm starts instead of
learning the optimal solution directly.

Note that here we make no claims about global optimal-
ity of the ACOPF solution. Methods pursuing the global op-
timum of ACOPF do exist [18, 19] but may not be practi-

cal when solving ACOPF on a sub-second level. Generating
these solutions offline and using them to train the Random
Forest is an interesting approach that deserves consideration
in future work, and could also be used to avoid the potential
problem of having multiple training samples corresponding
to a single set of network loads. Warm starts have also been
shown to help achieve the global optimum in some cases [11].

3. NUMERICAL EXPERIMENTS

3.1. System setup

We used MATPOWER [20] to generate the training and
testing datasets, and to perform ACOPF simulations with dif-
ferent initial starting points. The chosen IEEE test cases were
solved repeatedly for uniformly distributed random perturba-
tions of the load at each bus between 120% and 80% of the
default load values. Solutions that resulted in infeasibilities
(not enough generation capacity, etc.) were not included in
the dataset. The dataset was split 80/20 into training and test-
ing data, and passed to the RandomForestRegressor
from Python’s Scikit-learn package. The four IEEE networks
considered in these experiments were the IEEE 14-bus, 57-
bus, 118-bus, and 300-bus networks.

Recall that the number of dependent variables that we are si-
multaneously predicting is equal to the number of generators
plus the number of buses; for the above test networks (14,
57, 118, and 300 buses), this equates to 19, 64, 172, and 369
predicted output variables, respectively. 2000 samples (runs
of the ACOPF) were generated for each network (1600 train-
ing, 400 testing). MATPOWER’s MIPS (Matpower Interior
Point Solver), based on a primal-dual interior point method,
was used for the iteration comparison. When solving ACOPF
cases, MIPS has been shown to result in similar or fewer it-
erations than other solvers, such as IPOPT [21]. In all of the
cases tested in this paper, MIPS was able to converge starting
both from the DC solution, a flat-start, and the learned solu-
tion. We also compare the reliability of our approach on the
default interior point algorithm within the fmincon solver,
which is more prone to convergence issues. For both solvers,
the convergence criteria was set to the default of a 1e − 6
optimality gap, with a maximum iteration limit of 100.

3.2. Hyperparameter tuning

Using Scikit-learn’s GridSearchCV, we varied the set-
tings of the Random Forest and evaluated the performance
of all combinations of settings to determine the best set
of hyperparameters to include. We used k = 3 folds
within the cross-validation, and the hyperparameters var-
ied were the number of trees in the forest (n estimators
= [200, 300, 400, 500]), the maximum number of
levels in each tree (max depth = [10, 15, 20]), and
the minimum number of samples required to split a node



Table 1. Chosen hyperparameters for each of the networks.
Network n estimators max depth min samples split
14-bus 400 15 2
57-bus 200 15 4
118-bus 400 15 2
300-bus 400 20 3
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Fig. 2. Relative error between predicted voltage magnitudes
and optimal voltage magnitudes for each generator in the
IEEE 14 bus test system.

(min samples split = [2, 3, 4, 5]). The cho-
sen hyperparameters are in Table I for each of the networks.

3.3. Prediction error

The prediction error was normalized to represent a percent-
age and is defined as the absolute difference of the predicted
variable x̂ and the true optimum x∗ divided by the value of
the true optimal variable value (i.e., the relative error):

xerr =
|x̂− x∗|
x∗

(3)

as shown for each bus voltage magnitude in the 14-bus net-
work in Fig. 2, the voltage magnitude predictions are very
accurate, as this error is often less than 1%. Table 2 shows
the relative prediction errors for both voltage magnitude and
optimal generation dispatch for each of the networks. for It
is interesting to note that this is on par with or better than
the error rates achieved by many AC power flow lineariza-
tions [22–24]. From Fig. 2 we can see that the predicted volt-
ages provide a much better initial guess than that provided by
a DCOPF solution, which is often used as a traditional way of
generating initial guesses. Figure 3 illustrates the accuracy of
the optimal active power generation prediction on the 118-bus
system by showing the average relative prediction error of all
54 generators in the network. The prediction is fairly accurate
at estimating the optimal generation dispatch, and results in a
very low error in most cases, and a lower error in all cases
when compared to using the DC warm start.
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Fig. 3. Relative error between predicted optimal generation
and actual optimal generation for each bus in the IEEE 118
bus test system (truncated to 200 samples to show detail;
dashed line is the mean of included points).

Table 2. Relative errors of predictions

Network Avg. Relative
Error (Power)

Avg. Relative
Error (Voltage)

14-bus 0.98% 0.16%
57-bus 3.98% 0.51%
118-bus 2.12% 0.01%
300-bus 12.00% 0.34%

Table 3. Computational time required to predict an ACOPF
solution given the network loads

Network Number of Variables Prediction Time
14-bus 19 9.04 ms
57-bus 64 9.19 ms
118-bus 172 110.1 ms
300-bus 369 182.0 ms

3.4. Improved computational time

Training is performed offline, and obtaining a learned start-
ing point was less than a second, meaning that the regression
process does not significantly add to the overall computation
time. In Table 3, the time required to predict the values with
the Random Forest is shown. This is the time without dis-
tributed computations; i.e., without utilizing the benefits of
parallelizing the Decision Tree regressions, meaning that this
could potentially be performed even faster. Hence, approxi-
mate, yet accurate, solutions can be obtained in near real-time
without even solving an optimization problem.

When used to solve ACOPF on the testing dataset, we
compared starting the MIPS solver with the learned warm
start, a warm start from first solving the linearized DCOPF
problem, and a flat start (voltage magnitudes set to 1.0 pu and
angles and generation set to zero). From Table 4, it is clear
that the extra time required to solve a DCOPF in order to get



Table 4. Total time to solve ACOPF on the testing dataset

Network Tot. Time (s)
Learned

Tot. Time (s)
DC

Tot. Time (s)
Flat

14-bus 10.72 17.29 14.06
57-bus 15.18 24.76 20.58
118-bus 25.46 33.49 32.51
300-bus 56.68 67.82 69.02
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Fig. 4. Number of iterations to convergence for solving
ACOPF on the IEEE 300 bus network using both the learned
warm start point and the DC optimal initial point. The learned
initial point consistently outperforms a traditional warm start.

an improved starting point over a flat start is generally not ad-
vantageous. Alternatively, using the Random Forest regres-
sion is fast enough that we see convergence time improve-
ments over both the flat start and the DCOPF warm start.

As one example, in Fig. 4, the number of iterations to con-
verge when using the learned start consistently outperforms
the DCOPF solution in the largest test case. As stated in the
previous section, in addition to lowering computational time,
the learning approach can also provide a good proxy for find-
ing approximate ACOPF solutions in real time, and its solu-
tion on par with or better than many linearization approaches.

Due to the robustness of the MIPS solver, all of the cases,
even with the DC and flat starting points, were able to con-
verge and find a local minimum. However, we also decided
to compare the ability of both the warm start and DC solution
cases to successfully converge using less robust solvers (here,
MATLAB’s fmincon’s default interior-point solver). Using
fmincon, convergence was not always achieved in either the
learned start case or the DC start case. As Table 5 illustrates,
while the warm start provided a large benefit for successful
convergence of the 57-bus case, it actually resulted in slightly
worse performance for the 300-bus case. This is consistent
with the findings in [11]: the benefit of a warm start is solver-
dependent. However, in the networks tested here, it is appar-
ent that if a more robust solver is used, a learned warm start
can provide benefits over a traditional warm start, and help
convergence properties in difficult networks (i.e., the 57-bus).

In the presented results, almost every learned point re-

Table 5. Percentage of runs that successfully converged using
fmincon’s interior point solver

Network % Converged
(Learned)

% Converged
(DC)

14-bus 100% 100%
57-bus 100% 53.00%
118-bus 100% 100%
300-bus 99.50% 100%
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Fig. 5. The measured maximum constraint violation for ten
sample runs on the IEEE 57-bus system using both a DC
warm start and the learned initial point.

sulted in an infeasible solution to the original ACOPF prob-
lem. However, as Fig. 5 shows for 10 runs on the 57-bus
system, while the solution is initially infeasible, the maximum
constraint violation in the ACOPF is generally lower than that
encountered when the DC initial point is used.

4. CONCLUSIONS AND FUTURE WORK

We explored the benefits that using learning-based approaches
can provide for determining a good starting point for solving
ACOPF problems. In the considered networks, the learned
warm start provided a faster convergence time over using a
DC warm start or a flat start, and the overall benefits appear to
be solver-dependent. We focused on Random Forests due to
the distributed nature and thus computational benefits of such
an approach. In addition, the accuracy of both predicted volt-
ages and predicted optimal generation values is promising on
its own for applications where finding approximate solutions
quickly is of interest. Although generally infeasible, using
the learned warm start solution generally results in lower
maximum constraint violations than the DC initial point.

Future work will explore other machine learning tech-
niques outside of Random Forests for predicting warm start
solutions, such as neural networks or support vector regres-
sion. Iterations could perhaps be further lowered by includ-
ing additional dependent variables in the prediction such as
voltage angle and reactive power output; this and feature se-
lection are important directions of future work. Methods to



project infeasible solutions onto the feasible set or to ensure
feasible predictions are of great interest. There was no sensi-
tivity analysis performed on the sample size for the training
set, which could also have an effect on the performance.
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