Nander Wever
Research Associate
Atmospheric and Oceanic Sciences

As of January 2023, I transferred to the WSL Institute for Snow and Avalanche Research SLF in Switerland.

Please contact me there.

 

Research interests

  • Snow in polar regions (sea ice, ice sheets)
  • Snow cover modeling using SNOWPACK and Alpine3D

 

Biography

  • Now: Scientific Employee at the WSL Institute for Snow and Avalanche Research in Davos, Switzerland.
  • 2020-2022: Research Faculty at the University of Colorado, Boulder, Department of Atmospheric and Oceanic Sciences.
  • 2017-2020: PostDoctoral Fellow at the University of Colorado, Boulder, Department of Atmospheric and Oceanic Sciences.
  • 2015-2017: PostDoc at the École Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering, Lausanne, Switzerland.
  • 2010-2015: PhD student at WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland. Research topics:
    • Water flow in snow
    • Mountain meteorology
  • 2007-2010: Researcher at the Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands. Research topics:
    • Surface wind climate
    • Climate change scenario's

 

Education

  • 2015: PhD at the École Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering, Lausanne, Switzerland.
  • 2007: Master of Science in Meteorology and Physical Oceanography at Utrecht University, the Netherlands.'

 

Publications

ISI publications:

  • Wever, N., Keenan. E., Amory, C., Lehning, M. Sigmund, A., Huwald, H., and Lenaerts, J. T. M. (2022): New snow density in the drifting snow dominated environment of Antarctica, J. of Glaciology, 1-18. doi: 10.1017/jog.2022.102.
  • Wever, N., Leonard, K., Maksym, T., White, S., Proksch, M., and Lenaerts, J. (2021): Spatially distributed simulations of the effect of snow on mass balance and flooding of Antarctic sea ice. J. Glaciol., 67(266), 1055-1073, doi: 10.1017/jog.2021.54.
  • Wever, N., Rossmann, L., Maaß, N., Leonard, K. C., Kaleschke, L., Nicolaus, M., and Lehning, M. (2020): Version 1 of a sea ice module for the physics-based, detailed, multi-layer SNOWPACK model, Geosci. Model Dev., 13, 99–119, doi: 10.5194/gmd-13-99-2020.
  • Wever, N., Vera Valero, C., and Techel, F. (2018): Coupled snow cover and avalanche dynamics simulations to evaluate wet snow avalanche activity. J. Geophys. Res., 123, 1772–1796, doi: 10.1029/2017JF004515.
  • Wever, N., Comola, F., Bavay, M., and Lehning, M. (2017): Simulating the influence of snow surface processes on soil moisture dynamics and streamflow generation in an alpine catchment, Hydrol. Earth Syst. Sci., 21, 4053-4071, doi: 10.5194/hess-21-4053-2017.
  • Wever, N., Würzer, S., Fierz, C., and Lehning, M. (2016): Simulating ice layer formation under the presence of preferential flow in layered snowpacks, Cryosphere, 10, 2731-2744, doi: 10.5194/tc-10-2731-2016.
  • Wever, N., C. Vera Valero, and C. Fierz (2016): Assessing wet snow avalanche activity using detailed physics based snowpack simulations, Geophys. Res. Lett., 43, 5732–5740, doi: 10.1002/2016GL068428.
  • Wever, N., Schmid, L., Heilig, A., Eisen, O., Fierz, C., and Lehning, M. (2015): Verification of the multi-layer SNOWPACK model with different water transport schemes, Cryosphere, 9, 2271-2293, doi: 10.5194/tc-9-2271-2015.
  • Wever, N., T. Jonas, C. Fierz, and M. Lehning (2014): Model simulations of the modulating effect of the snow cover in a rain-on-snow event, Hydrol. Earth Syst. Sci., 18, 4657-4669, doi: 10.5194/hess-18-4657-2014.
  • Wever, N., C. Fierz, C. Mitterer, H. Hirashima, and M. Lehning (2014): Solving Richards Equation for snow improves snowpack meltwater runoff estimations in detailed multi-layer snowpack model, Cryosphere, 8, 257-274, doi: 10.5194/tc-8-257-2014.
  • Wever, N. (2012): Quantifying trends in surface roughness and the effect on surface wind speed observations, J. Geophys. Res., 117D11, 2156-2202, doi: 10.1029/2011JD017118.
  • Wever, N., M. Lehning, A. Clifton, J.-D. Rüedi, K. Nishimura, M. Nemoto, S. Yamaguchi, and A. Sato. (2009): Verification of moisture budgets during drifting snow conditions in a cold wind tunnel, Water Resour. Res., 45, W07423, doi: 10.1029/2008WR007522.

Co-Authored:

  • Keenan, E., Wever, N., Lenaerts, J. T. M., and Medley, B. (2023): A wind-driven snow redistribution module for Alpine3D v3.3.0: adaptations designed for downscaling ice sheet surface mass balance, Geosci. Model Dev., 16, 3203–3219, doi: 10.5194/gmd-16-3203-2023.
  • Thompson-Munson, M., Wever, N., Stevens, C. M., Lenaerts, J. T. M., and Medley, B. (2023): An evaluation of a physics-based firn model and a semi-empirical firn model across the Greenland Ice Sheet (1980–2020), Cryosphere, 17, 2185–2209, doi: 10.5194/tc-17-2185-2023.
  • McDowell, I. E., Keegan, K. M., Wever, N., Osterberg, E. C., Hawley, R. L., and Marshall, H.-P. (2023): Firn core evidence of two-way feedback mechanisms between meltwater infiltration and firn microstructure from the western percolation zone of the Greenland Ice Sheet. J. Geophys. Res.: Earth Surf., 128, e2022JF006752, doi: 10.1029/2022JF006752.
  • Maclennan, M. L., Lenaerts, J. T. M., Shields, C. A., Hoffman, A. O., Wever, N., Thompson-Munson, M., Winters, A. C., Pettit, E. C., Scambos, T. A., and Wille, J. D. (2023): Climatology and surface impacts of atmospheric rivers on West Antarctica, Cryosphere, 17, 865–881, doi: 10.5194/tc-17-865-2023.
  • Clerx, N., Machguth, H., Tedstone, A., Jullien, N., Wever, N., Weingartner, R., and Roessler, O. (2022): In situ measurements of meltwater flow through snow and firn in the accumulation zone of the SW Greenland Ice Sheet, Cryosphere, 16, 4379–4401, doi: 10.5194/tc-16-4379-2022.
  • Medley, B., Lenaerts, J. T. M., Dattler, M., Keenan, E., and Wever, N. (2022): Predicting Antarctic net snow accumulation at the kilometer scale and its impact on observed height changes. Geophys. Res. Lett., 49, e2022GL099330, doi: 10.1029/2022GL099330.
  • Ryan, J.C., Smith, L.C., Cooley, S.W. Pearson, B., Wever, N., Keenan, E., and Lenaerts, J. T. M. (2022): Decreasing surface albedo signifies a growing importance of clouds for Greenland Ice Sheet meltwater production. Nat. Commun. 13, 4205, doi: 10.1038/s41467-022-31434-w.
  • Michel, A., Schaefli, B., Wever, N., Zekollari, H., Lehning, M., and Huwald, H. (2022): Future water temperature of rivers in Switzerland under climate change investigated with physics-based models, Hydrol. Earth Syst. Sci., 26, 1063–1087, doi: 10.5194/hess-26-1063-2022.
  • Dunmire, D., Banwell, A. F., Wever, N., Lenaerts, J. T. M., and Datta, R. T. (2021): Contrasting regional variability of buried meltwater extent over 2 years across the Greenland Ice Sheet, The Cryosphere, 15, 2983–3005, doi: 10.5194/tc-15-2983-2021.
  • Keenan, E., Wever, N., Dattler, M., Lenaerts, J. T. M., Medley, B., Kuipers Munneke, P., and Reijmer, C. (2021): Physics-based SNOWPACK model improves representation of near-surface Antarctic snow and firn density, Cryosphere, 15, 1065–1085, doi: 10.5194/tc-15-1065-2021.
  • van Wessem, J. M., Steger, C. R., Wever, N., and van den Broeke, M. R. (2021): An exploratory modelling study of perennial firn aquifers in the Antarctic Peninsula for the period 1979–2016, Cryosphere, 15, 695–714, doi: 10.5194/tc-15-695-2021.
  • Menard, C. B., Essery, R., Krinner, G., Arduini, G., Bartlett, P., Boone, A., Brutel-Vuilmet, C., Burke, E., Cuntz, M., Dai, Y., Decharme, B., Dutra, E., Fang, X., Fierz, C., Gusev, Y., Hagemann, S., Haverd, V., Kim, H., Lafaysse, M., Marke, T., Nasonova, O., Nitta, T., Niwano, M., Pomeroy, J., Schädler, G., Semenov, V. A., Smirnova, T., Strasser, U., Swenson, S., Turkov, D., Wever, N., & Yuan, H. (2021). Scientific and Human Errors in a Snow Model Intercomparison, Bulletin of the American Meteorological Society, 102(1), E61-E79, doi: 10.1175/BAMS-D-19-0329.1.
  • Essery, R., Kim, H., Wang, L., Bartlett, P., Boone, A., Brutel-Vuilmet, C., Burke, E., Cuntz, M., Decharme, B., Dutra, E., Fang, X., Gusev, Y., Hagemann, S., Haverd, V., Kontu, A., Krinner, G., Lafaysse, M., Lejeune, Y., Marke, T., Marks, D., Marty, C., Menard, C. B., Nasonova, O., Nitta, T., Pomeroy, J., Schädler, G., Semenov, V., Smirnova, T., Swenson, S., Turkov, D., Wever, N., and Yuan, H. (2020): Snow cover duration trends observed at sites and predicted by multiple models, Cryosphere, 14, 4687–4698, doi: 10.5194/tc-14-4687-2020.
  • Kausch, T., Lhermitte, S., Lenaerts, J. T. M., Wever, N., Inoue, M., Pattyn, F., Sun, S., Wauthy, S., Tison, J.-L., and van de Berg, W. J. (2020): Impact of coastal East Antarctic ice rises on surface mass balance: insights from observations and modeling, Cryosphere, 14, 3367–3380, doi: 10.5194/tc-14-3367-2020.
  • Quéno, L., Fierz, C., van Herwijnen, A., Longridge, D., and Wever, N. (2020): Deep ice layer formation in an alpine snowpack: monitoring and modeling, Cryosphere, 14, 3449–3464, doi: 10.5194/tc-14-3449-2020.
  • Jafari, M, Gouttevin, I, Couttet, M, Wever, N, Michel, A, Sharma, V, Rossmann, L, Maass, N, Nicolaus, M and Lehning, M (2020): The Impact of Diffusive Water Vapor Transport on Snow Profiles in Deep and Shallow Snow Covers and on Sea Ice, Front. Earth Sci. 8:249. doi: 10.3389/feart.2020.00249.
  • Dunmire, D., Lenaerts, J. T. M., Banwell, A. F., Wever, N., Shragge, J., Lhermitte, S., Drews, R., Pattyn, F., Willis, I. C., Miller, J., and Keenan, E. (2020): Observations of subsurface lake drainage on the Antarctic Ice Sheet, Geophys. Res. Lett., 47, e2020GL087970, https://doi.org/10.1029/2020GL087970.
  • Izeboud, S. Lhermitte, K. van Tricht, J. T. M. Lenaerts, N. van Lipzig and N. Wever (2020): Spatiotemporal variability of cloud radiative effects on the Greenland Ice Sheet surface mass balance, Geophys. Res. Lett., 47, e2020GL087315, https://doi.org/10.1029/2020GL087315.
  • Hirashima, H., Avanzi, F., and Wever, N. (2019): Wet‐snow metamorphism drives the transition from preferential to matrix flow in snow. Geophys. Res. Lett., 46, 14548–14557, https://doi.org/10.1029/2019GL084152.
  • Ménard, C. B., Essery, R., Barr, A., Bartlett, P., Derry, J., Dumont, M., Fierz, C., Kim, H., Kontu, A., Lejeune, Y., Marks, D., Niwano, M., Raleigh, M., Wang, L., and Wever, N. (2019): Meteorological and evaluation datasets for snow modelling at 10 reference sites: description of in situ and bias-corrected reanalysis data, Earth Syst. Sci. Data, 11, 865-880, https://doi.org/10.5194/essd-11-865-2019.
  • Datta, R. T., Tedesco, M., Fettweis, X., Agosta, C., Lhermitte, S., Lenaerts, J. T. M., and Wever, N. (2019): The effect of Foehn‐induced surface melt on firn evolution over the northeast Antarctic peninsula. Geophys. Res. Lett., 46, 3822-3831, https://doi.org/10.1029/2018GL080845.
  • Krinner, G., Derksen, C., Essery, R., Flanner, M., Hagemann, S., Clark, M., Hall, A., Rott, H., Brutel-Vuilmet, C., Kim, H., Ménard, C. B., Mudryk, L., Thackeray, C., Wang, L., Arduini, G., Balsamo, G., Bartlett, P., Boike, J., Boone, A., Chéruy, F., Colin, J., Cuntz, M., Dai, Y., Decharme, B., Derry, J., Ducharne, A., Dutra, E., Fang, X., Fierz, C., Ghattas, J., Gusev, Y., Haverd, V., Kontu, A., Lafaysse, M., Law, R., Lawrence, D., Li, W., Marke, T., Marks, D., Ménégoz, M., Nasonova, O., Nitta, T., Niwano, M., Pomeroy, J., Raleigh, M. S., Schaedler, G., Semenov, V., Smirnova, T. G., Stacke, T., Strasser, U., Svenson, S., Turkov, D., Wang, T., Wever, N., Yuan, H., Zhou, W., and Zhu, D. (2018): ESM-SnowMIP: assessing snow models and quantifying snow-related climate feedbacks, Geosci. Model Dev., 11, 5027-5049, https://doi.org/10.5194/gmd-11-5027-2018.
  • Sommer, C. G., Wever, N., Fierz, C., and Lehning, M. (2018): Investigation of a wind-packing event in Queen Maud Land, Antarctica, The Cryosphere, 12, 2923-2939, https://doi.org/10.5194/tc-12-2923-2018.
  • Vera Valero, C., Wever, N., Christen, M., and Bartelt, P. (2018): Modeling the influence of snow cover temperature and water content on wet-snow avalanche runout, Nat. Hazards Earth Syst. Sci., 18, 869-887, https://doi.org/10.5194/nhess-18-869-2018.
  • Haberkorn, A., Wever, N., Hoelzle, M., Phillips, M., Kenner, R., Bavay, M., and Lehning, M. (2017): Distributed snow and rock temperature modelling in steep rock walls using Alpine3D, The Cryosphere, 11, 585-607, https://doi.org/10.5194/tc-11-585-2017.
  • Würzer, S., Wever, N., Juras, R., Lehning, M., and Jonas, T. (2017): Modelling liquid water transport in snow under rain-on-snow conditions – considering preferential flow, Hydrol. Earth Syst. Sci., 21, 1741-1756, https://doi.org/10.5194/hess-21-1741-2017.
  • Gaume, J., van Herwijnen, A., Chambon, G., Wever, N., and Schweizer, J. (2017): Snow fracture in relation to slab avalanche release: critical state for the onset of crack propagation, The Cryosphere, 11, 217-228, https://doi.org/10.5194/tc-11-217-2017.
  • Steger C. R., Reijmer C. H., van den Broeke M. R., Wever N., Forster R. R., Koenig L. S., Kuipers Munneke P., Lehning M., Lhermitte S., Ligtenberg S. R. M., Miège C. and Noël B. P. Y. (2017): Firn Meltwater Retention on the Greenland Ice Sheet: A Model Comparison. Front. Earth Sci. 5:3. https://doi.org/10.3389/feart.2017.00003.
  • Vögeli C., Lehning M., Wever N. and Bavay M. (2016): Scaling Precipitation Input to Spatially Distributed Hydrological Models by Measured Snow Distribution. Front. Earth Sci. 4:108. https://doi.org/10.3389/feart.2016.00108.
  • Vera Valero, C., Wever, N., Bühler, Y., Stoffel, L., Margreth, S., and Bartelt, P. (2016): Modelling wet snow avalanche runout to assess road safety at a high-altitude mine in the central Andes, Nat. Hazards Earth Syst. Sci., 16, 2303-2323, https://doi.org/10.5194/nhess-16-2303-2016.
  • Würzer, S., T. Jonas, N. Wever, and M. Lehning (2016): Influence of initial snowpack properties on runoff formation during rain-on-snow events, J. Hydrometeorol., https://doi.org/10.1175/JHM-D-15-0181.1
  • Heilig, A., C. Mitterer, L. Schmid, N. Wever, J. Schweizer, H.-P. Marshall, and O. Eisen (2015): Seasonal and diurnal cycles of liquid water in snow – Measurements and modeling, J. Geophys. Res. Earth Surf., 120 (10), 2139-2154, https://doi.org/10.1002/2015JF003593.
  • Magnusson, J., N. Wever, R. Essery, N. Helbig, A. Winstral, and T. Jonas (2015): Evaluating snow models with varying process representations for hydrological applications, Water Resour. Res., 51 (4), 2707–2723, https://doi.org/10.1002/2014WR016498.
  • Caires S., H. de Waal, J. Groeneweg, G. Groen, N. Wever, C. Geerse, M. Bottema (2012): Assessing the uncertainties of using land-based wind observations for determining extreme open-water winds, J. Wind Eng. Ind. Aerodyn. 110, 70-85, https://doi.org/10.1016/j.jweia.2012.07.009.

Datasets:

Other Publications:

  • Hirashima, H., N. Wever, F. Avanzi, S. Yamaguchi and Y. Ishii (2018): Simulating liquid water infiltration - comparison between a three-dimensional water transport model and a dual-domain approach using SNOWPACK. Proceedings: International Snow Science Workshop Proceedings 2018, Innsbruck, Austria, 474-478, http://arc.lib.montana.edu/snow-science/item/2580 (pdf).
  • Vera, C., N. Wever, S. Langeland, and L. Øyvind (2018): Automatic Dynamic Avalanche Modeling - An example of its application in an operational setting in Norway. Proceedings: International Snow Science Workshop Proceedings 2018, Innsbruck, Austria, 746-750, http://arc.lib.montana.edu/snow-science/item/2639 (pdf).
  • Wever, N. and G. Groen (2009): Improving potential wind for extreme wind statistics, Scientific report, Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands (pdf).