Our group strives to publish our results in open access journals and to make datasets and software tools available to the community. Note that currently, it is not possible for all publications to provide open access. Thus, if you are unable to access one of our articles, please contact us individually and we will arrange it to be shared with you.

* Ice sheets and Climate group members in bold*



In Review

N. WeverE. Keenan, C. Amory, M. Lehning, A. Sigmund, H. Huwald, and J. T. M. Lenaerts. New snow density in the drifting snow dominated environment of Antarctica. J. Glac., in review.

B. P. Y. Noel, J. T. M. Lenaerts , W. H. Lipscomb , K. Thayer-Calder , M. R. van den Broeke. Peak refreezing in the Greenland firn layer under future warming scenarios. Nature Comms., in review. 

J. T. M. Lenaerts, M. L. Maclennan, C. Shields, and J. D. Wille. Contribution of atmospheric rivers to Antarctic Ice Sheet snowfall. GRL, in revision. 

M. L. Maclennan, J. T. M. Lenaerts, C. A. Shields, A. O. Hoffman, N. Wever, M. Thompson-Munson, A. C. Winters, E. C. Pettit, T. A. Scambos, and J. D. Wille. Climatology and Surface Impacts of Atmospheric Rivers on West Antarctica. The Cryosphere, in review.

Clercx, N., Machguth, H., Tedstone, A., Jullien, N., Wever, N., Weingartner, R., Roessler, O.: In situ measurements of meltwater flow through snow and firn in the accumulation zone of the SW Greenland Ice Sheet, EGUsphere [preprint], doi: 10.5194/egusphere-2022-71.

E. Keenan, Wever, N., Lenaerts, J. T. M., and Medley, B.: A wind-driven snow redistribution module for Alpine3D v3.3.0: Adaptations designed for downscaling ice sheet surface mass balance, Geosci. Model Dev., in revision.

B. Medley, J. T. M. Lenaerts, M. Dattler, E. Keenan, N. Wever. Sub-grid-scale surface processes reduce Antarctic surface mass balance and confound interpretation of height changes. In revision. 





J. Ryan, L. Smith, S. Cooley, B. Pearson, N. Wever, E. Keenan, and J. T. M. Lenaerts. Decreasing albedo signifies a growing importance of clouds for Greenland Ice Sheet meltwater production. Nat. Comms., in press.

C. Stokes, N. Abram , M. Bentley , T. Edwards , M. England , S. Jamieson , R. Jones , M. King , J. T. M. Lenaerts , B. Medley , B. Miles , G. Paxman , C. Ritz , T. van de Flierdt , P. Whitehouse , A. Foppert. Response of the East Antarctic Ice Sheet to Past and Future Climate Change. Nature, in press.

M. Cavitte, H. Goosse. S. Wauthy, T. Kausch, J.-L. Tison, B. Van Liefferinge, F. Pattyn, J. T. M. Lenaerts, P. Claeys. ​From ice core to ground-penetrating radar: representativeness of SMB at three ice rises along the Princess Ragnhild Coast, East Antarctica. J. Glac., in press.

Dunmire, D., Lenaerts, J. T. M., Datta, R. T., and Gorte, T.: Antarctic surface climate and surface mass balance in the Community Earth System Model version 2 (1850–2100), The Cryosphere, accepted.

Michel, A., Schaefli, B., Wever, N., Zekollari, H., Lehning, M., and Huwald, H.: Future water temperature of rivers in Switzerland under climate change investigated with physics-based models, Hydrol. Earth Syst. Sci., 26, 1063–1087, doi: 10.5194/hess-26-1063-2022.


K. Alley, C. Wild, A. Luckman, S. Child, C. Hulen, E. Pettit, A. Muto, T. A. Scambos, M. Truffer, B. Wallin, M. Klinger, T. Sutterley, L. Girod, J T. M. Lenaerts, M. Maclennan, E. Keenan, D. Dunmire. Two decades of dynamic change and progressive destabilization on the Thwaites Eastern Ice Shelf. The Cryosphere, in press.

A. Bourbonnais, S. Ling Ho, C. Kinnard, J. T. M. Lenaerts, S. Sugiyama, and M. A. Altabet. Global change on the Blue Planet. Commun Earth Environ 2, 163, https://doi.org/10.1038/s43247-021-00227-2

M. Maclennan and J. T. M. Lenaerts. Large-Scale Atmospheric Drivers of Snowfall over Thwaites Glacier, Antarctica. Geophys. Res. Lett., 48, 17, https://doi.org/10.1029/2021GL093644

R. Sellevold, J. T. M. Lenaerts, and M. Vizcaino.  Influence of Arctic sea-ice loss on the Greenland ice sheet climate. Clim. Dyn., https://doi.org/10.1007/s00382-021-05897-4

M. L. Ghiz, R. C. Scott, A. M. Vogelmann, J. T. M. Lenaerts, M. Lazzara, and D. LubinEnergetics of Surface Melt in West Antarctica. The Cryosphere, 15, 3459–3494, https://doi.org/10.5194/tc-15-3459-2021

D. Dunmire, A. F. Banwell, N. Wever, J. T. M. Lenaerts, and R. T. Datta: Contrasting regional variability of buried meltwater extent over 2 years across the Greenland Ice Sheet, The Cryosphere, 15, 2983–3005, https://doi.org/10.5194/tc-15-2983-2021.

N. Wever, K. Leonard, T. Maksym, S. White, Proksch, M. and J. T. M. Lenaerts. Spatially distributed simulations of the effect of snow on mass balance and flooding of Antarctic sea ice. Journal of Glaciology, 1-19. doi:10.1017/jog.2021.54

L. Muntjewerf, W. J. Sacks, M. Lofverstrom, J. Fyke, W. H. Lipscomb, C. Ernani da Silva, M. Vizcaino, K. Thayer-Calder, J. T. M. Lenaerts, and R. Sellevold. Description and demonstration of the coupled Community Earth System Model v2 - Community Ice Sheet Model v2 (CESM2-CISM2). J. Adv, Mod. Syst., 13, 6, https://doi.org/10.1029/2020MS002356

J. D. Wille, V. Favier, I. V. Gorodetskaya, C. Agosta, C. Kittel, J. C. Beeman, N. Jourdain, J. T. M. Lenaerts, F. CodronAntarctic atmospheric river climatology and precipitation impacts. J. Geophys. Res.-Atmospheres, 126, 8, e2020JD033788, https://doi.org/10.1029/2020JD033788 (contact Jan Lenaerts to obtain a copy)

J. M. van Wessem, Steger, C. R., Wever, N., and van den Broeke, M. R. An exploratory modelling study of perennial firn aquifers in the Antarctic Peninsula for the period 1979–2016, Cryosphere, 15, 695–714, doi: 10.5194/tc-15-695-2021.
E. Keenan, N. Wever, M. Dattler, J. T. M. Lenaerts, B. Medley, P. Kuipers Munneke, and C. Reijmer. Physics-based SNOWPACK model improves representation of near-surface Antarctic snow and firn density. The Cryosphere, 15, 1065–1085, 2021, https://doi.org/10.5194/tc-15-1065-2021.
L. van Kampenhout, B. Noël, M. R. van den Broeke, W. J. van de Berg, and J. T. M. Lenaerts. A 21st century warming threshold for irreversible Greenland ice sheet mass loss. Geophys. Res. Lett., 48, e2020GL090471, https://doi.org/10.1029/2020GL090471.


N. Montgomery, C. Miège, J. Miller, T. A. Scambos, B. Wahlin, O. Miller, K. Solomon, R. Forster, L. Koenig. Hydrologic Properties of a Highly Permeable Firn Aquifer in the Wilkins Ice Shelf, Antarctica. Geophys. Res. Lett., 47, e2020GL089552, https://doi.org/10.1029/2020GL089552.

T. Gorte, J. T. M. Lenaerts, B. Medley. Scoring Antarctic surface mass balance in climate models to refine future projections. The Cryosphere, 14, 4719–4733, https://doi.org/10.5194/tc-14-4719-2020.

M. G. P. Cavitte, Q. Dalaiden, H. Goosse, J. T. M. Lenaerts, and E. Thomas. Reconciling the surface temperature–surface mass balance relationship in models and ice cores in Antarctica over the last two centuries. The Cryosphere, 14, 4083–4102, 2020, https://doi.org/10.5194/tc-14-4083-2020

Q. Dalaiden, H. Goosse, J. T. M. Lenaerts, M. Cavitte, and N. Henderson. Mean state and future trends of Antarctic snow accumulation dominated by atmospheric synoptic-scale events. Commun. Earth Environ., 1, 62. https://doi.org/10.1038/s43247-020-00062-x

T. Kausch, S. Lhermitte, J. T. M. LenaertsN. Wever, M. Inoue, F. Pattyn, S. Sun, S. Wauthy, J.-L. Tison, W. J. van de Berg. Impact of coastal East Antarctic ice rises on surface mass balance: insights from observations and modeling. The Cryosphere, 14, 3367–3380, https://doi.org/10.5194/tc-14-3367-2020

X. Fettweis, S. Hofer, .... J. T. M. Lenaerts, and others. GrSMBMIP: Intercomparison of modelled 1980-2012 surface mass balance over the Greenland Ice sheet. The Cryosphere, 14, 3935–3958, https://doi.org/10.5194/tc-14-3935-2020

J. T. M. Lenaerts, D. Camron, C. Wyburn-Powell, and J. E. Kay. Present-day and future Greenland Ice Sheet precipitation frequency from CloudSat observations and the Community Earth System Model. The Cryosphere, 14, 2253–2265, https://doi.org/10.5194/tc-14-2253-2020

D. Schneider, J. Kay, J. T. M. Lenaerts, and C. Deser. Improved clouds over Southern Ocean amplify Antarctic precipitation response to ozone depletion in an Earth system model. Climate Dynamics, 55, 1665-1684. doi:10.1007/s00382-020-05346-8

D. Dunmire, J. T. M. Lenaerts, A. F. Banwell, N. Wever, J. Shragge, S. Lhermitte, R. Drews, F. Pattyn, I. C. Willis, J. Miller, and E. Keenan Observations of subsurface lake drainage on the Antarctic Ice Sheet. Geophys. Res. Lett.,  47, e2020GL087970. https://doi.org/10.1029/2020GL087970

Scambos, T. and S. Stammerjohn, Eds., 2020: Antarctica and the Southern Ocean [in “State of the Climate in 2019"]. Bull. Amer. Meteor. Soc., 101 (8), S287–S320, https://doi.org/10.1175/BAMS-D-20-0090.1. (authors include J. T. M. Lenaerts, E. Keenan, T. Gorte, and M. Maclennan)

A. Gossart, N. Souverijns, S. P. Palm, J. T. M. Lenaerts, S. Lhermitte, I. V. Gorodetskaya, and N. P. M. van Lipzig. Importance of Blowing Snow During Cloudy Conditions in East Antarctica: Comparison of Ground-Based and Space-Borne Retrievals Over Ice-Shelf and Mountain Regions. Front. Earth Sci., 08 July 2020 | https://doi.org/10.3389/feart.2020.00240

Quéno, L., Fierz, C., van Herwijnen, A., Longridge, D., and Wever, N. Deep ice layer formation in an alpine snowpack: monitoring and modeling, Cryosphere, 14, 3449–3464, doi: 10.5194/tc-2020-24.

M. Izeboud, S. Lhermitte, K. van Tricht, J. T. M. Lenaerts, N. van Lipzig and N. Wever. Spatiotemporal variability of cloud radiative effects on the Greenland Ice Sheet surface mass balance. Geophys. Res. Lett.,  47, e2020GL087315. https://doi.org/10.1029/2020GL087315

Jafari, M., Gouttevin, I., Couttet, M., Wever, N., Michel, A., Sharma, V., Rossmann, L., Maaß, N., Nicolaus, M. and Lehning, M. The Impact of Diffusive Water Vapor Transport on Snow Profiles in Deep and Shallow Snow Covers and on Sea Ice, Front. Earth Sci. 8:249. doi: 10.3389/feart.2020.00249.

L. Muntjewerf, M. Petrini, M. Vizcaino, C. Ernani da Silva, R. Sellevold, M. Scherrenberg, K. Thayer-Calder, S. L. Bradley, J. T. M. Lenaerts, W. Lipscomb, M. Lofverstrom. Greenland Ice Sheet contribution to 21st century sea level rise as simulated by the coupled CESM2.1-CISM2.1. Geophys. Res. Lett., https://doi.org/10.1029/2019GL086836

J. T. M. Lenaerts, A. Gettelman, L. van Kampenhout, K. van Tricht, and N. Miller. Impact of cloud physics on the Greenland Ice Sheet surface climate: a study with the Community Atmosphere Model. J. Geophys. Res. - Atmospheres, 125, e2019JD031470, https://doi.org/10.1029/2019JD031470

B. Noël, L. van Kampenhout, W. J. van de Berg, J. T. M. Lenaerts, W. J. van de Berg, B. Wouters, M. R. van den Broeke. Brief communication: CESM2 climate forcing (1950-2014) yields realistic Greenland ice sheet surface mass balance and recent trends. The Cryosphere, 14, 1425–1435, 2020, https://doi.org/10.5194/tc-14-1425-2020

B. Hamlington, ...., J. T. M. Lenaerts, and others. Understanding of Contemporary Regional Sea Level Change and the Implications for the Future. Rev. Geophys., https://doi.org/10.1029/2019RG000672.

Q. Dalaiden, H. Goosse, F. Klein, J. T. M. Lenaerts, M. Holloway, L. Sime and E. Thomas. Surface Mass Balance of the Antarctic Ice Sheet and its link with surface temperature change in model simulations and reconstructions. The Cryosphere, 14, 1187–1207, https://doi.org/10.5194/tc-14-1187-2020.

S. Tilmes, D. E. MacMartin, J. T. M. Lenaerts, L. van Kampenhout, L. Muntjewerf, L Xia, C. S. Harrison, K. M. Krumhardt, M. M. Mills, B. Kravitz, and A. Robock. Stratospheric aerosol geoengineering experiments reaching 1.5°C and 2.0°C temperature targets. Earth Syst. Dynam., 11, 579–601, 2020. https://doi.org/10.5194/esd-11-579-2020

N. Montgomery, L. Koenig, J. T. M. Lenaerts, P. Kuipers Munneke. Annual accumulation rates (2009-2017) in Southeast Greenland derived from airborne snow radar and comparison with regional climate models. Ann. Glac., ​https://doi.org/10.1017/aog.2020.8

H. Wang, J. Fyke, J. T. M. Lenaerts, J. M. Nusbaumer, H. Singh, D. Noone, and P. J. Rasch. Influence of Sea Ice Anomalies on Antarctic Precipitation and its Source Attribution in the Community Earth System Model. The Cryosphere, 14, 429–444, https://doi.org/10.5194/tc-14-429-2020

G. Danabasoglu, J.-F. Lamarque,..., J. T. M. Lenaerts, and others. The Community Earth System Model version 2. JAMES, https://doi.org/10.1029/2019MS001916

Wever, N., Rossmann, L., Maaß, N., Leonard, K. C., Kaleschke, L., Nicolaus, M., and Lehning, M. Version 1 of a sea ice module for the physics-based, detailed, multi-layer SNOWPACK model, Geosci. Model Dev., 13, 99–119, https://doi.org/10.5194/gmd-13-99-2020.

L. van Kampenhout,  J. T. M. Lenaerts, W. Lipscomb, M. Vizcaino, S. Lhermitte, W. Sacks and M. R. van den Broeke. Greenland ice sheet climate and surface mass balance in CESM2. J. Geophys. Res - Earth Surface,  https://doi.org/10.1029/2019JF005318


M. Dattler, J. T. M. Lenaerts, B. Medley. Significant spatial variability in radar-derived West Antarctic accumulation linked to surface winds and topography. Geophys. Res. Lett. ,https://doi.org/10.1029/2019GL085363

R. Sellevold, L. van Kampenhout, J. T. M. Lenaerts, B. Noël, W. H. Lipscomb, and M. Vizcaino. Ice sheet surface mass balance downscaling through elevation classes in an Earth System Model. The Cryosphere, 13, 3193–3208, https://doi.org/10.5194/tc-13-3193-2019

D. Lawrence, ...., J. T. M. Lenaerts, and 50 others. The Community Land Model version 5: Description of new features, benchmarking, and impact of forcing uncertainty. JAMES, https://doi.org/10.1029/2018MS001583

Hirashima, H., Avanzi, F., and Wever, N. Wet‐snow metamorphism drives the transition from preferential to matrix flow in snow. Geophys. Res. Lett., 46, 14548–14557, https://doi.org/10.1029/2019GL084152.

A. Gossart, S. Helsen, J. T. M. Lenaerts, S. Vanden Broucke, N. van Lipzig and N. Souverijns. An evaluation of surface climatology in state-of-the-art reanalyses over the Antarctic Ice Sheet. J. Clim., 32, 6899–6915, https://doi.org/10.1175/JCLI-D-19-0030.1

J. T. M. Lenaerts, B. Medley, M. R. van den Broeke and B. Wouters, 2019. Observing and modeling past, present and future ice sheet surface mass balance. Reviews of Geophysics, 57, https://doi.org/10.1029/2018RG000622.

L. van Kampenhout, A. M. Rhoades, C. M. Zarzycki, A. R. Herrington, W. J. Sacks, J. T. M. Lenaerts, and M. R. van den Broeke, 2019. Regional Grid Refinement in an Earth System Model: Impacts on the Simulated Greenland Surface Mass Balance. The Cryosphere, 13, 1547–1564, https://doi.org/10.5194/tc-13-1547-2019.

N. Souverijns, A. Gossart, M. Demuzere, J. T. M. Lenaerts, I. V. Gorodetskaya, S. Vanden Broucke, N. P. M. Van Lipzig, 2019. A New Regional Climate Model for POLAR‐CORDEX: Evaluation of a 30‐Year Hindcast with COSMO‐CLM2 Over Antarctica. Journal of Geophysical Research: Atmospheres, 124, 1405– 1427. https://doi.org/10.1029/2018JD028862

R. T. Datta, M. Tedesco, X. Fettweis, C. Agosta, S. Lhermitte, J. T. M. Lenaerts and N. Wever. The Effect of Foehn-Induced Surface Melt on Firn Evolution over the Northeast Antarctic Peninsula, Geophys. Res. Lett., 46,  3822– 3831. https://doi.org/10.1029/2018GL080845 (work partly performed during Datta's research visit to our group in Summer '18)

H. Zekollari, S. Goderis, M. van Ginneken, J. Gattacceca, ASTER Team, A. J. T. Jull, A. Yamaguchi, P. Huybrechts, V. Debaille, J. T. M. Lenaerts, and P. Claeys, 2019. Unravelling the high-altitude Nansen blue ice field meteorite trap (East Antarctica) and implications for regional palaeo-conditions. Geochimica et Cosmochimica Acta, 248, 289-310, doi: https://doi.org/10.1016/j.gca.2018.12.035

C. Agosta, X. Fettweis, A. Orsi, C. Kittel, C. Amory, H. Gallee, V. Favier, M. R. van den Broeke, J. T. M. Lenaerts, J. M. van Wessem, 2019. Estimation of the Antarctic surface mass balance using MAR (1979-2015) and identification of dominant processes.  The Cryosphere, 13, 281-296, https://doi.org/10.5194/tc-13-281-2019.


F. Pattyn, C. Ritz , X. Asay-Davis, R. DeConto , G. Durand, L. Favier, X. Fettweis, H. Goelzer, N. Golledge, E. Hanna, P. Kuipers Munneke, J. T. M. Lenaerts, S. Nowicki, A. Payne, A. Robinson, H. Seroussi, L. Trusel, M. van den Broeke, 2018. Greenland and Antarctic ice sheets under 1.5°C global warming. Nature Climate Change, 8, 1053–1061, https://doi.org/10.1038/s41558-018-0305-8

J. T. M. Lenaerts, J. Fyke, B. Medley. The signature of ozone depletion in recent Antarctic precipitation change: a study with the Community Earth System Model, 2018. Geophys. Res. Lett., 45, 23, https://doi.org/10.1029/2018GL078608

J. Fyke, O. Sergienko, M. Löfverström, S. Price and J. T. M. Lenaerts, 2018. An overview of interactions and feedbacks between ice sheets and the Earth system. Rev. Geophys., 56, 2, 361-408, doi: 10.1029/2018RG000600

L. Woelders, J. T. M. Lenaerts, K. Hagemans, K. Akkerman, T. van Hoof, W. Hoek, 2018. Drastic ecological response to recent rapid Arctic climate change: evidence from a remote high-Arctic lake. Nature Scientific Reports, 8, 6858, doi: 10.1038/s41598-018-25148-7

N. Miller, M. Shupe, J. T. M. Lenaerts, J. Kay, G. De Boer, and R. Bennartz. Process-based evaluation of ERA-Interim, CFS version 2, and CESM in central Greenland, JGR-Atmospheres, 123, 10, 4777-4796, doi: 10.1029/2017JD027377

B. Noël, W. J. van de Berg, J. M. van Wessem, E. van Meijgaard, D. van As, J. T. M. Lenaerts, S. Lhermitte, P. Kuipers Munneke, C. J. P. P. Smeets, L. H. van Ulft, R. S. W. van de Wal, and M. R. van den Broeke, 2018. Modelling the climate and surface mass balance of polar ice sheets using RACMO2, Part 1: Greenland (1958-2016). The Cryosphere, 12, 811-831, https://doi.org/10.5194/tc-12-811-2018

J. M. van Wessem, W. J. van de Berg, B. P. Y. Noël, E. van Meijgaard, G. Birnbaum, C. L. Jacobs, K. Krüger, J. T. M. Lenaerts, S. Lhermitte, S. R. M. Ligtenberg, B. Medley, C. H. Reijmer, K. van Tricht, L. D. Trusel, L. H. van Ulft, B. Wouters, J. Wuite, and M. R. van den Broeke, 2018. Modelling the climate and surface mass balance of polar ice sheets using RACMO2, Part 2: Antarctica (1979-2016). The Cryosphere, 12, 1479-1498, https://doi.org/10.5194/tc-12-1479-2018


A. Gossart, N. Souverijns, I. V. Gorodetskaya, S. Lhermitte, J. T. M. Lenaerts, J. H. Schween, A. Mangold, Q. Laffineur, and N. P. M. van Lipzig, 2017. Blowing snow detection from ground-based ceilometers in East Antarctica.  The Cryosphere, 11, 2755-2772, https://doi.org/10.5194/tc-11-2755-2017.

J. T. M. Lenaerts, S. R. M. Ligtenberg, B. Medley, Willem Jan van de Berg, H. Konrad, J. P. Nicolas, J. M. van Wessem, L. D. Trusel, R. Mulvaney, R. J. Tuckwell, A. E. Hogg, E. R. Thomas, 2017. Climate and surface mass balance of coastal West Antarctica resolved by regional climate modelling, Ann. Glac., https://doi.org/10.1017/aog.2017.42.

L. van Kampenhout, J. T. M. Lenaerts, B. Sacks, D. Lawrence, B. Lipscomb, A. Slater, and M. R. van den Broeke, 2017. Improving the representation of polar snow and firn in the Community Earth System Model. JAMES, doi: 10.1002/2017MS000988

J. Fyke, J. T. M. Lenaerts, H. Wang, 2017. Basin-scale heterogeneity in Antarctic precipitation and its impact on surface mass variability. The Cryosphere, 11, 2595-2609, doi: 10.5194/tc-11-2595-2017

E. R. Thomas, M. van Wessem, J. Roberts, E. Isaksson, E. Schlosser, TJ Fudge, P. Vallelonga, B. Medley, N. Bertler, D. Dixon, J. T. M. Lenaerts, M. Curran, M. R. van den Broeke, and B. Stenni, 2017. Regional Antarctic snow accumulation over the past 1000 years. Clim. Past., 13, 1491-1513, doi: cp-13-1491-2017

N. Gourmelen, D. Goldberg , K. Snow , S. Henley , R. Bingham , S. Kimura , A. Hogg , A. Shepherd , J. Mouginot , J. T. M. Lenaerts, S. R. M. Ligtenberg , W. J. van de Berg. Channelized Melting Drives Thinning Under a Rapidly Melting Antarctic Ice Shelf. Geophys. Res. Lett., 44, 19, 9796-9804, doi: 10.1002/2017GL074929

J. T. M. Lenaerts, K. van Tricht, S. Lhermitte and T. L'Ecuyer. Polar clouds and radiation in satellite observations, reanalyses, and climate models, 2017. Geophys. Res. Lett., doi: 10.1002/2016GL072242

L. Woelders, J. Vellekoop, D. Kroon, J. Smit, S. Casadío, M. B. Prámparo, J. Dinarès-Turell, F. Peterse, A. Sluijs, J. T. M. Lenaerts and R. P. Speijer, 2017. Latest Cretaceous climatic and environmental change in the South Atlantic region. Paleoceanography, doi: 10.1002/2016PA003007.

L. N. Boisvert, J. N. Lee, J. T. M. Lenaerts, B. Noël, M. R. van den Broeke, and A. W. Nolin, 2017. Using remotely sensed data from AIRS to estimate the vapor flux on the Greenland Ice Sheet: comparisons with observations and a regional climate model. J. Geophys. Res., 122, 1, 202–229, doi: 10.1002/2016JD025674

B. P. Y. Noel, W. J. van de Berg, S. Lhermitte, B. Wouters, H. Machguth, I. Howat,  M. Citterio, G. Moholdt, J. T. M. Lenaerts and M. R. van den Broeke, 2017. A tipping point in refreezing accelerates mass loss of Greenland's glaciers and ice caps. Nature Comm., doi: 10.1038/ncomms14730

J. T. M. Lenaerts, S. Lhermitte, R. Drews. S. R. M. Ligtenberg, S. Berger, V. Helm, C. J. P. P. Smeets, M. R. van den Broeke, W. J. van de Berg, E. van Meijgaard, M. Eijkelboom, O. Eisen and F. Pattyn, 2017. Meltwater produced by wind-albedo interaction stored in an East Antarctic ice shelf. Nature Climate Change, 7, 58–62, doi:10.1038/nclimate3180

K. Poinar, I. Joughin, J. T. M. Lenaerts, and M. R. van den Broeke, 2017. The contribution of englacial latent heat transfer to seaward ice flux in western Greenland. J. Glaciol., 63, 237, 1–16, doi: 10.1017/jog.2016.103 

S. Price, M. Hoffman, J. Bonin, T. Neumann, I. Howat, J. Saba, J. Guerber, D. Chambers, K. Evans, J. Kennedy, J. T. M. Lenaerts, W. Lipscomb, S. Nowicki, M. Perego, A. Salinger, R. Tuminaro, and M. van den Broeke, 2017. An ice sheet model validation framework for the Greenland ice sheet. Geosci. Model Dev., 10, 255–270, doi: 10.5194/gmd-10-255-2017


N. Wever, E. Keenan, T. Kausch and Lehning, M. (2022): SnowMicroPen measurements and manual snowpits from Dronning Maud Land, East Antarctica. Envidat. doi: 10.16904/envidat.331.

N. Wever (2022): Terrestrial laser scans on Hammarryggen Ice Rise, Dronning Maud Land, East Antarctica. EnviDat. doi: 10.16904/envidat.328.

N. Wever, S. White, T. Maksym, M. Proksch, P. Hunkeler and K. C. Leonard (2021): Datasets on snow and sea ice collected from Research Vessel Polarstern in the Antarctic Weddell Sea in austral winter 2013 (cruise leg ANT-XXIX/6, AWECS campaign):


We actively contribute to the physics-based, multi-layer snow cover model SNOWPACK: https://github.com/snowpack-model/snowpack. doi: 10.5281/zenodo.4708266