Vera Schulte-Pelkum

  • Associate Research Professor
  • Cooperative Institute for Research in Environmental Sciences
  • GEOLOGICAL SCIENCES
portrait
Address

Office: Benson 462B

Research Interests

Fault and magmatic systems structural imaging and hazards

Near surface imaging 

Structure, deformation, rheology, and anisotropy of the lithosphere and mantle

 

Current Research

  • Fault deformation fabric and correlation with creeping/locked fault behavior
  • Volcano transcrustal magmatic fabrics
  • Seasonal and long-term seismic velocity changes in and under ice sheets
  • Near surface imaging for ground shaking hazards
  • Hydrology-driven changes in shallow seismic velocities
  • Joint seismic and magnetotelluric imaging of mineral belts

Highlights

Selected papers - more publications on my CIRES page.

Rapidly changing huge shear wave splits are not real, but tell us about fault structure: Hua, J., V. Schulte-Pelkum, T. W. Becker, B. He, H. Zhu (2025), Waveform effects on shear wave splitting near fault zones. Journal of Geophysical Research - Solid Earth, doi:10.1029/2025JB031656.

Dripping lithosphere in action: Schulte‐Pelkum, V., Kilb, D. (2024). Lithospheric foundering in progress imaged under an extinct continental arc. Geophysical Research Letters, 51, e2024GL111290, doi:10.1029/2024GL111290. CNN, livescience, and Eos articles; CIRES outreach video

Inside the roots of an arc volcano: Schulte-Pelkum, V., M. Haney (2024), Fault-dike-magma interactions inferred from transcrustal conical structures under Akutan volcano. Seismological Research Letters 95 (5): 2663–2673, Focus section on volcano monitoring in the Americas, doi: 10.1785/0220240119.

Mechanical properties of the Himalayan megathrust: Li, S., Schulte‐Pelkum, V., Barnhart, W.D., Chen, L., Karplus, M., Oncken, O. (2024). Weak, vertically stronger Main Himalayan Thrust in the India‐Asia collision. Geophysical Research Letters, 51, e2024GL110222. https://doi.org/10.1029/2024GL110222.

Bulldozing by the Denali Fault: Schulte-Pelkum, V., A. Bender, N. A. Ruppert (2024). Seismicity and anisotropic imaging reveal an active detachment beneath the Northern Alaska range foothills. In: Tectonics and Seismicity of Alaska and Western Canada ‐ EarthScope and Beyond (pp. 575-587), AGU Monograph, Eds. M. Jadamec, J. Freymueller, N. A. Ruppert, doi:10.1002/9781394195947.ch21.

Igneous undeformed rocks are still anisotropic: Frothingham, M.G., Mahan, K.H., Schulte-Pelkum, V., Goncalves, P., Zucali, M. (2023), Confronting solid-state shear bias: Magmatic fabric contribution to crustal seismic anisotropy. Geophysical Research Letters, http://dx.doi.org/10.1029/2022GL102399.

Detachment fault under the Appalachians: Frothingham, M., V. Schulte-Pelkum, K. Mahan, A. Merschat, M. Mather, Z. Cabrera Gomez (2022), Don't judge an orogen by its cover: Kinematics of the Appalachian Décollement from seismic anisotropy, Geology, 50(11), 1306-1311, doi:10.1130/G50323.1.

Collision and volcanic fabric in the Banda arc: Zhang, P., M. S. Miller, V. Schulte-Pelkum (2021), Tectonic fabric in the Banda arc-Australian continent collisional zone imaged by teleseismic receiver functions. G-Cubed, GGGE22772, doi:10.1029/2021GC010262.

Deformation markers of the southern California plate boundary: Schulte-Pelkum, V., T. W. Becker, W. M. Behr. M. S. Miller (2021), Tectonic inheritance during plate boundary evolution in southern California constrained from seismic anisotropy. G-Cubed 22(11), e2021GC010099, doi:10.1029/2021GC010099.

How far off you might be if you assume the uppermost mantle is all olivine: Bernard, R. E., V. Schulte-Pelkum, W. M. Behr (2021), The competing effects of olivine and orthopyroxene CPO on seismic anisotropy. Tectonophysics, 814, 228954, doi:10.1016/j.tecto.2021.228954.

Inherited geologic fabric in California influences present-day fault behavior: Schulte-Pelkum, V., Z. Ross, K. Mueller, Y. Ben-Zion (2020), Tectonic inheritance with dipping faults and deformation fabric in the brittle and ductile southern California crust, Journal of Geophysical Research - Solid Earth 125(8), e2020JB019525, doi:10.1029/2020JB019525. papersupplementary info

Tectonic grain in Alaska/Yukon and subsurface expressions of mineral belts and magmatic systems: Schulte-Pelkum, V., J. S. Caine, J. V. Jones III, T. W.  Becker (2020) , Imaging the tectonic grain of the Northern Cordillera orogen using Transportable Array receiver functions. Seismological Research Letters, Focus section on EarthScope in Alaska and Canada, 91(6), 3086-3105, doi:10.1785/0220200182.

Earthquakes in continental mantle: Schulte-Pelkum, V., G. Monsalve, A. F. Sheehan, P. Shearer, F. Wu, S. Rajaure (2019), Mantle earthquakes in the Himalayan collision zone, Geology, 47(9): 815-819. open access articlesupplementary info

How crustal rock fabric behaves, and useful new scaling rules for seismic anisotropy: S. Brownlee, V. Schulte-Pelkum, A. Raju, K. Mahan, C. Condit, O. Orlandini (2017), Characteristics of deep crustal seismic anisotropy from a compilation of rock elasticity tensors and their expression in receiver functions. Tectonics, 2017 early view article; Eos highlight

Evolution of the continental U.S. deep crust from geology and seismology, with interactive maps:  Schulte-Pelkum, V., K. Mahan, W. Shen, J. Stachnik (2017), The distribution and composition of high-velocity lower crust across the continental U.S.: Comparison of seismic and xenolith data and implications for lithospheric dynamics and history, Tectonics, 36(8), open access article; interactive maps (in Adobe Reader, use View->Show/Hide->Navigation);  Editor's highlight

Moho-cutting Denali fault and slab under Alaska: Allam, A., V. Schulte-Pelkum, Y. Ben-Zion, C. Tape, N. Ruppert, Z. Ross (2017), Ten kilometer vertical Moho offset and shallow velocity contrast along the Denali fault zone from double-difference tomography, receiver functions, and fault zone head waves, Tectonophysics, i721, 56-69, doi:10.1016/j.tecto.2017.09.003.

Subduction channel under the Himalaya: McNamara, D., W. Yeck, W. Barnhart, V. Schulte-Pelkum, E. Bergman, L. Adhikari, A. Dixit, S Hough, H. Benz, P. Earle (2016), Source modeling of the 2015 Mw 7.8 Nepal (Gorkha) earthquake sequence: Implications for geodynamics and earthquake hazards. Tectonophysics, doi:10.1002/2013JB010607.

Deep crustal deformation across the continental U.S.: Schulte-Pelkum, V., K. Mahan, A method for mapping crustal deformation and anisotropy with receiver functions and first results from USArray, Earth Planet. Sci. Lett., 402, 221-233, 2014 pdf

Ductile shear zone imaging: Schulte-Pelkum, V., K. Mahan, Imaging faults and shear zones using receiver functions. Pure Appl. Geophys. 171, 2967–2991, 2014 doi

Decoupled mantle root from seismology, geochemistry, and petrological modeling: Schulte-Pelkum, V., G. Biasi, A. Sheehan, C. Jones, Differential motion between upper crust and lithospheric mantle in the central Basin and Range, Nature Geosci., 4, 619-623, 2011 pdf

Deformation fabric on the Main Himalayan Thrust fault: Schulte-Pelkum, V., G. Monsalve, A. Sheehan, M.R. Pandey, S. Sapkota, R. Bilham, F. Wu, Imaging the Indian Subcontinent beneath the Himalaya, Nature, 435, 1222-1225, 2005 pdf

Watch seismic arrays track storms in the Pacific and Atlantic: Schulte-Pelkum, V., P. S. Earle, F. L. Vernon, Strong directivity of ocean-generated seismic noise, G-Cubed, 5, doi:10.1029/2003GC000520, 2004 pdf, movie

Education and Training

  • Ph.D., University of California San Diego, Scripps Institution of Oceanography
  • Diplom-Geophysik (M. Sc.), Ruhr-Universität Bochum, Germany