Aniruddh Murali, University of Southern Denmark

Liquid Crystal Order of Cells near Corners

Anisotropically shaped cells tend to self-align, giving rise to domains of nematic ordering while experiencing splay and bend, and forming topological defects akin to those observed in 2D nematic liquid crystals. To elucidate the physical properties of this unique liquid crystal, the research explores the behavior of monolayers of cells in proximity to corners and sharp edges. Through in-vitro experiments, a distinct correlation between wedge angle and the nature of deformation in cell monolayers becomes apparent. Smaller wedge angles predominantly trigger splay deformation, whereas larger angles induce bend deformation. Notably, the angle at which splay and bend deformations are equally likely is determined by the ratio between splay and bend elastic constants and becomes thus an indirect measurement of the elastic anisotropy of the system. Furthermore, the splay and bend deformations under confinement are influenced by the adhesion strength of the cells with the substrate. This investigation offers valuable insights into the intricate interplay among cellular morphology, confining geometry, and adhesion properties, shedding light on the mechanics of cellular self-alignment and deformation.

Aniruddh Murali poster