Publications
Peer Reviewed Articles
For publications after 2017:
1Indicates student author in Musselman group
2Indicates other student or post-doctoral author
In Review | In Press
Hale, K., J. Meyer, J. Tarricone, C. Vuyovich, M. Mason, H.P. Marshall, K.N. Musselman, N.P. Molotch, R. Shah, S. Oveisgharan. What’s Next For Snow: Insights from the NASA Terrestrial Hydrology Program Community Snow Meeting. In Press, Earth’s Future.
Cheng, Y., A.J. Newman, N. Herman-Mercer, D. Blaskey1, P. Thomas2, and K.N. Musselman. Towards co-designed numerical modeling: Reflecting end-user priorities. In Review
Blaskey1, D. I. Racine, M. E. Harlan, Y. Cheng2, A. J. Newman, K. E. Lindenschmidt, M. N. Gooseff, and K.N. Musselman. Using Remote Sensing, Statistical, and Machine Learning Techniques to Assess Alaskan River Ice Phenology and Thickness. In Review.
Newman, A.J., Y. Cheng2, A. Craig, N. Herman-Mercer, D. Blaskey1, P. Thomas2, M.N. Gooseff, J.C. Koch, C. Brooks, E. Mutter, R. Toohey, M. Carey, and K.N. Musselman. Developing Actionable Regional Climate Models and Data for Communities and Decision-makers Across Alaska. In Review.
Schwebs2, L.J., A.D. Parsekian, T.J. Kelleners, M.S. Pleasants, N.A. Tarasewicz1, and Musselman, K.N.. Influence of coarse fragments on electrical resistivity saturation estimates. In Review.
Dixit2, A., Musselman K.N., S. Rahimi, N. Addor, J. Vano, and F. Lehner. Assessing the resolution-dependency of simulated snowpack trends in the Upper Colorado River Basin. In Review.
Published
2025
[46] Thomas2, P. A., D. Blaskey1, Y. Cheng2, M. P. Carey, H. K. Swanson, A. J. Newman, C. Brooks, N. M. Herman-Mercer, and Musselman, K.N. (2025). Warming Alaskan rivers affect first-year growth in critical northern food fishes. Scientific Reports, 15(1), p.28834.
[45] Bush2, S. A., Birch, A. L., Warix, S., Lininger, K. B., Musselman, K. N., & Barnard, H. R. (2025). Runoff composition is insensitive to summer rain contributions in a montane headwater stream. Journal of Hydrology: Regional Studies, 61, 102622.
[44] Blaskey1, D., Cheng2, Y., Newman, A. J., Koch, J. C., Gooseff, M. N., and Musselman, K. N. (2025). Alaskan Hydrology in Transition: Changing Precipitation and Evapotranspiration Patterns Are Projected to Reshape Seasonal Streamflow and Water Temperature by Midcentury (2035–64). Journal of Hydrometeorology, 26(5), 613-626.
[43] Harvey2, N., Burns, S.P., Musselman, K.N., Barnard, H.R., and Blanken, P.D., 2025. Testing Methods to Assess Snow Interception at a Continental Forested Site, Water Resources Research, 61(1), e2023WR036996.
[42] Cheng2, Y., Craig, A., Musselman, K.N., Bennett, A., Seefeldt, M.W., Hamman, J. and Newman, A.J., 2025. Coupled high-resolution land-atmosphere modeling for hydroclimate and terrestrial hydrology in Alaska and the Yukon River Basin (1990-2021). Journal of Geophysical Research: Atmospheres, 130(1), e2024JD041185.
2024
[41] Hale2, K.E., Musselman, K.N., N. Bjarke2, B. Livneh, E.S. Hinckley, and N.P. Molotch, 2024. Changes in snow water storage and hydrologic partitioning in an alpine catchment in the Colorado Front Range. Hydrological Processes, 38(7), e15206.
[40] Zlotnick2, O.B., Musselman, K.N. and Levy, O., 2024. Deforestation poses deleterious effects to tree-climbing species under climate change. Nature Climate Change, 14(3), 289-295.
[39] Scaff2, L., Krogh, S.A., Musselman, K.N., Harpold, A., Li, Y., Lillo‐Saavedra, M., Oyarzún, R. and Rasmussen, R., 2024. The impacts of changing Winter Warm Spells on snow ablation over Western North America. Water Resources Research, 60(5), p.e2023WR034492.
[38] Blaskey1, D., Gooseff, M.N., Cheng2, Y., Newman, A.J., Koch, J.C., and Musselman, K.N., 2024, A high-resolution, daily hindcast (1990-2021) of Alaskan river discharge and temperature from coupled and optimized physical models. Water Resources Research, 60(4), e2023WR036217.
2023
[37] Herman-Mercer, N.M., Andre, A., Buschman, V., Blaskey1, D., Brooks, C., Cheng2, Y., Combs, E., Cozzetto, K., Fitka, S., Koch, J., Lawlor, A., Moses, E., Murray E., Mutter, E., Newman, A.J., Prince, C., Salmon, P., Tlen, J., Toohey, R., Williams, M., and Musselman, K.N., (2023), The Arctic Rivers Project: Using an Equitable Co‐Production Framework for Integrating Meaningful Community Engagement and Science to Understand Climate Impacts. Community Science, 2(4), p.e2022CSJ000024.
[36] Yang2, K., Rittger, K., Musselman, K.N., Bair, E. H., Dozier, J., Margulis, S. A., Painter, T.H., and Molotch, N.P. (2023). Intercomparison of snow water equivalent products in the Sierra Nevada California using airborne snow observatory data and ground observations. Frontiers in Earth Science, 11, 1106621.
[35] Hale2, K.E., Jennings, K.S., Musselman, K.N., Livneh, B. and Molotch, N.P., (2023). Recent decreases in snow water storage in western North America. Communications Earth & Environment, 4(1).
[34] Blaskey1, D., Koch, J. C., Gooseff, M., Newman, A. J., Cheng2, Y., O'Donnell, J., & Musselman, K.N. (2023). Increasing Alaskan river discharge during the cold season is driven by recent warming. Environmental Research Letters. 10.1088/1748-9326/acb661
[33] Cheng2, Y., Musselman, K.N., Swenson, S., Lawrence, D., Hamman, J., Dagon, K., Kennedy, D. and Newman, A., (2023) Moving land models towards more actionable science: A novel application of the Community Terrestrial Systems Model across Alaska and the Yukon River Basin. Water Resources Research, p.e2022WR032204.
2022
[32] Seybold, E.C., Dwivedi2, R., Musselman, K.N., Kincaid, D.W., Schroth, A.W., Classen, A.T., Perdrial, J.N. and Adair, E.C., (2022). Winter runoff events pose an unquantified continental-scale risk of high wintertime nutrient export. Environmental Research Letters, 17(10), p.104044.
[31] Yang2, K., Musselman, K.N., Rittger, K., Margulis, S. A., Painter, T. H., & Molotch, N. P. (2022). Combining ground-based and remotely sensed snow data in a linear regression model for real-time estimation of snow water equivalent. Advances in Water Resources, 160, 104075.
[30] Wieder, W.R., Kennedy, D., Lehner, F., Musselman, K.N., Rodgers, K.B., Rosenbloom, N., Simpson, I.R. and Yamaguchi, R., (2022). Pervasive alterations to snow-dominated ecosystem functions under climate change. Proceedings of the National Academy of Sciences, 119(30), p.e2202393119.
[29] Webb2, R. W., K.N. Musselman, S. Ciafone, K.E. Hale, & N.P. Molotch (2022). Extending the vadose zone: Characterizing the role of snow for liquid water storage and transmission in streamflow generation. Hydrological Processes, 36(3), e14541.
[28] Hale2, K., A. Wlostowski2, A.M. Badger, K.N. Musselman, B. Livneh, and N.P. Molotch, (2022). Modeling streamflow sensitivity to climate warming and surface water inputs in a montane catchment. Journal of Hydrology: Regional Studies, 39, p.100976.
2021
[27] Musselman, K.N., N. Addor, J.A. Vano, and N.P. Molotch, (2021), Winter melt trends portend widespread declines in snow water resources. Nature Climate Change 11, 418–424.
[26] Ikeda, K., R. Rasmussen, C. Liu, A. Newman, F. Chen, M. Barlage, E. Gutmann, J. Dudhia, A. Dai, C. Luce and K.N. Musselman (2021). Snowfall and snowpack in the Western US as captured by convection permitting climate simulations: current climate and pseudo global warming future climate. Climate Dynamics, pp.1-25.
2020
[25] Mendoza, P.A., T.E. Shaw, J. McPhee, K.N. Musselman, J.R. Revuelto, and S. MacDonell (2020), Seasonal and annual variability of snow depth fractal behavior in a sub-alpine catchment. Water Resources Research. 56(7), e2020WR027343
[24] Uecher2, T.M., S.D. Kaspari, K.N. Musselman and S.M. Skiles (2020), The post-wildfire impact of burn severity and age on black carbon snow deposition and implications for snow water resources, Cascade Range, Washington, USA. Journal of Hydrometeorology. 21(8), 1777-1792.
[23] Henn2, B., K.N. Musselman, L. Lestak, F.M. Ralph, and N.P. Molotch (2020), Extreme runoff generation from atmospheric river driven snowmelt during the 2017 Oroville Dam spillways incident. Geophysical Research Letters,47(14).
[22] Mendoza, P.A., K.N. Musselman, J.S. Deems, J.R. Revuelto, I. Lopez-Moreno, and J. McPhee (2020), Seasonal and annual variability of snow depth fractal behavior in a sub-alpine catchment. Water Resources Research, 55(7).
[21] Girotto, M., Musselman, K.N., and Essery, R.L. (2020), Data Assimilation Improves Estimates of Climate-Sensitive Seasonal Snow. Current Climate Change Reports, 6, 81–94.
2018
[20] Musselman, K.N., F. Lehner, K. Ikeda, M.P. Clark, A.F. Prein, C. Liu, M. Barlage and R. Rasmussen (2018), Projected increases and shifts in rain-on-snow flood risk over western North America. Nature Climate Change, 8, 808-812.
[19] Isabelle2, P.E., D.F. Nadeau, M.H. Asselin, R. Harvey, K.N. Musselman, A.N. Rousseau, F. Anctil (2018), Solar radiation transmittance of a boreal balsam fir canopy: Spatiotemporal variability and impacts on growing season hydrology, Agricultural and Forest Meteorology, 263, 1-14.
2017
[18] Musselman, K.N., M. P. Clark, C. Liu, K. Ikeda and R. Rasmussen (2017), Slower snowmelt in a warmer world. Nature Climate Change, 7(3), 214-219.
[17] Musselman, K.N., N.P. Molotch, and S.A. Margulis, Snowmelt response to simulated warming across a large elevation gradient, southern Sierra Nevada, California. (2017) The Cryosphere, 11(6) 2847-2866.
[16] López-Moreno, I., S. Gascoin, J. Herrero, E. Spoles, M. Pons, E. Alonso, J. Sickman, K.N. Musselman, A. Boudhar, L. Hanich, N. Molotch, J. Pomeroy (2017), Different sensitivities of snowpack to warming in Mediterranean climate mountain areas. Environmental Research Letters, 12(7), 074006.
[15] Musselman, K.N. and J.W. Pomeroy (2017), Estimation of needleleaf canopy and trunk temperatures and longwave contribution to melting snow. Journal of Hydrometeorology. 18, 555-572.
2015
[14] Musselman, K.N., J.W. Pomeroy, R. Essery, and N. Leroux (2015), Impact of windflow calculations on simulations of alpine snow accumulation, redistribution and ablation. Hydrological Processes, 29(18), 3983-3999.
[13] Musselman, K.N., J.W. Pomeroy, and T.E. Link (2015), Variability in shortwave irradiance caused by forest gaps: Measurements, modelling, and implications for snow energetics. Agricultural and Forest Meteorology, 207, 69:82.
[12] Harpold, A.A., J.A. Marshall, S.W. Lyon, T.B. Barnhart, B. Fisher, M. Donovan, K.M. Brubaker, C.J. Crosby, N.F. Glenn, C.L. Glennie, P.B. Kirchner, N. Lam, K.D. Mankoff, J.L. McCreight, N.P. Molotch, K.N. Musselman, J. Pelletier, T. Russo, H. Sangireddy, Y. Sjöberg, T. Swetnam, and N. West (2015), Laser Vision: LiDAR as a Transformative Tool to Advance Critical Zone Science. Hydrology and Earth System Sciences. 19, 2881–2897.
[11] Meromy, L., N.P. Molotch, M. Williams, K.N. Musselman, and L. Kueppers (2015), Snowpack-climate manipulation using infrared heaters in subalpine forests of the Southern Rocky Mountains, USA. Agricultural and Forest Meteorology, 203, 142-157.
[10] Harpold, A.A., N.P. Molotch, K.N. Musselman, R.C. Bales, P.B. Kirchner, M. Litvak, and P.D. Brooks (2015), Snowmelt infiltration in mixed conifer subalpine forests. Hydrological Processes, 29(12), 2782-2798.
2014
[9] Harpold, A.A., Q.Guo., N. Molotch, P.D. Brooks, R. Bales, J.C. Fernandez- Diaz, K.N. Musselman, T.L Swetnam, P. Kirchner, M. Meadows, J. Flanagan, and R. Lucas (2014), LiDAR-derived snowpack datasets from mixed conifer forests across the Western U.S., Water Resources Research. 50(3), 2749-2755.
[8] Perrot, D.O., N.P. Molotch, K.N. Musselman, and E.T. Pugh (2014), Modeling the effects of the Mountain Pine Beetle on snowmelt rates in a subalpine forest. Ecohydrology. 7(2), 226-241.
2013
[7] Musselman, K.N., S.A. Margulis, and N.P. Molotch (2013), Estimation of solar direct beam transmittance of conifer canopies from airborne LiDAR. Remote Sensing of Env. 136, 402-415.
2012
[6] Huang, C., S.A. Margulis, M.T. Durand, and K.N. Musselman (2012), Assessment of snow grain-size model and stratigraphy representation impacts on snow radiance assimilation: Forward Modeling Evaluation, IEEE Transactions on Geoscience and Remote Sensing. 50(11) 4551 – 4564.
[5] López-Moreno, J.I., S.R. Fassnacht, J.T. Heath, K.N. Musselman, J. Revuelto, J. Latron, E. Morán-Tejeda, T. Jonas (2012), Small scale spatial variability of snow density and depth over complex alpine terrain: Implications for estimating snow water equivalent, Advances in Water Research., 55, 40-52.
[4] Musselman, K.N., N.P. Molotch, S.A. Margulis, M. Lehning, and D. Gustafsson (2012), Improved snowmelt simulations with a canopy model forced with photo-derived direct beam canopy transmissivity, Water Resources Research, 48(10).
[3] Musselman, K.N., N.P. Molotch, S.A. Margulis, P.B. Kirchner, and R.C. Bales (2012), Influence of canopy structure and direct beam solar irradiance on snowmelt rates in a mixed conifer forest. Agricultural and Forest Meteorology, 161, 46 – 56.
2009
[2] Molotch, N.P., P.D. Brooks, S.P. Burns, M. Litvak, R.K. Monson, J.R. McConnell, and K.N. Musselman (2009), Ecohydrological controls on snowmelt partitioning in mixed-conifer sub-alpine forests, Ecohydrology, 2, 129–142.
2008
[1] Musselman, K.N., N.P. Molotch, and P.D. Brooks, (2008), Effects of vegetation on snow accumulation and ablation in a mid-latitude sub-alpine forest, Hydrological Processes, 22(15), 2767-2776.
PUBLISHED DATA SETS
Koch, J.C., E. Mutter, K.N. Musselman, K.N., and M.R. Hendon, 2024, Continuous temperature and specific conductance from the Yukon River and arctic Rivers in Alaska: U.S. Geological Survey data release, https://doi.org/10.5066/P13IAWWA
Blaskey, D., K.N. Musselman, A.J. Newman, and Y. Cheng. (2024). Alaskan river discharge, temperature, and climate data for a climate reference (1990-2021) and at mid-century (2034-2065). Arctic Data Center. https://doi:10.18739/A25M62870