Stay up to date:

38. Sulfonated Diels-Alder Poly(phenylene) Membrane for Efficient Ion-Selective Transport in Aqueous Metalorganic and Organic Redox Flow Batteries
Robb, B. H.; George, T. Y.; Davis, C. M.; Tang Z.; Fujimoto, Cy.; Aziz, M. J.; Marshak, M. P.
J. Electrochem. Soc.  2023, 170, 030515. DOI: 10.1149/1945-7111/acbee6

37. Stability of highly soluble ferrocyanides at neutral pH for energy-dense flow batteries
Reber, D.; Thurston, J. R.; Beker, M.; Marshak, M. P.
Cell Reports Phys. Sci. 2023, 4, 101215. DOI: 10.1016/j.xcrp.2022.101215

36. The role of energy density for grid-scale batteries
Reber, D.; Jarvis, S. R.; Marshak, M. P.
ChemRxiv. 2022. DOI: 10.26434/chemrxiv-2022-5ddhs

35. Realized potential as neutral pH flow batteries achieve high power densities
Robb, B. H.; Waters, S. E.; Saraidaridis, J. D.; Marshak, M. P.
Cell Reports Phys. Sci. 2022, 3, 101118. DOI: 10.1016/j.xcrp.2022.101118

34. Monitoring Ion Exchange Chromatography with Affordable Flame Emission Spectroscopy
Thurston, J. E.; Marshak, M. P.; Reber, D.
J. Chem. Educ. 2022, 99, 4051–4056. DOI: 10.1021/acs.jchemed.2c00455

33. Maximizing Vanadium Deployment in Redox Flow Batteries Through Chelation
Waters, S. E.; Davis, C. M.; Thurston, J. E.; Marshak, M. P. 
J. Am. Chem. Soc. 2022, 144, 17753–17757. DOI: 10.1021/jacs.2c07076

32. High Energy Density Chelated Chromium Flow Battery Electrolyte at Neutral pH
Robb, B. H.; Waters, S. E.; Marshak, M. P. 
Chem Asian J. 2022, 17, e202200700. DOI: 10.1002/asia.202200700

31. Transport of Ligand Coordinated Iron and Chromium through Cation-Exchange Membranes
Saraidaridis, J. D.; Darling, R. M.; Yang, Z.; Fortin, M. E.; Shovlin, C.; Robb, B. H.; Waters, S. E.; Marshak, M. P.
J. Electrochem. Soc. 2022169, 060532. DOI: 10.1149/1945-7111/ac7782

30. Isolation and characterization of a highly reducing aqueous chromium (II) complex
Waters, S. E.; Robb, B. H.; Scappaticci, S. J.; Saraidaridis, J. D.; Marshak, M. P.
Inorg. Chem. 202261, 8752–8759. DOI: 10.1021/acs.inorgchem.2c00699

29. Mediating anion-cation interactions to improve aqueous flow battery electrolytes
Reber, D.; Thurston, J. R.; Becker, M.; Pache, G. F.; Wagoner, M. E.; Robb, B. H.; Waters, S. E.; Marshak, M. P.
Appl. Mater. Today 202228, 101512. DOI: 10.1016/j.apmt.2022.101512

28. Bismuth Electrocatalyst Enabling Reversible Redox Kinetics of a Chelated Chromium Flow Battery Anolyte
Proctor, A. D.; Robb, B. H.; Saraidaridis, J. D.; Marshak, M. P.
J. Electrochem. Soc. 2022, 169, 030506. DOI: 10.1149/1945-7111/ac56d3

27. Holistic design principles for flow batteries: Cation dependent membrane resistance and active species solubility
Waters, S. E.; Thurston, J. R.; Armstrong, R. W.; Robb, B. H.; Marshak, M. P.; Reber, D. 
J. Power Sources 2022520, 230877. DOI: 10.1016/j.jpowsour.2021.230877

26. Iron Flies Higher
Marshak, M. P.
Nature Energy 20216, 854–855. DOI: 10.1038/s41560-021-00882-x

25. Synthesis, reactivity, and crystallography of a sterically hindered acyl triflate
Crossman, A. S.; Shi, J. X.; Krajewski, S. M.; Maurer, L. M.; Marshak, M.P.
Tetrahedron 202194, 132308. DOI: 10.1016/j.tet.2021.132308
*2021 Editors’ Choice Collection

24. Open for bismuth: main group metal-to-ligand charge transfer
Maurer, L. M.; Pearce, O. M.; Maharaj, F. D. R; Brown, N. L.; Amador, C. A.; Damrauer, N. H.; Marshak, M. P.
Inorg. Chem. 202160, 10137–10146 DOI: 10.1021/acs.inorgchem.0c03818

23. Organic and Metal-Organic RFBs
Thurston, J. R.; Waters, S. E.; Robb, B. H.; Marshak, M.P 
Encyclopedia of Energy Storage 2021. DOI: 10.1016/B978-0-12-819723-3.00082-2

22. β-Diketones: Coordination and Application
Crossman, A. S. and Marshak, M. P.
Comprehensive Coordination Chemistry III. 2021, DOI: 10.1016/B978-0-08-102688-5.00069-6

21. Evaluating Aqueous Flow Battery Electrolytes: A Coordinated Approach
Robb, B. H.; Waters, S. E.; Marshak, M. P.
Dalton Trans., 2020, 49, 16047–16053. DOI: 10.1039/D0DT02462G

20. Minimizing Oxygen Permeation in Metal-Chelate Flow Batteries
Robb, B. H.; Waters, S. E.; Marshak, M. P.
ECS Trans. 202097, 237–245. DOI: 10.1149/09707.0237ecst

19. Effect of Chelation on Iron-Chromium Redox Flow Batteries
Waters, S. E.; Robb, B. H.; Marshak, M. P.
ACS Energy Lett. 20206, 1758–1762. DOI: 10.1021/acsenergylett.0c00761

18. Group 4 Organometallics Supported by Sterically Hindered β‐Diketonates
Hopkins, E. J.; Krajewski, S. M.; Crossman, A. S.; Maharaj, F. D. R.; Schwanz, L. T.; Marshak, M. P.
Eur. J. Inorg. Chem. 2020, 20, 1951–1959. DOI: 10.1002/ejic.202000135

17. Titanium-Anthraquinone Material as a New Design Approach for Electrodes in Aqueous Rechargeable Batteries
Maharaj, F. D. R.; Marhsak, M. P.
Energies, 2020, 13, 1722. DOI: 10.3390/en13071722

16. Copper(II) as a Platform for Probing the Steric Demand of Bulky β-Diketonates
Larson, A. T.; Crossman, A. S.; Krajewski, S. M.; Marshak, M. P.
Inorg. Chem. 202059, 423–432. DOI: 10.1021/acs.inorgchem.9b02721

15. Chelated Chromium Electrolyte Enabling High-Voltage Aqueous Flow Batteries
Robb, B. H.; Farrell, J. M.; Marshak, M. P. 
Joule2019. 3, 2503–2512. DOI: 10.1016/j.joule.2019.07.002

14. Sterically encumbered β-diketonates and base metal catalysis
Krajewski, S. M.; Crossman, A. S.; Akturk, E. S.; Suhrbier, T.; Scappaticci, S. J.; Staab, M. W.; Marshak, M. P.
Dalton Trans. 201948, 10714–10722. DOI: 10.1039/C9DT02293G

13. Exploring Real-World Applications of Electrochemistry by Constructing a Rechargeable Lithium Ion Battery
Maharaj, F. D. R.; Wu, W.; Zhou, Y,; Schwanz, L. T.; Marshak, M. P.
J. Chem. Educ. 201996, 3014–3017. DOI: 10.1021/acs.jchemed.9b00328

12. Synthesis of Sterically Hindered β-Diketones via Condensation of Acid Chlorides with Enolates
Crossman, A. S.; Larson, A. T.; Shi, J. X.; Krajewski, S. M.; Akturk, E. S.; Marshak, M. P.
J. Org. Chem. 2019. 84, 7434–7442. DOI: 10.1021/acs.joc.9b00433

11. Bulky β-Diketones Enabling New Lewis Acidic Ligand Platforms
Akturk, E. S.; Scappaticci, S. J.; Seals, R. N.; Marshak, M. P.
Inorg. Chem. 2017. 56, 11466–11469. DOI: 10.1021/acs.inorgchem.7b02077

10. My trek back to science
Marshak, M. P.
Science 2015349, 1406. DOI: 10.1126/science.349.6254.1406

Prior to CU

9. Anthraquinone Derivatives in Aqueous Flow Batteries
Gerhardt, M. R.; Tong, L.; Gómez‐Bombarelli, R.; Chen, Q.; Marshak, M. P.; Galvin, C. J.; Aspuru-Guzik, A.; Gordon, R. G.; Aziz, M. J.
Adv. Energy Mater. 20177, 1601488. DOI: 10.1002/aenm.201601488

8. Alkaline quinone flow battery
Lin, K.; Chen, Q.; Gerhardt, M. R.; Tong, L.; Kim, S. B.; Eisenach, L.; Valle, A. W.; Hardee, D.; Gordon, R. G.; Aziz, M. J.; Marshak, M. P.
Science 2015, 349, 1529–1532. DOI: 10.1126/science.aab3033

7. Computational design of molecules for an all-quinone redox flow battery
Er, S.; Suh, C.; Marshak, M. P.; Aspuru-Guzik, A.
Chem. Sci. 20156, 885–893. ​DOI: 10.1039/C4SC03030C

6. Cycling of a Quinone-Bromide Flow Battery for Large-Scale Electrochemical Energy Storage
Huskinson, B.; Marshak, M. P.; Gerhardt, M. R.; Aziz, M. J.
ECS Trans. 201461, 27–30. DOI: 10.1149/06137.0027ecst

5. A metal-free organic-inorganic aqueous flow battery
Huskinson, B.; Marshak, M. P.; Suh, C.; Er, S.; Gerhardt, M. R.; Galvin, C. J.; Chen, X.; Aspuru-Guzik, A.; Gordon, R. G.; Aziz, M. J.
Nature 2014505, 195–198. DOI: 10.1038/nature12909

4. Lewis Bases Trigger Intramolecular CH–Bond Activation: (tBu3SiO)2W=NtBu [rlhar2] (tBu3SiO)(κO,κC-tBu2SiOCMe2CH2)HW=NtBu
Marshak, M. P.; Rosenfeld, D. C.; Morris, W. D.; Wolczanski, P. T.; Lobkovsky, E. B.; Cundari, T. R.
Eur. J. Inorg. Chem. 2013, 4056–4067. DOI: 10.1002/ejic.201300234

3. Chromium(IV) Siloxide
Marshak, M. P.; Nocera, D. G.
Inorg. Chem. 201352, 1173–1175. DOI: 10.1021/ic3023612

2. Cobalt in a Bis-β-diketiminate Environment
Marshak, M. P.; Chambers, M. B.; Nocera, D. G.
Inorg. Chem. 201251, 11190–11197. DOI: 10.1021/ic301970w

1. Thermodynamics, Kinetics, and Mechanism of (silox)3M(olefin) to (silox)3M(alkylidene) Rearrangements (silox = tBu3SiO; M = Nb, Ta)
Hirsekorn, K. F.; Veige, A. S.; Marshak, M. P.; Koldobskaya, Y.; Wolczanski, P. T.; Cundari, T. R.; Lobkovsky, E. B.
J. Am. Chem. Soc. 2005127, 4809–4830. DOI: 10.1021/ja046180k