Publications

Dr. Xuedong Liu’s laboratory has a long record of foundational work on how cells interpret signals and regulate cell fate decisions, including influential contributions to TGF-β/SMAD signaling, ubiquitin-mediated control of the cell cycle, and quantitative approaches to studying cellular dynamics. Building on this mechanistic foundation, the lab’s current research focuses on extracellular vesicle (EV) biology in disease, EV-based delivery of biological payloads, cell-in-cell structures, and cancer biology. Our prolific publication history below reflects both the lab’s historical contributions and its evolving emphasis on understanding, and engineering, cellular processes with therapeutic potential.

 

2021 - 2025

Zhang, X., Xu, Q., Liu, Z., Ball, J.B., Black, B., Ganguly, S., Harland, M.E., Blackman, S., Bryant, S., Anseth, K., Watkins, L, and Liu, X. (2024). Chandipura viral glycoprotein (CNV-G) promotes Gectosome generation and enables delivery of intracellular therapeutics. Mol Ther, S1525-0016(24)00298-3. https://doi.org/10.1016/j.ymthe.2024.04.034.

Ramirez, A.T., Liu, Z., Xu, Q., Nowosadtko, S., and Liu, X. (2024). Cloflucarban Illuminates Specificity and Context-Dependent Activation of the PINK1-Parkin Pathway by Mitochondrial Complex Inhibition. Biomolecules 14, 248. https://doi.org/10.3390/biom14030248.

Li, Y., Deng, D., Höfer, C.T., Kim, J., Do Heo, W., Xu, Q., Liu, X., and Zi, Z. (2024). Liebig’s law of the minimum in the TGF-β/SMAD pathway. PLoS Comput Biol 20, e1012072. https://doi.org/10.1371/journal.pcbi.1012072.

Xu, Q., Zhang, X., Sanchez, G.J., Ramirez, A.T., and Liu, X. (2022). Cell type-specific intercellular gene transfer in mammalian cells via transient cell entrapment. Cell Discov 8, 20. https://doi.org/10.1038/s41421-021-00359-x.

Roy, S., Curry, S.D., Bibbey, M.G., Chapnick, D.A., Liu, X., Goodwin, A.P., and Cha, J.N. (2022). Effect of covalent photoconjugation of affibodies to epidermal growth factor receptor (EGFR) on cellular quiescence. Biotechnol Bioeng 119, 187–198. https://doi.org/10.1002/bit.27964.

Ramirez, A., Old, W., Selwood, D.L., and Liu, X. (2022). Cannabidiol activates PINK1-Parkin-dependent mitophagy and mitochondrial-derived vesicles. Eur J Cell Biol 101, 151185. https://doi.org/10.1016/j.ejcb.2021.151185.

Messenger, D.A., Wheeler, G.E., Liu, X., and Bortz, D.M. (2022). Learning anisotropic interaction rules from individual trajectories in a heterogeneous cellular population. J. R. Soc. Interface. 19, 20220412. https://doi.org/10.1098/rsif.2022.0412.

Liu, Z., Ramirez, A., and Liu, X. (2022). Live Cell Imaging of Spatiotemporal Ca2+ Fluctuation Responses to Anticancer Drugs. Methods Mol Biol 2488, 227–236. https://doi.org/10.1007/978-1-0716-2277-3_15.

Guard, S.E., Chapnick, D.A., Poss, Z.C., Ebmeier, C.C., Jacobsen, J., Nemkov, T., Ball, K.A., Webb, K.J., Simpson, H.L., Coleman, S., et al. (2022). Multiomic Analysis Reveals Disruption of Cholesterol Homeostasis by Cannabidiol in Human Cell Lines. Mol Cell Proteomics 21, 100262. https://doi.org/10.1016/j.mcpro.2022.100262.

Diamond, J.R., Pitts, T.M., Ungermannova, D., Nasveschuk, C.G., Zhang, G., Phillips, A.J., Bagby, S.M., Pafford, J., Yacob, B.W., Newton, T.P., et al. (2022). Preclinical Development of the Class-I-Selective Histone Deacetylase Inhibitor OKI-179 for the Treatment of Solid Tumors. Mol Cancer Ther 21, 397–406. https://doi.org/10.1158/1535-7163.MCT-21-0455.

Wheeler, G.E., Purkayastha, A., Bunker, E.N., Bortz, D.M., and Liu, X. (2021). Protocol for Analysis and Consolidation of TrackMate Outputs for Measuring Two-Dimensional Cell Motility using Nuclear Tracking. J Vis Exp. https://doi.org/10.3791/62885.

Wang, L., Sheng, W., Tan, Z., Ren, Q., Wang, R., Stoika, R., Liu, X., Liu, K., Shang, X., and Jin, M. (2021). Treatment of Parkinson’s disease in Zebrafish model with a berberine derivative capable of crossing blood brain barrier, targeting mitochondria, and convenient for bioimaging experiments. Comp Biochem Physiol C Toxicol Pharmacol 249, 109151. https://doi.org/10.1016/j.cbpc.2021.109151.

Klionsky, D.J., Abdel-Aziz, A.K., Abdelfatah, S., Abdellatif, M., Abdoli, A., Abel, S., Abeliovich, H., Abildgaard, M.H., Abudu, Y.P., Acevedo-Arozena, A., et al. (2021). Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1. Autophagy 17, 1–382. https://doi.org/10.1080/15548627.2020.1797280.

Bunker, E.N., Wheeler, G.E., Chapnick, D.A., and Liu, X. (2021). Suppression of α-catenin and adherens junctions enhances epithelial cell proliferation and motility via TACE-mediated TGF-α autocrine/paracrine signaling. Mol Biol Cell 32, 348–361. https://doi.org/10.1091/mbc.E19-08-0474.

 

2016 - 2020

Zhang, X., Xu, Q., Zi, Z., Liu, Z., Wan, C., Crisman, L., Shen, J., and Liu, X. (2020). Programmable Extracellular Vesicles for Macromolecule Delivery and Genome Modifications. Dev Cell 55, 784-801.e9. https://doi.org/10.1016/j.devcel.2020.11.007.

Roy, S., Brasino, M., Beirne, J.M., Harguindey, A., Chapnick, D.A., Liu, X., Cha, J.N., and Goodwin, A.P. (2020). Enzymes Photo-Cross-Linked to Live Cell Receptors Retain Activity and EGFR Inhibition after Both Internalization and Recycling. Bioconjug Chem 31, 104–112. https://doi.org/10.1021/acs.bioconjchem.9b00781.

Zhang, C., Wang, R., Liu, Z., Bunker, E., Lee, S., Giuntini, M., Chapnick, D., and Liu, X. (2019). The plant triterpenoid celastrol blocks PINK1-dependent mitophagy by disrupting PINK1’s association with the mitochondrial protein TOM20. J Biol Chem 294, 7472–7487. https://doi.org/10.1074/jbc.RA118.006506.

Wang, X., Waschke, B.C., Woolaver, R.A., Chen, Z., Zhang, G., Piscopio, A.D., Liu, X., and Wang, J.H. (2019). Histone Deacetylase Inhibition Sensitizes PD1 Blockade-Resistant B-cell Lymphomas. Cancer Immunol Res 7, 1318–1331. https://doi.org/10.1158/2326-6066.CIR-18-0875.

Chapnick, D.A., Bunker, E., Liu, X., and Old, W.M. (2019). Temporal Metabolite, Ion, and Enzyme Activity Profiling Using Fluorescence Microscopy and Genetically Encoded Biosensors. Methods Mol. Biol. 1978, 343–353. https://doi.org/10.1007/978-1-4939-9236-2_21.

Sanchez, G.J., Richmond, P.A., Bunker, E.N., Karman, S.S., Azofeifa, J., Garnett, A.T., Xu, Q., Wheeler, G.E., Toomey, C.M., Zhang, Q., et al. (2018). Genome-wide dose-dependent inhibition of histone deacetylases studies reveal their roles in enhancer remodeling and suppression of oncogenic super-enhancers. Nucleic Acids Res. 46, 1756–1776. https://doi.org/10.1093/nar/gkx1225.

Li, Y., Jin, K., Bunker, E., Zhang, X., Luo, X., Liu, X., and Hao, B. (2018). Structural basis of the phosphorylation-independent recognition of cyclin D1 by the SCF FBXO31 ubiquitin ligase. Proc. Natl. Acad. Sci. 115, 319–324. https://doi.org/10.1073/pnas.1708677115.

Li, Y., Lee, M., Kim, N., Wu, G., Deng, D., Kim, J.M., Liu, X., Heo, W.D., and Zi, Z. (2018). Spatiotemporal Control of TGF-β Signaling with Light. ACS Synth. Biol. 7, 443–451. https://doi.org/10.1021/acssynbio.7b00225.

Grim, J.C., Brown, T.E., Aguado, B.A., Chapnick, D.A., Viert, A.L., Liu, X., and Anseth, K.S. (2018). A Reversible and Repeatable Thiol-Ene Bioconjugation for Dynamic Patterning of Signaling Proteins in Hydrogels. ACS Cent Sci 4, 909–916. https://doi.org/10.1021/acscentsci.8b00325.

Zhang, C., Liu, Z., Bunker, E., Ramirez, A., Lee, S., Peng, Y., Tan, A.C., Eckhardt, S.G., Chapnick, D.A., and Liu, X. (2017). Sorafenib targets the mitochondrial electron transport chain complexes and ATP synthase to activate the PINK1-Parkin pathway and modulate cellular drug response. J. Biol. Chem. 292, 15105–15120. https://doi.org/10.1074/jbc.M117.783175.

McQuate, S.E., Young, A.M., Silva-Herzog, E., Bunker, E., Hernandez, M., de Chaumont, F., Liu, X., Detweiler, C.S., and Palmer, A.E. (2017). Long-term live-cell imaging reveals new roles for Salmonella effector proteins SseG and SteA. Cell. Microbiol. 19. https://doi.org/10.1111/cmi.12641.

Zhang, X., Ling, Y., Guo, Y., Bai, Y., Shi, X., Gong, F., Tan, P., Zhang, Y., Wei, C., He, X., et al. (2016). Mps1 kinase regulates tumor cell viability via its novel role in mitochondria. Cell Death Dis. 7, e2292–e2292. https://doi.org/10.1038/cddis.2016.193.

Nardini, J.T., Chapnick, D.A., Liu, X., and Bortz, D.M. (2016). Modeling keratinocyte wound healing dynamics: Cell-cell adhesion promotes sustained collective migration. J. Theor. Biol. 400, 103–117. https://doi.org/10.1016/j.jtbi.2016.04.015.

Feng, Z., Zi, Z., and Liu, X. (2016). Measuring TGF-β Ligand Dynamics in Culture Medium. Methods Mol Biol 1344, 379–389.https://doi.org/10.1007/978-1-4939-2966-5_25.

Bennett, C.G., Riemondy, K., Chapnick, D.A., Bunker, E., Liu, X., Kuersten, S., and Yi, R. (2016). Genome-wide analysis of Musashi-2 targets reveals novel functions in governing epithelial cell migration. Nucleic Acids Res. 44, 3788–3800. https://doi.org/10.1093/nar/gkw207.

 

2011-2015

Zhang, C., Lee, S., Peng, Y., Bunker, E., Shen, C., Giaime, E., Shen, J., Shen, J., Zhou, Z., and Liu, X. (2015). A chemical genetic approach to probe the function of PINK1 in regulating mitochondrial dynamics. Cell Res. 25, 394–397. https://doi.org/10.1038/cr.2014.159.

Lee, S., Zhang, C., and Liu, X. (2015). Role of glucose metabolism and ATP in maintaining PINK1 levels during Parkin-mediated mitochondrial damage responses. J. Biol. Chem. 290, 904–917. https://doi.org/10.1074/jbc.M114.606798.

Davis, E.M., Kim, J., Menasche, B.L., Sheppard, J., Liu, X., Tan, A.C., and Shen, J. (2015). Comparative Haploid Genetic Screens Reveal Divergent Pathways in the Biogenesis and Trafficking of Glycophosphatidylinositol-Anchored Proteins. Cell Rep. 11, 1727–1736. https://doi.org/10.1016/j.celrep.2015.05.026.

Chapnick, D.A., Bunker, E., and Liu, X. (2015). A biosensor for the activity of the “sheddase” TACE (ADAM17) reveals novel and cell type-specific mechanisms of TACE activation. Sci Signal 8, rs1. https://doi.org/10.1126/scisignal.2005680.

Zhang, C., Lee, S., Peng, Y., Bunker, E., Giaime, E., Shen, J., Zhou, Z., and Liu, X. (2014). PINK1 triggers autocatalytic activation of parkin to specify cell fate decisions. Curr. Biol. 24, 1854–1865. https://doi.org/10.1016/j.cub.2014.07.014.

Ling, Y., Zhang, X., Bai, Y., Li, P., Wei, C., Song, T., Zheng, Z., Guan, K., Zhang, Y., Zhang, B., et al. (2014). Overexpression of Mps1 in colon cancer cells attenuates the spindle assembly checkpoint and increases aneuploidy. Biochem. Biophys. Res. Commun. 450. https://doi.org/10.1016/j.bbrc.2014.07.071.

Chapnick, D.A., and Liu, X. (2014). Leader cell positioning drives wound-directed collective migration in TGFβ-stimulated epithelial sheets. Mol. Biol. Cell 25, 1586–1593. https://doi.org/10.1091/mbc.E14-01-0697.

Zhang, X., Ling, Y., Wang, W., Zhang, Y., Ma, Q., Tan, P., Song, T., Wei, C., Li, P., Liu, X., et al. (2013). UV-C irradiation delays mitotic progression by recruiting Mps1 to kinetochores. Cell Cycle 12, 1292–1302. https://doi.org/10.4161/cc.24403.

Ungermannova, D., Lee, J., Zhang, G., Dallmann, H.G., McHenry, C.S., and Liu, X. (2013). High-throughput screening alphascreen assay for identification of small-molecule inhibitors of ubiquitin E3 ligase SCFSkp2-Cks1. J. Biomol. Screen. 18, 910–920. https://doi.org/10.1177/1087057113485789.

Lee, J., Sammond, D.W., Fiorini, Z., Saludes, J.P., Resch, M.G., Hao, B., Wang, W., Yin, H., and Liu, X. (2013). Computationally Designed Peptide Inhibitors of the Ubiquitin E3 Ligase SCFFbx4. ChemBioChem 14, 445–451. https://doi.org/10.1002/cbic.201200777.

Chapnick, D.A., Jacobsen, J., and Liu, X. (2013). The development of a novel high throughput computational tool for studying individual and collective cellular migration. PLoS One 8. https://doi.org/10.1371/journal.pone.0082444.

Zi, Z., Chapnick, D.A., and Liu, X. (2012). Dynamics of TGF-β/Smad signaling. FEBS Lett 586, 1921–1928. https://doi.org/10.1016/j.febslet.2012.03.063.

Ungermannova, D., Parker, S.J., Nasveschuk, C.G., Chapnick, D.A., Phillips, A.J., Kuchta, R.D., and Liu, X. (2012). Identification and mechanistic studies of a novel ubiquitin E1 inhibitor. J. Biomol. Screen. 17, 421–434. https://doi.org/10.1177/1087057111433843.

Ungermannova, D., Parker, S.J., Nasveschuk, C.G., Wang, W., Quade, B., Zhang, G., Kuchta, R.D., Phillips, A.J., and Liu, X. (2012). Largazole and its derivatives selectively inhibit ubiquitin activating enzyme (E1). PLoS One 7. https://doi.org/10.1371/journal.pone.0029208.

Liu, X., and Winey, M. (2012). The MPS1 Family of Protein Kinases. Annu. Rev. Biochem. 81, 561–585. https://doi.org/10.1146/annurev-biochem-061611-090435.

Anderson, G.A., Liu, X., and Ferrell, J.E. (2012). Bistability in one equation or fewer. Methods Mol Biol 880, 53–67. https://doi.org/10.1007/978-1-61779-833-7_4.

Zi, Z., Feng, Z., Chapnick, D.A., Dahl, M., Deng, D., Klipp, E., Moustakas, A., and Liu, X. (2011). Quantitative analysis of transient and sustained transforming growth factor-β signaling dynamics. Mol. Syst. Biol. 7. https://doi.org/10.1038/msb.2011.22.

Zhang, X., Yin, Q., Ling, Y., Zhang, Y., Ma, R., Ma, Q., Cao, C., Zhong, H., Liu, X., and Xu, Q. (2011). Two LXXLL motifs in the N terminus of mps1 Are required for mps1 nuclear import during G 2/M transition and sustained spindle checkpoint responses. Cell Cycle 10, 2742–2750. https://doi.org/10.4161/cc.10.16.15927.

He, J., Ye, J., Cai, Y., Riquelme, C., Liu, J.O., Liu, X., Han, A., and Chen, L. (2011). Structure of p300 bound to MEF2 on DNA reveals a mechanism of enhanceosome assembly. Nucleic Acids Res. 39, 4464–4474. https://doi.org/10.1093/nar/gkr030.

Chapnick, D.A., Warner, L., Bernet, J., Rao, T., and Liu, X. (2011). Partners in crime: the TGFβ and MAPK pathways in cancer progression. Cell Biosci 1, 42. https://doi.org/10.1186/2045-3701-1-42.

 

2006 – 2010

Zhong, J., Liu, X., and Pandey, A. (2010). Effects of transmembrane and juxtamembrane domains on proliferative ability of TSLP receptor. Mol. Immunol. 47, 1207–1215. https://doi.org/10.1016/j.molimm.2009.12.017.

Zeng, Z., Wang, W., Yang, Y., Chen, Y., Yang, X., Diehl, J.A., Liu, X., and Lei, M. (2010). Structural Basis of Selective Ubiquitination of TRF1 by SCFFbx4. Dev. Cell 18, 214–225. https://doi.org/10.1016/j.devcel.2010.01.007.

Sun, T., Yang, X., Wang, W., Zhang, X., Xu, Q., Zhu, S., Kuchta, R., Chen, G., and Liu, X. (2010). Cellular abundance of Mps1 and the role of its carboxyl terminal tail in substrate recruitment. J. Biol. Chem. 285, 38730–38739. https://doi.org/10.1074/jbc.M110.177642.

Clarke, D.C., and Liu, X. (2010). Measuring the absolute abundance of the Smad transcription factors using quantitative immunoblotting. Methods Mol Biol 647, 357–376. https://doi.org/10.1007/978-1-60761-738-9_22.

Chapnick, D.A., and Liu, X. (2010). Analysis of ligand-dependent nuclear accumulation of smads in TGF-β signaling. Methods Mol. Biol. 647, 95–111. https://doi.org/10.1007/978-1-60761-738-9-51.

Xu, Q., Zhu, S., Wang, W., Zhang, X., Old, W., Ahn, N., and Liu, X. (2009). Regulation of kinetochore recruitment of two essential mitotic spindle checkpoint proteins by Mpsl phosphorylation. Mol. Biol. Cell 20, 10–20. https://doi.org/10.1091/mbc.E08-03-0324.

Wang, W., Yang, Y., Gao, Y., Xu, Q., Wang, F., Zhu, S., Old, W., Resing, K., Ahn, N., Lei, M., et al. (2009). Structural and mechanistic insights into Mps1 kinase activation. J. Cell. Mol. Med. 13, 1679–1694. https://doi.org/10.1111/j.1582-4934.2008.00605.x.

Granovsky, A.E., Clark, M.C., McElheny, D., Heil, G., Hong, J., Liu, X., Kim, Y., Joachimiak, G., Joachimiak, A., Koide, S., et al. (2009). Raf kinase inhibitory protein function is regulated via a flexible pocket and novel phosphorylation-dependent mechanism. Mol. Cell. Biol. 29, 1306–1320. https://doi.org/10.1128/MCB.01271-08.

Erickson, R.A., and Liu, X. (2009). Association of v-erbA with smad4 disrupts TGF-β signaling. Mol. Biol. Cell 20, 1509–1519.https://doi.org/10.1091/mbc.E08-08-0836.

Clarke, D.C., Brown, M.L., Erickson, R.A., Shi, Y., and Liu, X. (2009). Transforming growth factor β depletion is the primary determinant of smad signaling kinetics v&nabla. Mol. Cell. Biol. 29, 2443–2455. https://doi.org/10.1128/MCB.01443-08.

Nasveschuk, C.G., Ungermannova, D., Liu, X., and Phillips, A.J. (2008). A concise total synthesis of largazole, solution structure, and some preliminary structure activity relationships. Org. Lett. 10, 3595–3598. https://doi.org/10.1021/ol8013478.

Guo, X., Waddell, D.S., Wang, W., Wang, Z., Liberati, N.T., Yong, S., Liu, X., and Wang, X.-F. (2008). Ligand-dependent ubiquitination of Smad3 is regulated by casein kinase 1 gamma 2, an inhibitor of TGF-β signaling. Oncogene 27, 7235–7247. https://doi.org/10.1038/onc.2008.337.

Guo, X., Ramirez, A., Waddell, D.S., Li, Z., Liu, X., and Wang, X.-F. (2008). Axin and GSK3-β control Smad3 protein stability and modulate TGF-β signaling. Genes Dev. 22, 106–120. https://doi.org/10.1101/gad.1590908.

Clarke, D.C., and Liu, X. (2008). Decoding the quantitative nature of TGF-β/Smad signaling. Trends Cell Biol. 18, 430–442.https://doi.org/10.1016/j.tcb.2008.06.006.

Barthel, K.K.B., and Liu, X. (2008). A transcriptional enhancer from the coding region of ADAMTS5. PLoS One 3. https://doi.org/10.1371/journal.pone.0002184.

Zhu, S., Wang, W., Clarke, D.C., and Liu, X. (2007). Activation of Mps1 promotes transforming growth factor-β-independent smad signaling. J. Biol. Chem. 282, 18327–18338. https://doi.org/10.1074/jbc.M700636200.

Zhang, L., Ding, L., Cheung, T.H., Dong, M.-Q., Chen, J., Sewell, A.K., Liu, X., Yates III, J.R., and Han, M. (2007). Systematic Identification of C. elegans miRISC Proteins, miRNAs, and mRNA Targets by Their Interactions with GW182 Proteins AIN-1 and AIN-2. Mol. Cell 28, 598–613. https://doi.org/10.1016/j.molcel.2007.09.014.

Cheung, T.H., Barthel, K.K.B., Yin, L.K., and Liu, X. (2007). Identifying pattern-defined regulatory islands in mammalian genomes. Proc. Natl. Acad. Sci. U. S. A. 104, 10116–10121. https://doi.org/10.1073/pnas.0704028104.

Riquelme, C., Barthel, K.K.B., Qin, X.-F., and Liu, X. (2006). Ubc9 expression is essential for myotube formation in C2C12. Exp. Cell Res. 312, 2132–2141. https://doi.org/10.1016/j.yexcr.2006.03.016.

Riquelme, C., Barthel, K.K.B., and Liu, X. (2006). SUMO-1 modification of MEF2A regulates its transcriptional activity. J. Cell. Mol. Med. 10, 132–144. https://doi.org/10.1111/j.1582-4934.2006.tb00295.x.

Clarke, D.C., Betterton, M.D., and Liu, X. (2006). Systems theory of Smad signalling. IEE Proc. Syst. Biol. 153, 412–424.https://doi.org/10.1049/ip-syb:20050055.

Cheung, T.H., Kwan, Y.L., Hamady, M., and Liu, X. (2006). Unraveling transcriptional control and cis-regulatory codes using the software suite GeneACT. Genome Biol. 7. https://doi.org/10.1186/gb-2006-7-10-r97.

 

2001 – 2005

Wang, W., Nacusi, L., Sheaff, R.J., and Liu, X. (2005). Ubiquitination of p21Cip1/WAF1 by SCFSkp2: Substrate requirement and ubiquitination site selection. Biochemistry 44, 14553–14564. https://doi.org/10.1021/bi051071j.

Ungermannova, D., Gao, Y., and Liu, X. (2005). Ubiquitination of p27Kip1 requires physical interaction with cyclin E and probable phosphate recognition by SKP2. J. Biol. Chem. 280, 30301–30309. https://doi.org/10.1074/jbc.M411103200.

Knuesel, M., Cheung, H.T., Hamady, M., Barthel, K.K.B., and Liu, X. (2005). A method of mapping protein sumoylation sites by mass spectrometry using a modified small ubiquitin-like modifier 1 (SUMO-1) and a computational program. Mol. Cell. Proteomics 4, 1626–1636. https://doi.org/10.1074/mcp.T500011-MCP200.

Kfir, S., Ehrlich, M., Goldshmid, A., Liu, X., Kloog, Y., and Henis, Y.I. (2005). Pathway- and expression level-dependent effects of oncogenic N-Ras: p27Kip1 mislocalization by the Ral-GEF pathway and Erk-mediated interference with Smad signaling. Mol. Cell. Biol. 25, 8239–8250. https://doi.org/10.1128/MCB.25.18.8239-8250.2005.

Wang, W., Ungermannova, D., Jin, J., Harper, J.W., and Liu, X. (2004). Negative regulation of SCFSkp2 ubiquitin ligase by TGF-β signaling. Oncogene 23, 1064–1075. https://doi.org/10.1038/sj.onc.1207204.

Wang, W., Ungermannova, D., Chen, L., and Liu, X. (2004). Molecular and biochemical characterization of the Skp2-Cks1 binding interface. J. Biol. Chem. 279, 51362–51369. https://doi.org/10.1074/jbc.M405944200.

Royer, Y., Menu, C., Liu, X., and Constantinescu, S.N. (2004). High-throughput gateway bicistronic retroviral vectors for stable expression in mammalian cells: Exploring the biologic effects of STAT5 overexpression. DNA Cell Biol. 23, 355–365. https://doi.org/10.1089/104454904323145245.

Macdonald, M., Wan, Y., Wang, W., Roberts, E., Tom, H.C., Erickson, R., Knuesel, M.T., and Liu, X. (2004). Control of cell cycle-dependent degradation of c-Ski proto-oncoprotein by Cdc34. Oncogene 23, 5643–5653. https://doi.org/10.1038/sj.onc.1207733.

Liang, M., Liang, Y.-Y., Wrighton, K., Ungermannova, D., Wang, X.-P., Brunicardi, F.C., Liu, X., Feng, X.-H., and Lin, X. (2004). Ubiquitination and proteolysis of cancer-derived Smad4 mutants by SCF Skp2. Mol. Cell. Biol. 24, 7524–7537. https://doi.org/10.1128/MCB.24.17.7524-7537.2004.

Wang, W., Ungermannova, D., Chen, L., and Liu, X. (2003). A negatively charged amino acid in Skp2 is required for Skp2-Cks1 interaction and ubiquitination of p27Kip1. J. Biol. Chem. 278, 32390–32396. https://doi.org/10.1074/jbc.M305241200.

Knuesel, M., Wan, Y., Xiao, Z., Holinger, E., Lowe, N., Wang, W., and Liu, X. (2003). Identification of novel protein-protein interactions using a versatile mammalian tandem affinity purification expression system. Mol Cell Proteomics 2, 1225–1233. https://doi.org/10.1074/mcp.T300007-MCP200.

Wan, Y., Liu, X., and Kirschner, M.W. (2001). The anaphase-promoting complex mediates TGF-β signaling by targeting SnoN for destruction. Mol. Cell 8, 1027–1039. https://doi.org/10.1016/S1097-2765(01)00382-3.

Liu, X., Sun, Y., Weinberg, R.A., and Lodish, H.F. (2001). Ski/Sno and TGF-β signaling. Cytokine Growth Factor Rev. 12, 1–8. https://doi.org/10.1016/S1359-6101(00)00031-9.

Fu, M., Zhang, J., Zhu, X., Myles, D.E., Willson, T.M., Liu, X., and Chen, Y.E. (2001). Peroxisome Proliferator-activated Receptor γ Inhibits Transforming Growth Factor β-induced Connective Tissue Growth Factor Expression in Human Aortic Smooth Muscle Cells by Interfering with Smad3. J. Biol. Chem. 276, 45888–45894. https://doi.org/10.1074/jbc.M105490200.

Blobe, G.C., Liu, X., Fang, S.J., How, T., and Lodish, H.F. (2001). A novel mechanism for regulating transforming growth factor β (TGF-β) signaling: Functional modulation of type III TGF-β receptor expression through interaction with the PDZ domain protein, GIPC. J. Biol. Chem. 276, 39608–39617. https://doi.org/10.1074/jbc.M106831200.

 

1996 – 2000

Xiao, Z., Liu, X., and Lodish, H.F. (2000). Acclerated Publication: Importin β mediates nuclear translocation of Smad 3. J. Biol. Chem. 275, 23425–23428. https://doi.org/10.1074/jbc.C000345200.

Xiao, Z., Liu, X., Henis, Y.I., and Lodish, H.F. (2000). A distinct nuclear localization signal in the N terminus of Smad 3 determines its ligand-induced nuclear translocation. Proc. Natl. Acad. Sci. U. S. A. 97, 7853–7858. https://doi.org/10.1073/pnas.97.14.7853.

Liu, X., Sun, Y., Ehrlich, M., Lu, T., Kloog, Y., Weinberg, R.A., Lodish, H.F., and Henis, Y.I. (2000). Disruption of TGF-β growth inhibition by oncogenic ras is linked to p27(kip1) mislocalization. Oncogene 19, 5926–5935. https://doi.org/10.1038/sj.onc.1203991.

Liu, X., Constantinescu, S.N., Sun, Y., Bogan, J.S., Hirsch, D., Weinberg, R.A., and Lodish, H.F. (2000). Generation of mammalian cells stably expressing multiple genes at predetermined levels. Anal. Biochem. 280, 20–28. https://doi.org/10.1006/abio.2000.4478.

Wells, R.G., Gilboa, L., Sun, Y., Liu, X., Henis, Y.I., and Lodish, H.F. (1999). Transforming growth factor-β induces formation of a dithiothreitol- resistant type I/type II receptor complex in live cells. J. Biol. Chem. 274, 5716–5722. https://doi.org/10.1074/jbc.274.9.5716.

Sun, Y., Liu, X., Ng-Eaton, E., Lodish, H.F., and Weinberg, R.A. (1999). SnoN and Ski protooncoproteins are rapidly degraded in response to transforming growth factor β signaling. Proc. Natl. Acad. Sci. U. S. A. 96, 12442–12447. https://doi.org/10.1073/pnas.96.22.12442.

Sun, Y., Liu, X., Eaton, E.N., Lane, W.S., Lodish, H.F., and Weinberg, R.A. (1999). Interaction of the Ski oncoprotein with Smad3 regulates TGF-β signaling. Mol. Cell 4, 499–509. https://doi.org/10.1016/S1097-2765(00)80201-4.

Constantinescu, S.N., Liu, X., Beyer, W., Fallon, A., Shekar, S., Henis, Y.I., Smith, S.O., and Lodish, H.F. (1999). Activation of the erythropoietin receptor by the gp55-P viral envelope protein is determined by a single amino acid in its transmembrane domain. EMBO J. 18, 3334–3347. https://doi.org/10.1093/emboj/18.12.3334.

Kuo, J.S., Patel, M., Gamse, J., Merzdorf, C., Liu, X., Apekin, V., and Sive, H. (1998). opl: A zinc finger protein that regulates neural determination and patterning in Xenopus. Development 125, 2867–2882.

Hua, X., Liu, X., Ansari, D.O., and Lodish, H.F. (1998). Synergistic cooperation of TFE3 and Smad proteins in TGF-β-induced transcription of the plasminogen activator inhibitor-1 gene. Genes Dev. 12, 3084–3095.

Constantinescu, S.N., Wu, H., Liu, X., Beyer, W., Fallon, A., and Lodish, H.F. (1998). The anemic friend virus gp55 envelope protein induces erythroid differentiation in fetal liver colony-forming units-erythroid. Blood 91, 1163–1172.

Liu, X., Sun, Y., Constantinescu, S.N., Karam, E., Weinberg, R.A., and Lodish, H.F. (1997). Transforming growth factor-β-induced phosphorylation of Smad3 is required for growth inhibition and transcriptional induction in epithelial cells. Proc. Natl. Acad. Sci. U. S. A. 94, 10669–10674. https://doi.org/10.1073/pnas.94.20.10669.

Johnston, S.D., Liu, X., Zuo, F., Eisenbraun, T.L., Wiley, S.R., Kraus, R.J., and Mertz, J.E. (1997). Estrogen-related receptor α1 functionally binds as a monomer to extended half-site sequences including ones contained within estrogen- response elements. Mol. Endocrinol. 11, 342–352. https://doi.org/10.1210/me.11.3.342.

Liu, X., and Mertz, J.E. (1996). Sequence of the polypyrimidine tract of the 3′-terminal 3′ splicing signal can affect intron-dependent pre-mRNA processing in vivo. Nucleic Acids Res. 24, 1765–1773.

 

1991 – 1995

Liu, X., and Mertz, J.E. (1995). HnRNP L binds a cis-acting RNA sequence element that enables intron- independent gene expression. Genes Dev. 9, 1766–1780.

Liu, X., and Mertz, J.E. (1993). Polyadenylation site selection cannot occur in vivo after excision of the 3′-terminal intron. Nucleic Acids Res. 21, 5256–5263.