MD
- We examine the role of electronic polarizability in water on short (tens of femtoseconds), intermediate (hundreds of femtoseconds), and long (≈1 ps) time scales by comparing molecular dynamics results to experimental data for vibrational
- Using molecular dynamics simulations, we study the hydrophobic effect on electrically doped single layer graphene. With doping levels measured in volts, large changes in contact angle occur for modest voltages applied to the sheet. The effect can be
- In molecular crystals that exhibit singlet fission, quantum yields depend strongly on intermolecular configurations that control the relevant electronic couplings. Here, we explore how noncovalent interactions between molecules and surfaces
- Porous two-dimensional crystals offer many promises for water desalination applications. For computer simulation to play a predictive role in this area, however, one needs to have reliable methods for simulating an atomistic system with hydrodynamic
- Porous two-dimensional crystals like graphene have the potential to revolutionize reverse-osmosis membrane technology. The permeability is a common figure of merit that describes the ease with which water flows through a membrane. For two-