

Jobs that just might change the world.

Put power stations

On the moon with the company that is developing atomic power plants to operate in remote areas with no external fuel. On the moon — or on other stations in deep space — these units will provide the power to sustain life over long periods of time. There are few precedents to lean on in space project work. Which indicates the type of individuals Westinghouse is looking for.

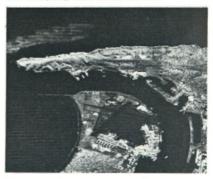
These graduates needed: Mechanical Engineering, Electrical Engineering, Aerospace Engineering, Physical Sciences, Nuclear Engineering, Chemical Engineering, Metallurgical Engineering.

Double America's electric

power with the company that is investing \$370 million to expand manufacturing facilities for power equipment. You see why when you realize that America's power needs are going to double by 1980. But added plant capacity isn't the complete solution. We're also developing the most advanced equipment designs the electric industry has ever seen. That's where you come in.

These graduates needed: Civil Engineering, Industrial Engineering, Mechanical Engineering, Electrical Engineering, Business & Liberal Arts, Chemical Engineering.

Makeroom for 132 million new Americans with the company that is doing something right now to provide homes for the children expected to be born in the next three decades. Westinghouse is developing new ways to heat, light and cool buildings, new ways to start from scratch and build complete new cities. What we're looking for now is city builders.

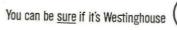

These graduates needed: Engineering, Construction Technology, Physical Sciences, Social Sciences, Engineering Administration, Industrial Technology.

Come to the ladies' aid with the company that developed the only electric range that cleans its own oven and also broils both sides of a steak at once. Westinghouse makes appliances that win praise from industrial design groups and housewives. So we're looking for people who know the practical side of dishwashing, for instance, as well as the theory of ultrasonic cleaning.

These graduates needed: Mechanical Engineering, Industrial Engineering, Business & Liberal Arts, Industrial Technology, Industrial Arts.

See in the dark with the company that perfected Side Look radar. It does everything from taking high-resolution aerial reconnaissance images on a dark night to mapping natural resources. If you're interested in plotting new breakthroughs in radar technology, get with the company that started it all.

These graduates needed: Physical Sciences, Electrical Engineering, Mechanical Engineering, Chemical Engineering.


Take off with the company that provides electric power systems for most of the commercial jet aircraft in the free world. Westinghouse reliability has cut airborne electric power system maintenance costs 50% in five years. Now the job is to design and build electric power systems for some of the largest and fastest aircraft the world has ever seen.

These graduates needed: Electrical Engineering, Mechanical Engineering, Industrial Engineering, Chemical Engineering, Metallurgical Engineering.

Want to change the world? Your best opportunity is with a company like Westinghouse. Contact Luke Noggle, Westinghouse Education Center, Pittsburgh, Pa. 15221 — or see the Westinghouse recruiter on your campus.

An equal opportunity employer.

A unique combination of capabilities

UNIQUE... Because Allis-Chalmers serves so many industries in so many vital ways. No other manufacturer researches, develops, builds, markets, installs and services as many products and processes for as many specialized needs as does Allis-Chalmers. Our unique combination of capabilities serves all major industries including agriculture, electric utility, mining, metals, construction, cement, chemical, pulp and paper, food, material handling, general industry and aerospace.

WHAT DOES THIS MEAN TO YOU? . . . Simply this: If you want to work for a company with a broadly diversified range of engineering opportunities . . . with an on-the-job growth program . . . with an opportunity to continue your education through a liberal tuition refund program . . . with industry's most flexible training program, send for a copy of our latest career booklet. Expect a prompt reply.

WRITE: COLLEGE RELATIONS, ALLIS-CHALMERS, MILWAUKEE, WISCONSIN, 53201

UNIVERSITY

OF COLORADO

FDITORIAL STAFF

Editor

KATHY O'DONOGHUE

Assistant Editor

TERRY LAWRY

Writers

MIKE COLGATE

HASKELL SCOTT

LARRY DAVIS

TOM WAGNER

Artist

DONNA DEMONG

Photographer

MARK PHILLIPS

BUSINESS STAFF

Business Manager

RANDY LORANCE

Circulation Manager

DAVE HATTAN

Office Manager

HOLLY TULIN

Secretary

JUDITH HINER

FACULTY ADVISORS

SIEGFRIED MANDEL

BURTON G. DWYRE

The Colorado Engineer is published by the students of the University of Colorado College of Engineering and does not necessarily reflect the opinions of the faculty and administration. No part of this magazine may be reproduced without the express written consent of the editor.

MEMBER OF ENGINEERING COLLEGE MAGAZINES ASSOCIATED: Chairman, Professor Howard J. Schwebke, Engineering Graphics Department, University of Wisconsin, Madison, Wisconsin.

Published four times per academic year in November, January, March and May.

Subscriptions: Controlled free distribution to undergraduate students in the College of Engineering: otherwise, \$2.00 per year, \$5.00 for three years.

Circulation: 3,200.

Publisher's Representative — Littell-Murray-Barnhill, Inc., 369 Lexington Avenue, New York 17, N. Y., and 737 North Michigan Avenue, Chicago 11, Illinois.

Entered as second-class matter March 9, 1916, at the Post Office at Boulder, Colorado, under the Act of March 3, 1879 General Offices: Engineering Center, OT 1-7, University of Colorado, Boulder, Colorado 80302.

VOL. 64, NO. 2

JANUARY, 1968

TABLE OF CONTENTS

7	Editorial—The Value of Education	Kathy O'Donoghue
9	Dean Column—Associate Dean Seeks Increased Interest in Engineering	George J. Maler
15	Colorado's Railroads	Les Bogunovich, Sam Carlsson
25	Ford Management: The Edsel and the Mustang	Dean Reynolds
38	Book Reviews	
43	Digital Computer Make-up	William Hines
48	Puzzles—Applications of Mathematics in Dealing with the Natives and the Problems of Zan	Mike Colgate
52	Chips	Randy Lorance
10	Index to Advertisers	

This month's cover: The coming of the railroads to Colorado began a new chapter in her story. Donna Demong records the story on our January cover. The tale of "Colorado's Railroads" is related by Les Bogunovich and Sam Carlsson, beginning on page 15.

Punchcards are for payrolls.

Not for people.

Not at Phillips. Sure, we're big. And we know that a lot of companies our size run their personnel operations like a computer dating bureau. But not us. We don't even like the word "personnel." "People" is our word. And that's the way we treat you, and that's what we're looking to hire. People, not simply grades or standings in a class. People who are interested in things like engineering and chemistry and physics and

mathematics and oil exploration and production. People who see all the advantages and all the diversity in the areas of petroleum, fuel and lubricants. People who want to do things with plastics, rubber, fertilizers, LP-gas, petrochemicals, packaging, carbon black, fuel cells, and other much-needed products. People who want to solve the problems of an increasing population, an expanding world. Problems, ultimately, of helping other people. We encourage this kind of involvement, personal or technological, because we're a people type of company. The type of company where you can keep moving-upward, of course; laterally if there's some other dimension you want to explore. Our slogan is, "at Phillips 66, it's performance that counts." And that's for real. At Phillips you're never a punchcard. You're people. Like us. Why not get together? Write James P. Jones, 104 Frank Phillips Bldg., Phillips Petroleum Company, Bartlesville, Oklahoma 74003.

AN EQUAL OPPORTUNITY EMPLOYER

There is a growing need for nonferrous metals. To grow with it, contact Anaconda.

Robert Lindsay (BSME, U. of Kansas '64) is quality control supervisor of Anaconda Aluminum Company's plant in Louisville, Ky.

Joel Kocen (BS Commerce, Wash. & Lee '59; LLB, Wash. & Lee '61) left, is senior tax analyst at New York headquarters of Anaconda.

David Madalozzo (BSEE, Bradley '61) is plant engineer of the new Anaconda Wire and Cable Company mill in Tarboro, N.C.

Alvin Cassidy (BA Econ., Bellarmine '54; MBA, U. of Louisville '59) is director of financial planning of Anaconda Aluminum Company, Louisville, Ky.

Robert Zwolinski (BSME, Rutgers '57) is chief mechanical engineer with Anaconda Wire and Cable Company, New York.

Willard Chamberlain (BE Metal. Eng., Yale '53) is manager of Anaconda American Brass Company's Valley Mills, Waterbury and Ansonia, Conn.

Robert Ingersoll (BS Geol., Montana Tech. '51 MS Geol., Montana Tech. '64) right, is senior geologist, Anaconda's mining operations, Butte, Mont.

Thomas Tone (BS Mining, U. of Arizona '62) is foreman of the furnace dept. at the electrolytic copper refinery in Perth Amboy, N.J.

Richard Symonds (BS Metal., U. of Nevada '57) is superintendent of the lead plant at Anaconda's smelter in Tooele, Utah.

Jay Bonnar (BS Met., M.I.T. '57; MS Ind. Mgmt., M.I.T. '62) left, is research administrator of Anaconda American Brass Company's research and technical center, Waterbury. Conn.

Wilson McCurry (BSc, Arizona State '64) is an assistant geologist in Anaconda's new mines dept., currently working on development of the Twin Buttes mine near Tucson, Ariz.

Terrence McNulty (BS Chem., Stanford '61; MS Metal., Montana Tech. '63; DSc Metal., Col. School of Mines '66) is senior research engineer, extractive metallurgical research, Tucson, Ariz.

Anaconda American Brass Co., Anaconda Wire & Cable Co., Anaconda Aluminum Co. For information about your opportunity at Anaconda, write:

Director of Personnel, The Anaconda Co., 25 Broadway, New York, N.Y. 10004. Equal opportunity employer.

The Value of Education

Why did you decide to come to college? To get an education? You've gone to classes for four years, fulfilled the requirements, are ready to graduate. But in the process, have you become educated?

It is unfortunate that the engineering curriculum is so regimented. Except for twenty-four hours of "socio-humanistic" courses, you, the engineering student, find yourself working problems, pushing a slide rule for one hundred and twelve other hours. To what avail? Well, you learn to be an engineer—but do you become educated?

Have you ever felt frustrated because you couldn't spare the time to go to an evening lecture (lab report due tomorrow)? Or because you couldn't read a book (the hourly next Thursday)? Here you are in the middle of the University and yet, how much of it do you know?

But perhaps you came to CU to become an engineer so you could make lots of money.

-Kathy O'Donoghue

You'll manufacture nothing. But create much... as an Air Force Systems Command civilian.

As a civilian scientist or engineer in the Air Force Systems Command, you'll be working with ideas, rather than with "things." And you'll be working on projects technologically years ahead of usual industry involvements. Because the AFSC initiates projects long before contracting out to vendors for production.

The mission is a challenging one: research, development and testing of aerospace weapons systems, satellites, boosters, space probes, and associated systems. The disciplines required include electronic, aerospace, mechanical, electrical, industrial, chemical, nuclear, materials and general engineering, mathematics, physics and chemistry. The goal: assuring the Air Force's continuing aerospace supremacy.

Creative challenge is just one of the advantages of Air Force Systems Command careers. There are many others. Your particular job assignment, for instance, begins on the day you're hired, not after a lengthy training period...so you learn by doing. There's plenty of room for you to grow, both in responsibility and in competence, because the AFSC's R&D effort is among the world's largest. You may choose from a wide range of geographical locations in the U.S. And the benefits of Career Civil Service—including vacation and sick leave, retirement plans, insurance, job security, and excellent opportunities for government financed graduate and post-doctoral studies—are hard to beat.

If you're interested in a career on the frontiers of scientific and engineering knowledge, join us in the Air Force Systems Command. Obtain additional information by contacting your Placement Office to arrange for an interview when a Systems Command representative visits your campus, or write or visit the Civilian Personnel Office at any of the Systems Command locations listed.

Aeronautical Systems Division Wright-Patterson Air Force Base Dayton, Ohio 45433

Electronic Systems Division L. G. Hanscom Field Bedford, Massachusetts 01731

Air Force Contract Management Division AF Unit Post Office Los Angeles, California 90045

Air Force Flight Test Center Edwards Air Force Base Edwards, California 93523

Air Force Missile Development Center Holloman Air Force Base Alamogordo, New Mexico 88330

Air Force Eastern Test Range Patrick Air Force Base Cocoa Beach, Florida 32925

Air Force Special Weapons Center Kirtland Air Force Base Albuquerque, New Mexico 87117

Air Proving Ground Center Eglin Air Force Base Valparaiso, Florida 32542

Air Force Western Test Range Vandenberg Air Force Base Lompoc, California 93437

Rome Air Development Center Griffiss Air Force Base Rome, New York 13442

Aerospace Medical Division Brooks Air Force Base San Antonio, Texas 7823

Space & Missile Systems Organization AF Unit Post Office Los Angeles, California 90045

An Equal Opportunity Employer

ASSOCIATE DEAN SEEKS INCREASED INTEREST IN ENGINEERING

GEORGE J. MALER ASSOCIATE DEAN

In this same issue one year ago, Dean Max S. Peters and Editor Kathy O'Donoghue afforded me the opportunity to write a Dean's Column informing you of the activities of the Office of the Associate Dean. Graciously, they have again invited me to report to you on the progress of the past year and on our plans for the future

Last year's efforts in visiting high schools, conducting career days, holding honors seminars, and our various other programs account - we hope in some part for the increased enrollment of freshmen in our College of Engineering this fall. The Office of Admissions figures of a year ago indicated 377 new entering freshmen. This year the number was 466, an increase of nearly 24%. Our efforts in this area are being continued and expanded this year. During the fall semester, members of our faculty have visited forty-one high schools to present information on careers in engineering and on our College. Personally, I have had the opportunity to participate in six High School Counselor Clinics conducted by our Office of Admissions under the auspices of the Alumni Office. These have consisted of setting up meetings in Denver, Colorado Springs, La Junta, Monte Vista, Leadville, and Craig. In each city, high school counselors from throughout the surrounding area were invited to participate in a one-day session of case studies on admission to the University. Through this media, open discussion was stimulated and we were able to tell counselors about all aspects of the University. In turn, they provided us with valuable feedback. Two more such meetings will be conducted in January of 1968: one in Durango and one in Sterling, Colorado.

Last November 18, a High School Student-Parent Career Day was held in our Engineering Center. Three hundred forty-six high school students and parents attended the one-day session devoted solely to providing information on careers in engineering. During the morning session, Dean Peters welcomed our guests and Mr. Dwight Grotewold, Director of High School Relations, talked about the University and its admissions policies. This was followed by tours of the Engineering Center and departmental seminars. The tours allowed our visitors to become acquainted with each of the major degree-granting departments, while the seminars encouraged our visitors to meet in small groups with faculty members and students to zero in on each engineering area offered at the college. The pledge classes of the honor societies served as guides and as department representatives at the seminars. Lunch was served in the Kittredge Commons followed by a short tour of the residence halls. Two panel discussion sessions were conducted during the afternoon. One panel of all engineering students

met with just the parents, while at the same time another panel of all engineering faculty met with the high school students. A second session of the panels was then held with the student panel meeting with the high school students and the faculty panel meeting with the parents. Responses to questionnaires at the end of the day's activities indicated that most students and parents found the day to be of real value. The student panel portion of the program was especially well liked by both high school students and parents. There is little question that our students did an outstanding job and they are still one of our best advertisements. A second such day is planned for February

This fall, materials about our College were again sent to all 260 high schools in Colorado for inclusion in the high school counselor's *Careers in Engineering Notebook* which was distributed last year at the High School Principal-Student Conference.

Last spring, four Saturday honors seminars were conducted by the College for 115 high school students who had demonstrated high interest and ability in mathematics and science in their high schools. The apparent success of this program has prompted planning for an Honors Institute to be held here in August. The program will consist of four days on campus for approximately 250 high school students. They will attend lectures,

seminars, laboratory sessions, field trips, and tours. They will live in the dormitories and will be joined by some of our own students and faculty as well as some high school counselors and teachers and members of industry. This briefly summarizes our programs to attract the talented young men and women of our state to careers in engineering.

The apparent success of last year's experiment of starting physics in the fall semester of the freshman year has lead to full implementation during this year. Reports of mid-term grades just in indicate that the program thus far is coming up to expectations. Of the total entering freshmen, approximately two-thirds are qualified to start physics and calculus. The remaining one-third start with a slower math sequence and postpone physics until the second semester. Selection for participation is based upon a predictive index that includes college board scores, rank in class, and scores on our own mathematics aptitude test. The intent of the over-all program is to provide the opportunity for those adequately prepared upon entrance to advance more quickly into departmental programs and at the same time, it does not exclude slower students from pursuing successful engineering careers.

The Freshmen Newsletter continues to be published monthly to assist those undecided in selecting their field of engineering and to give general information and facts about all branches of engineering in our college.

Our counseling program continues its usual good job and is at present in full swing. Counselors are conducting mid-term interviews with all freshmen.

Work in the area of relations with industry continues with major emphasis on development of continuing education programs. Last year, five five-day summer short courses designed explicitly for industry were planned and offered. A somewhat expanded similar program is in the offing for the coming summer.

Recently, orders have been placed to procure television equipment which will allow for some experimentation with TV and TV tapes on all levels of instruction in the College of Engineering. This will be an important adjunct to the work in progress in our Self-Study Laboratory. The addition of a half-time director for the Self-Study Laboratory has allowed us to make considerable progress in the development of teaching aids for engineering.

I continue to be well pleased with the efforts, activities, and continued good planning by the Associated Engineering Students. My one great hope would be to stimulate greater participation in the many fine activities conducted by AES.

Although I feel that considerable good activity is underway in our undergraduate programs, much remains yet to be done. With the continued support of the student body and faculty, I feel confident that we will continue to make excellent progress.

COMMERCIAL

PRINTING

DEPARTMENT

For All Your Printing Needs
Phone 442-1202

INDEX TO ADVERTISERS

Allis-Chalmers !
American Oil Company6
American Oil Company 6 The Anaconda Company 5
Rechtel Corporation 40
Bendix Corporation Kansas City Div.
Bethlehem Steel Company 30
CF&I Steel Corporation 44
Celanease Corporation
Clearprint Paper Company
Collins Radio Company 47
Collins Radio Company 47 Corps of Engineers—Department of the Army 46
Daily Camera
Detroit Edison Company
Eastman Kodak Company Inside Back Cover
Ford Motor Company
The Garrett Corporation
General Electric Company Back Cover
Hughes Aircraft Company 23 International Harvester Co. 18
International Harvester Co.
Lawrence Radiation Laboratory 3/
Malleable Founders Society National Cash Register Company Naval Ship Missile Company 42
National Cash Register Company
Olin Mathieson Chemical Corp.
FILLING PATROLOUPS COMMENT
Pratt & Whitney Aircraft 20-21
Nyan Aeronautical Company
DIECTIONS-ROCKET CORD
Sylvania-Mountain View
reletype Corporation
U.S. Air Force Systems Command
Varian Associates
Westinghouse Electric Corp. Inside Back Cover
No. of the contract of the con

play-it-safe thinker, with a step-at-a-time philosophy... you're not geared for the pace of things at Celanese.

No other major corporation in our industry has grown so fast. In the last ten years, sales have zoomed from \$286.4 million to over \$1 billion.

But that's just the beginning of the beginning.

We have a lot of serious growing to do. Right now. And some substantial, ground-floor opportunities to offer you.

If you can help us grow.

We need competent, imaginative, flexible people—with degrees in chemistry, chemical or mechanical engineering, physics, or industrial engineering. People who can become a part of our continuing leadership in areas such as acetyl chemicals, vapor-phase and liquid-phase oxidation processes, fiber technology. And many more.

Frankly, we expect a lot. But we offer even more.

Like rewards based on performance—not on how old you are, or how long you've been with us. By the same token, we do not subject you to long formal training programs. We do have a deep interest in helping you grow just as fast as you can. And in giving you as much responsibility as you can handle.

We believe that is the reason for our success—and assured growth—in international markets for chemicals, fibers, plastics, coatings, petroleum and forest products.

If a pace like this sounds good to you, discuss us with your faculty and placement officer. And see our representative when he is on campus. Or write to: John B. Kuhn, Manager of University Recruitment, Celanese Corporation, 522 Fifth Ave., New York, N. Y. 10036.

an equal opportunity employer

CELANESE

Here's what we mean when we say, "Ryan is a better place to work."

We mean that a pioneer aerospace company still headed by the man who founded it 45 years ago has *got* to be a company that cares about its people. T. Claude Ryan, founder and chairman, is still at the office every day. To him, Ryan employees are friends. Old ones and new ones alike. Ryan headquarters, combining engineering and manufacturing facilities, are on the shores of San Diego bay, where it all started in 1922.

We mean that a company so rooted in aviation history is bound to be a leader in vitally important defense/space programs. The outgrowth of the original Ryan Airlines, Inc., that built the "Spirit of St, Louis" in 60 days from a standing start will always be ready to accept impossible challenges, And ready to listen to young men of vision who can dream up answers to those challenges, Ideas are given a chance at Ryan, So are the men who come up with them.

We mean that a company which led the world in the conception and development of jet-powered target drones is the kind of company where daring and untried ideas come to life. Over 3,000 Ryan Firebees, the most versatile aerial targets ever conceived, are in use with all three branches of our armed forces, helping to train our defenses against any airborne threat. A super-sophisticated, supersonic Firebee II will soon be flight tested and enter service.

We mean that a company whose heart has always been in the wild blue yonder would just naturally be there when man reached for the stars; that the products of its scientists, engineers and technicians would naturally play a key role in our race for space. Ryan landing radar systems made possible the first soft landing on the moon. And an advanced Ryan system will assure a soft landing for the first manned lunar visit. The men at Ryan already have their eyes on the space beyond the moon.

We mean that a company made up of men who taught themselves to fly straight up, while others said it couldn't be done, is the sort of place that puts no strings on a man's imagination. Or barriers in the way of way-out thinking. For over twenty years Ryan has been amassing an unmatched fund of technology in vertical and short take off and landing (V/STOL) aircraft. The list of accomplishments is long: Dragonfly, 1940. Vertijet, 1957. Vertiplane, 1959. The present day XC-142A tilt-wing and the XV-5A Vertifan. Ryan products can fly straight up. So can the men who work there.

We mean that a company with a strong and capable management—whose business success has led to majority ownership of large related companies—is the kind of concern that can match challenges with permanent opportunities. Ryan Aeronautical is majority owner of Continental Motors Corporation and its subsidiaries, suppliers of primary power for both piston and jet aircraft and agricultural, military, marine and industrial equipment. There is nothing provincial about Ryan, Including subsidiaries, it operates 16 manufacturing facilities in the USA and Canada.

We mean, also, that San Diego is a better place to work—because it's a better place to live. It's the surfing, sailing, deep-sea fishing and golfing capital of the country. It's clean, uncrowded and friendly and you can lead the good life year 'round. Its great universities make education one of its largest industries. Ryan is an important and respected member of this dynamic community . . . a community on the move.



An equal opportunity employer.

This is what we mean when we say, "Ryan is a better place to work." The 4,500 men and women now at Ryan know it is. And they invite your inquiry. Check with your placement office for our campus visit, or write to Mr. Harlow Mc-Geath, Ryan Aeronautical Company, Lindbergh Field, San Diego, Calif. 92112.

Ready for engineering growth?

Check the fields of interest to you, and AiResearch, Phoenix will do the rest.

Turboprop engines for business and military aircraft

Nuclear turbo-electric power systems for space


Valves and control systems for space vehicle boosters

Gas turbine propulsion systems for high-speed rail cars

Onboard turbines and control systems for jetliners

Gas turbine energy plants for on-site power

You can build a rewarding career in these and other exciting growth fields at AiResearch, Phoenix. Our training program lets you immediately apply your education in laboratory, preliminary design, and development projects. Then, you are assigned to an engineering team working on a project compatible with your interest and aptitudes.

At AiResearch, Phoenix, you can tackle problems in the design of high-temperature or cryogenic valves; work on secondary power systems for transonic, supersonic, or hypersonic aircraft; advance the state of the art in turbomachinery; or help develop sophisticated systems for missiles, boosters, or manned spacecraft.

Interested? Fill in the coupon. We'll send you all the facts about AiResearch, and let you know when our representative will visit your campus.

AiResearch Manufacturing Company Division of The Garrett Corporation 402 S. 36th Street, Phoenix, Arizona 85034 Home Address. City___ State Zip. College or university_ Degree: BS MS PhD Graduation date.

I am interested in the field of: ☐ Turbomachinery ☐ Pneumatic, hydraulic, and mechanical control systems

Mr. Harley Petterson

I am interested in this type of work: Preliminary design
Mechanical design

Development

School was out and no one had to call you . . . you were up at dawn. So many things to do—get out and work on the bike, find the rest of the gang and take off to explore your own private universe.

The universe is bigger now, you think ahead instead of back. At Teletype we're thinking ahead too. As a part of the Bell System and one of the world's

REMEMBER WHEN?

largest message and data communications equip ment manufacturers we have to. Maybe you'd like to join in—we need inventive young minds an our engineering group to help make our future as great as our past. You can find a future as bright

as those memories at Teletype. Contact your Bell System recruiter when he visits your campus, or write to:

machines that make data move

R

TELETYPE CORPORATION

College Relations Department A48
5555 W. Touhy Avenue Skokie, Illinois 60076

An Equal Opportunity Employer

Colorado's

Railroads

LES BOGUNOVICH SAM CARLSSON

When the western division of the transcontinental railroad was being considered by the United States Congress in 1850, three routes were given highest consideration. They were through New Mexico, Colorado, and Wyoming. Land for the railroads was to be donated by the government in the form of land grants. In 1860 the Union Pacific Railroad agreed to build rails west as the Central Pacific Railroad built east from California. The two were to meet at Ogden, Utah to complete the transcontinental rail-

road. The route the railroads decided upon was the route north of Colorado, through Cheyenne, Wyoming.

Colorado Resources Developed

It was also during this time that gold and silver had been discovered in Colorado, the lumbering industry was being developed into a major source of timber, and the cattle and coal-mining interests were beginning to prosper. The most efficient transportation for these materials was the railroad. This need for the railroad

made the Union Pacific line through Cheyenne seem tantilizingly close, and in 1867 the Denver Pacific Railroad and Telegraph Company was organized to connect Denver and Cheyenne.

The great potential wealth in the gold and silver attracted most of the railroad interests; many small railroads were formed within the state and concentrated on hauling the ore to smelters and reducing mills. But by 1873 there were five major railroad lines in Colorado. See Figure 1. The Denver Pacific connected Denver with Chevenne and the Union Pacific Railroad. The Kansas Pacific directly connected Denver with Kansas City and thus the eastern states. The Colorado Central connected Denver with the gold camps of Blackhawk and Central City, and Boulder with Longmont. The Boulder Valley connected Brighton and Boulder with the coal fields around Marshall. The Denver and Rio Grande, which was to become the largest railroad in the state. connected Denver with Colorado Springs, Pueblo and Canon City.

Railroad Boom Hits Colorado

The railroad building boom was at its peak during the years from 1867 to 1885, when over 800 railroads were proposed for construction. Obviously a great number of the proposed railway systems were never built, and of those built, most failed.

The price of silver was decreased considerably in 1893 by government action and consequently Colorado, because of its large silver mining in-

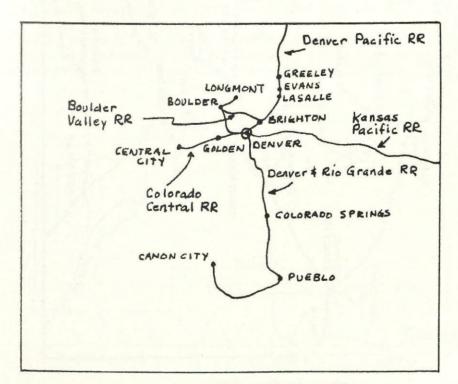


Figure 1 - The Railroads of Colorado - 1873

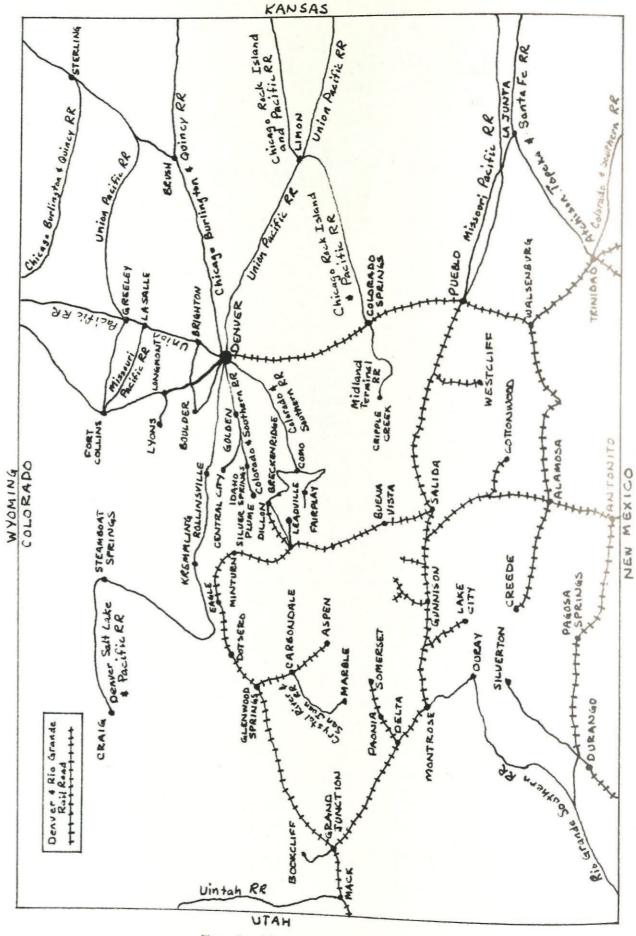


Figure 2 - The Railroads of Colorado - 1920

terests, went into an economic depression. The result was a curtailment of most railroad construction within the state and the failure of many smaller railroads. However, the Denver and Rio Grande was unlike many other roads in that it had not depended to such a large extent upon the metal mining industry for income. It had extended its services to the lumber, truit, cattle, and coal-mining industries - seemingly unimportant when metal mining was going strong. By 1920 the Denver and Rio Grande was the largest railroad system in Colorado, as indicated in Figure 2.

Standard and Narrow-Gauge Track

Before 1870, two widths, or gauges, of railroad tracks were used in Colorado. The standard-gauge track used 56½ inch spacing between the rails and the narrow-gauge track used a 36 inch spacing between the rails.

The standard-gauge was at first limited to use on the plains of Colorado because of the difficulties encountered in running the track through mountainous terrain. The narrow-gauge, on the other hand, provided the engineers with muchneeded maneuverability as they built the railroad beds. Curves could be made sharper and grades steeper for the narrow-gauge than for the standard-gauge. The engines and cars were made smaller and lighter, in turn allowing smaller requirements for rails, ties, bridges, and tunnels. Even on the plains, narrow-gauge track could be laid at less than half the cost of standard-gauge.

Track Size Is Standardized

However, the biggest drawback for the narrow-gauge was freight hauling capability. The smaller narrow-gauge trains could not handle the enormous loads the standard-gauge trains regularly carried, and so were not used extensively throughout much of the rest of the United States. Following 1870. the standard-gauge locomotives were being built powerful enough to pull the great loads over the mountains and the technology involved in making railroad beds was improved sufficiently to make the maneuverability provided by the narrow-gauge less important. These facts, coupled with a government regulation setting all future track widths equal to that of the standard-gauge, brought about the eventual conversion of all narrowgauge railroads in the state to the standard-gauge tracks.

Locomotives

Steam locomotives were most commonly classified by their wheel configuration. The largest wheels on the locomotive were the drivers and were positioned under the boiler to take advantage of the weight of the locomotive in obtaining traction. The smaller wheels fore and aft of the drivers were called the pilot truck and trailing truck, respectively. These smaller wheels helped maintain the stability of the locomotive on curves and in the switch-yards as the train was switched from one set of tracks to another.

Figure 3 depicts the wheel configuration on a 4-6-4 locomotive; that is, a locomotive with a four-wheel pilot truck, six driving wheels, and a fourwheel trailing truck.

Most of the Colorado narrow-gauge locomotives were of the 2-4-0 and 2-6-0 types. They were much smaller and lighter than the standard-gauge locomotives. For example, the driving wheels of the 2-6-0 were about the same size as the trailing wheels of the 4-6-4, and the weight on only the pilot truck of the 4-6-4 would equal the combined weight of two of the 2-6-0 locomotives.

Power Differences

The most important difference between the narrow-gauge and standard-gauge locomotives was the power. A narrow-gauge 2-6-0 could pull a 160 ton load up a 1.5 percent grade at six miles per hour. The standard-gauge 4-6-4 could pull a load of 1700 tons up the same grade at 30 miles per hour. As indicated before, this was one of the main reasons the narrow-gauge was replaced by the larger standard-gauge.

And finally, by 1956, all the standard-gauge steam locomotives were replaced by the quieter, more efficient, and more powerful diesel locomotives.

Grade and Locomotives

The incline of the railroad bed as it goes up a mountain is referred to as the grade. It is, mathematically, the slope of the bed expressed as a percentage; i.e., a seven percent grade reaches a height of 370 feet over a horizontal distance of one mile.

Railroading on steep grades requires powerful locomotives and maximum traction between the drive

(Continued on page 20)

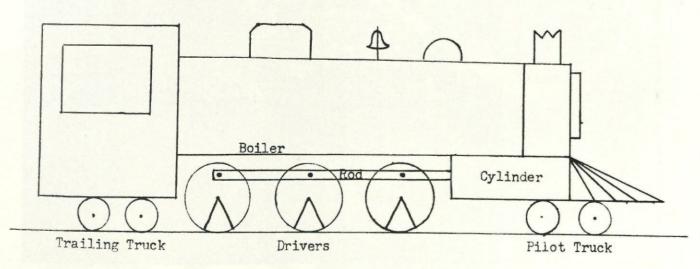
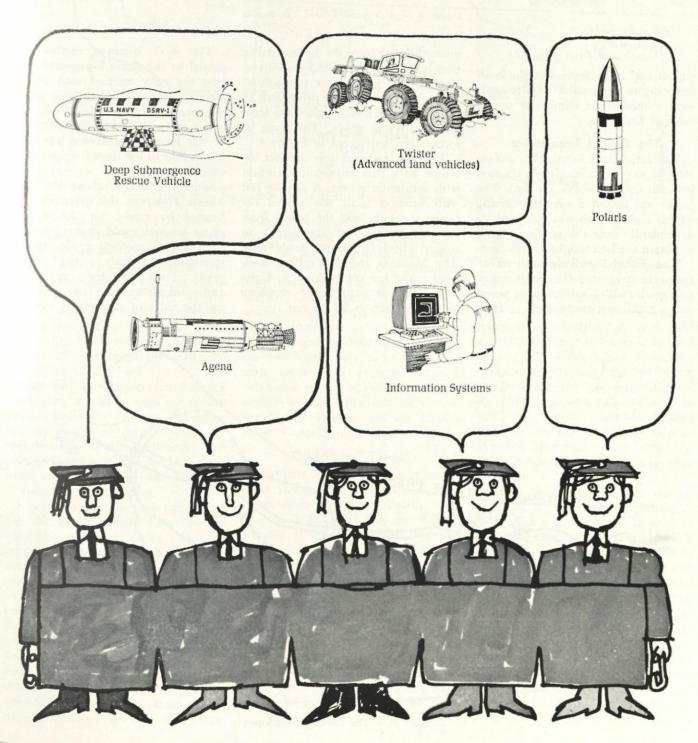


Figure 3 - A Typical 4-6-4 Wheel Configuration


Who has the hottest steel action going?

International Harvester. The first producer in the huge Chicago steel district to apply continuous casting commercially... the first U. S. producer to cast basic oxygen furnace steel in billets on a commercial basis... operating the world's largest billet continuous casting machine... and now with vacuum degassing. Bet you didn't know we produce steel... or that we're already producing gas turbine engines to serve tomorrow's power needs. You know we make farm equipment and trucks. Our name is a giveaway for the farm equipment. Our success in trucks is equally obvious. One heavy-duty truck out of every three on the road today is an International. IH today is a leader in many diversified fields that multiply your opportunities from raw steel, through production, to sales and service. Care to explore a few of our fields? Ask your College Placement Office more about us. **International Harvester puts power in your hands**

Why engineering students graduate to Lockheed. Progress is a matter of degrees. But, that's only the beginning. At Lockheed Missiles and Space Company, we're working on wideworld... otherworld... upperworld... and subworld projects.

We're pretty high on space... we've got Agena to prove it. And, when it comes to ballistic missiles, Polaris and Poseidon show an arc of triumph. We think deeply, too... consider our deep submergence vehicles, for example. And, just to show you our feet are solidly on the ground, we're working on advanced land vehicles. Information? Business, government and industry get it out of our systems.

For more information write to: Mr. R. C. Birdsall, Professional Placement Manager, P.O. Box 504, Sunnyvale, California 94088. Lockheed is an equal opportunity employer.

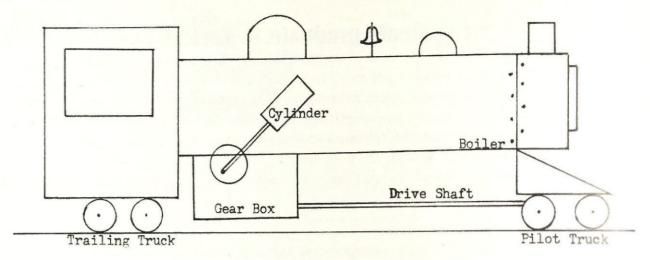


Figure 4 - A Typical Geared Locomotive

(Continued from page 17)

wheels and rails. Several methods attempting to meet these requirements were employed to climb the mountains of Colorado.

The Geared Locomotive

The articulated locomotive was an attempt to provide maximum traction between driving wheel and rail. The boiler was mounted over the driving wheels and the cab was mounted independently over the trailing wheels to obtain the best weight distribution.

The geared locomotive was an attempt to overcome the steep mountain grades with a minimum of power and a maximum grade. This arrangement did not have the large driving wheels of other types of locomotives; instead, the power was transmitted through a gear box and drive shaft to the pilot truck which pulled the locomotive up the grade. This type of locomotive is depicted in Figure 4.

The cog railroad was another attempt to utilize maximum traction with minimum power. A double rail with squared teeth was placed between the rails, and the power from the locomotive was transferred to cogged wheels fit into the double rail. The Manitou and Pike's Peak Railroad is the last cog railroad in Colorado, and is capable of climbing grades as steep as 25 percent.

The most common method employed by the steam locomotives, and now the only method used by the diesels, was adhesion-traction drive, or more simply, just the friction between the rails and the drive wheels of the locomotive. It was the most convenient to use since it required no special equipment - just large amounts of weight above the drive wheels. However, this drive was very limited by grade, for the narrowgauge engines could master no more than a seven percent grade and the standard-gauge only a five percent grade. Thus very long approaches and roadbeds winding back and forth up the sides of mountains were re-

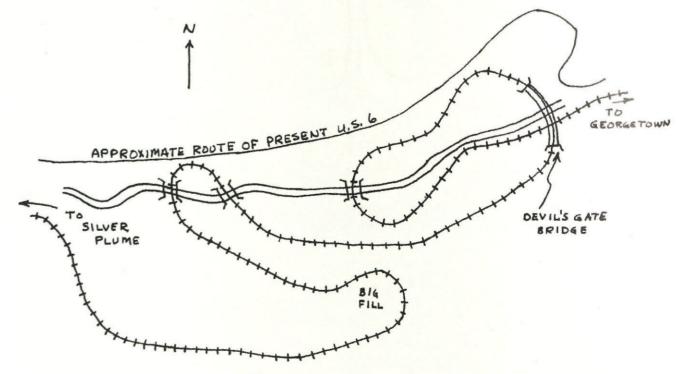


Figure 5 - The Georgetown Loop

quired to use the adhesion-traction drive. But in this manner the same locomotives that pulled the trains across the plains were used to cross the mountains.

The Georgtown Loop and Bridge

The extreme example of this restriction by grade was the Georgetown loop and bridge, as shown in Figure 5. The railroad made an ascent of 638 feet above Georgetown to Silver Plume in four and one-half

covering the sheds restricted the air supply to the sheds.

Tunnels were indeed the solution to the snow problem, but getting them built proved to be a problem almost as difficult as that of the snow. Driving the tunnels was a slow and arduous task, for little, if any, heavy equipment was available to take the place of man- and animal-power. The holes for the black powder (dynamite was not yet available) were drilled manually, and the blasted rock was

mountain. Over 500,000 linear feet of redwood lumber were used. The tunnel required 19 months to complete, and after completion, had a maximum width of 10 feet, 10 inches and a maximum height of 13 feet, 9 inches. The narrow gauge trains made it through with little room to spare.

Although the tunnel was abandoned in 1910 due to the switchover of the railroads from narrow- to standard-gauge tracks, most of the tim-

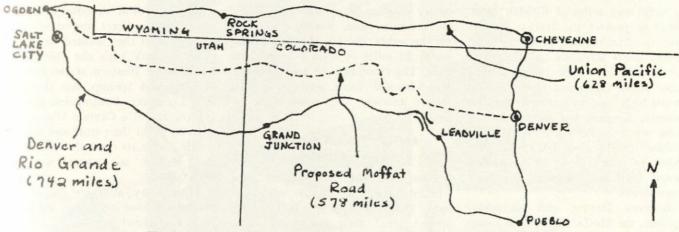


Figure 6 - Proposed Route of Moffat Road from Denver to Salt Lake City

miles. In doing so, the rails had to cross Clear Creek four times, make tour complete 180 degrees turns, and climb grades up to two percent. Yet the distance between the two towns was only two miles. One of the bridges the trains had to cross was Devil's Gate Bridge, a spindly metal tressle 300 feet long and curved 18 degrees. It supported the trains 96 feet above Clear Creek.

Construction engineers had a choice when they wished to cross the mountains of Colorado — go over the passes or tunnel under them. Often the maintenance of the railroads over passes during winters would be far more costly than the one-time cost of tunneling under them.

Operation over the high passes during the winter involved the use of helper engines, extra crews, and large rotary snow plows. Often trains were snowbound for days in the passes because the snow drifts were more than the rotary plows could handle so that even the rescue trains would be stranded. Long wooden snow-sheds were built over the tracks in an attempt to provide protection from the snow and keep the trains going. But this type of protection was finally abandoned after a few train crews were suffocated because the snow

loaded manually into hoppers pulled by mules. There were no means available for pre-determining the condition of the interior of a mountain other than visual examination of the surface. Consequently, the expected granite interior of the mountains very often turned out to be soft crumbling rock and as the tunnel was dug the roof would have to be shored up with timbers to prevent cave-ins. Admission of two of the most famous tunnels in Colorado's railroad history, the Alpine Tunnel and the Moffat Road Tunnel, concludes this article.

The Alpine Tunnel

The first bore through the Continental Divide was completed by the Denver, South Park and Pacific Railroad in 1881. This was the Alpine Tunnel. It was constructed at an altitude of 11,500 feet and linked Denver with Gunnison City. Engineers the world over regarded it as an engineering marvel. It remains the highest tunnel ever bored.

Most of the work was done by hand, with the already slow progress slowed even more by the rarified air and sub-zero temperatures. All but small sections of the 1,771-foot bore had to be supported by timber shorings because of the loose rock in the bered sections of the Alpine tunnel stand today.

The Moffat Road and Tunnel

By the year 1900 the Denver and Rio Grande Western and the Denver and Rio Grande railroads had an east-west connection through the mountains between Denver and Utah by way of Pueblo, Salida, Gunnison, and Grand Junction. Farther north, in Cheyenne, the Union Pacific had the oldest east-west railroad line. In 1902, the Denver and Rio Grande and the Denver and Rio Grande Western shortened their route by going under Tennessee Pass near Leadville.

David Moffat, a Colorado mining millionaire, visualized building a more direct route from Denver to Salt Lake City, as shown in Figure 6. His railroad to be (the Denver, Northwestern and Pacific) was to extend westward from Denver to Steamboat Springs by way of Boulder Canyon, Rollins Pass, and Winter Park. By 1911, the tracks had reached as far as Craig, Colorado but Moffat died before his dream was completed.

On 11,600 foot Corona Pass, the highest standard-gauge railroad pass in the United States, the winters were so severe that engineers were forced

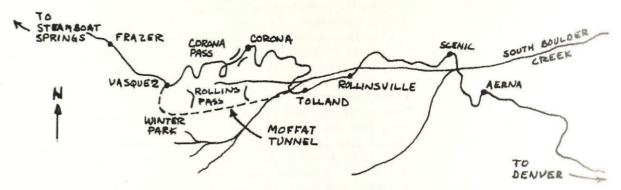


Figure 7 - The Moffat Road and Tunnel

to build two miles of wooden snowsheds to protect the tracks. A community of railroading people lived in shacks built adjacent to the sheds, for months at a time buried by the snow drifts. Operation of the Moffat in the high country was extremely expensive. Keeping the tracks clear of snow was a mamoth job that was not finished until spring. For two winters the huge rotary plows of the Moffat sawed their way through the huge snow drifts.

Between Denver and Steamboat Springs, the Moffat had had 55 separrate railroad tunnels, with thirty of them in a seventeen mile stretch, and finally in 1922 the Moffat tunnel under Rollins Pass was completed. Its six-mile bore, longer than any of the other Moffat tunnels, eliminated 23 miles of track over Rollins Pass. The running time for this route was changed from seven hours to twelve minutes. This route is shown Figure 7.

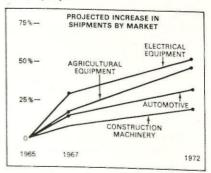
Moffat Tunnel Becomes Part of D&RG

After the Moffat Tunnel was opened, the line finally began to make money. Although it had not yet linked itself with Salt Lake City, local traffic in the form of coal, oil, and livestock from northwestern Colorado gave revenue to the line.

Then the Moffat abandoned the idea of building a direct line to Salt Lake City. Instead they wanted to build a cutoff to link with the Denver and Rio Grande Western at Dotsero, east of Glenwood Springs. But the Interstate Commerce Commission gave the Denver and Rio Grande Western the right to build the cutoff and have all traffic under its control, thus forcing the Moffat to merge with the D&RGW.

Thus today, although the original Moffat railroad no longer exists, the Moffat Tunnel serves as a major transcontinental link between east and west.

GROWING

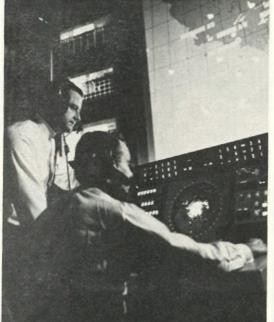

One of the outstanding characteristics of the Malleable Castings Industry.

The Malleable iron industry began its growth in 1826 with the development of a unique cast material by a Yankee genius named Seth Boyden. Malleable was heralded by pre-Civil War America as the iron which "could be hammered and shaped without breaking." But in time, as markets changed and technologies advanced, the material made the transition from wagons and cannons to cars and rocket heads, upgrading its applications from simple structural parts to highly reliable mechanical components.

In 1965 and again in 1966, sales of Malleable castings were over 1.1 million tons, the best years in the industry's long history.

The chart at right shows the projected Malleable growth curve in its four major markets through 1972. These figures were

developed after an extensive survey of industry customers, and indicate that Malleable will soon be a 1.4 million ton-a-year industry. And this growth is matched by increasing opportunities for technically trained people.


Currently, the average American new car uses 120 pounds of Malleable castings, some of which are shown above. Reading up, they include a connecting rod, bearing retainer, air conditioner clutch, joint yoke planet carrier, housing cover, non-slip differential case, and the calipers mounted on a disc brake.

For more information, write for a copy of "Malleable Iron, Material for America on the Move."

MALLEABLE FOUNDERS SOCIETY • UNION COMMERCE BUILDING CLEVELAND, OHIO 44115

Hughes announces new openings on the TECHNICAL STAFF.

Assignments exist for Engineers graduating in 1967 with B.S., M.S. and Ph.D degrees in ELECTRICAL ENGINEERING.

HUGHES-FULLERTON Engineering Laboratories assignments range from research to hardware development and operational support of products and systems in the field. Our current activities involve the advanced technologies of phased-array frequency-scanning radar systems, real-time general purpose computers, displays, data processing, satellite and surface communications systems, surface-to-air missile systems, and tactical air weapons command/control systems.

For additional information on the opportunities offered at HUGHES-FULLERTON in Southern California—and to arrange for a personal interview with our Staff representatives, please contact your College Placement Office or write: Mr. D. K. Horton, Supervisor, Professional Staffing, HUGHES-FULLERTON, P. O. Box 3310, Fullerton, California 92634.

On-campus interviews February 6 & 7

HUGHES

An equal opportunity employer - M & F / U.S. citizenship is required

Depends on the giant. Actually, some giants are just regular kinds of guys. Except bigger.

And that can be an advantage.

How? Well, take Ford Motor Company. We're a giant in an exciting and vital business. We tackle big problems. Needing big solutions. Better ideas. And that's where you come in. Because it all adds up to a real opportunity for young engineering graduates like yourself at Ford Motor Company.

Come to work for us and you'll be a member of a select College Graduate Program. As a member of this program, you won't be just another "trainee" playing around with "make work" assignments.

You'll handle important projects that you'll frequently follow from concept to production. Projects vital to Ford. And you'll bear a heavy degree of responsibility for their SUCCESS

You may handle as many as 3 different assignments in your first two years. Tackle diverse problems. Like figuring how high a lobe on a cam should be in order to yield a certain compression ratio. How to stop cab vibration in semi-trailer trucks. How to control exhaust emmission.

Soon you'll start thinking like a giant. You'll grow bigger

because you've got more going for you.

A network of computers to put confusing facts and figures into perspective.

Complete testing facilities to prove out better ideas.

And at Ford Motor Company, your better ideas won't get axed because of a lack of funds. (A giant doesn't carry a midget's wallet, you know.)

Special programs. Diverse meaningful assignments, Full responsibility. The opportunity to follow through. The best facilities. The funds to do a job right. No wonder 87% of the engineers who start with Ford are here 10 years later.

If you're an engineer with better ideas, and you'd like to do your engineering with the top men in the field, see the man from Ford when he visits your campus. Or send your resume to Ford Motor Company, College Recruiting Department.

You and Ford can grow bigger together.

THE AMERICAN ROAD, DEARBORN, MICHIGAN AN EQUAL OPPORTUNITY EMPLOYER.

What's it

Rather enlarging!

FORD MANAGEMENT:

THE EDSEL AND THE MUSTANG

DEAN REYNOLDS

In September of 1957, Ford Motor Company launched a new middle-priced automobile which had already cost \$250 million to market and was calculated to be an instant success. Ford expected to realize a good return by selling 200,000 of its new line the first year. The Edsel was the biggest failure in automobile history. Exactly two years, two months, and fifteen days later Ford had sold less than 110,000 Edsels, and had lost \$350 million in the process.

How could this happen? Ford Motor Company had money, brainpower, and supposedly, the experience to prevent such a mistake.

The Contrast

In contrast, Ford launched a smaller and better planned automobile in September of 1964. This car, the Mustang, was such an instant success that the Ford balance books looked better than at any time since 1959. It is true that Ford had had success with the Falcon and Comet in the very early sixties, but the Mustang set records beyond all expectations.

What talents and changes caused the remarkable comeback of Ford in those seven years? The answers were not difficult to find. Lack of experience and ignorance of marketing techniques in the early fifties had been replaced with maturity and intense operations research techniques by the early sixties.

Even before Ford discontinued the

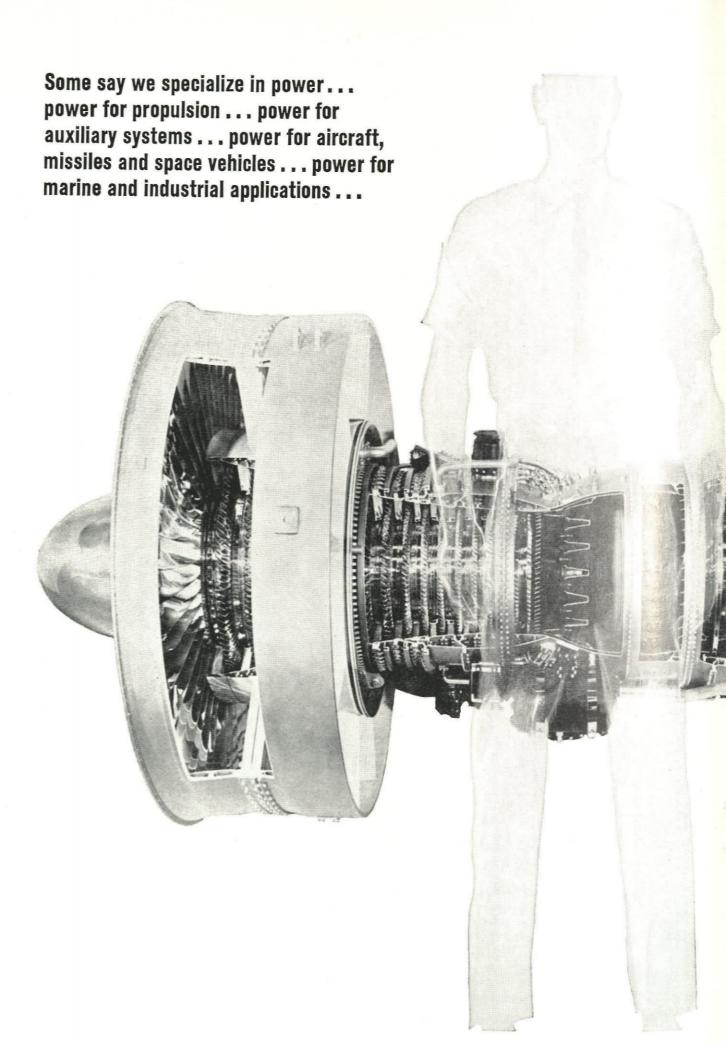
Edsel, the car-buying public had its answer to the Edsel fiasco, and it was widely accepted. The Edsel, it was thought, had been made, designed, and promoted in a calculated manner, and the public simply would not respond to such unspontaneous wooing.

It is true that the Edsel was supposed to be the product of a precisely calculated risk. It was not. Public taste changed before the Edsel could be designed and marketed, and Ford was not aware of the change. Old-fashioned selling methods were used at a great loss, and the name "Edsel" was chosen arbitrarily after over eight thousand purchased names had been discarded at the last minute.

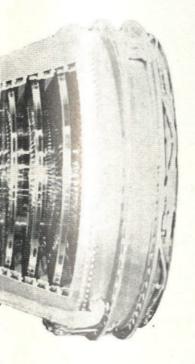
The Edsel had its beginnings as early as 1948, when the management at Ford recognized that the Mercury, Ford's middle-priced car was competing with three General Motors products: Pontiac, Buick, and Oldsmobile. Some Ford officials felt that to battle GM, that Ford should have a competitor for each GM car. Of course, the post-war boom was no time to introduce a new line, but after the boom had ended and sales began to slump in the mid-fifties, Ford could use a boost.

Further, market studies indicated that Ford was producing customers for GM. Ford car owners were trading up to the larger GM cars instead of Ford's Mercury.

There was no problem when it


came to Ford's recognition of the enormous risk it would face. No major automotive manufacturer had introduced a new standard-sized make since 1938, when Ford had launched the Mercury.

In April, 1955, Ford set up its Special Products Division. The first decision made by the new division was that the newest of the nineteen automobiles currently on the market were too similar, and that a unique new car would be very much in demand. Ford designers had fully styled the "E-car," as it was then known, by the summer of the same year. The E-car could be easily recognized from other makes because of its distinctive looks, both front and rear.


Needed: A Name

The next step was to give the Ecar a name, and for this, Ford employed the Columbia University Bureau of Applied Social Research. Columbia interviewed hundreds of recent new car buyers in two states and prepared a list of names most often mentioned in the poll. Ford's idea was to give the E-car its own unique personality. The Ford car had no image of social pretension as the low-priced model, and the Mercury even less as somewhat of a hotrod. Small wonder Ford car owners were trading up to competitor's automobiles. The personality of the E-car was to be fit for the young family executive on his way up.

(Continued on page 28)

... they're right. And wrong.

It might be said, instead, that we specialize in *people*, for we believe that people are a most important reason for our company's success. We act on that belief.

We select our engineers and scientists carefully. Motivate them well. Give them the equipment and facilities only a leader can provide. Offer them company-paid, graduate-education opportunities. Encourage them to push into fields that have not been explored before. Keep them reaching for a little bit more responsibility than they can manage. Reward them well when they do manage it.

You could be one of the reasons for Pratt & Whitney Aircraft's success...if you have a B.S., M.S. or Ph.D. in:

MECHANICAL • AERONAUTICAL • ELECTRICAL
• CHEMICAL • CIVIL • MARINE • INDUSTRIAL

FINGINEERING • PHYSICS • CHEMISTRY • METALLURGY

- . CERAMICS . MATHEMATICS . STATISTICS
- COMPUTER SCIENCE ENGINEERING SCIENCE
- ENGINEERING MECHANICS.

And we could be the big reason for your success. Consult your college placement officer—or write Mr. William L. Stoner, Engineering Department, Pratt & Whitney Aircraft, East Hartford, Connecticut 06108.

- An Equal Opportunity Employer

The loser Ford will never forget - the 1957 Edsel.

(Continued from page 25)

Armed with a list of two thousand possible names, researchers next walked the streets of New York City asking what free association each name brought to mind. These results were tabulated and stored.

An advertising agency was called in and worked for some weeks in compiling still another list of six thousand possible names.

By this time it was spring of 1956, and the dies for the new car had to be made, and some would bear its name. The advertising agency set about to trim its list to ten names. Top on the list was Corsair, which had done well on all occasions.

Committee Chose Edsel

A meeting of Ford executives was held to finally determine the name. Coincidentally, all of the Ford brothers were out of town, and the chairman of the board conducted the meeting. He felt the name must be decided upon immediately, and did not particularly like any of the final choices. Led by the board chairman the committee decided to call the car "Edsel" without regard to any of

the experts' selections. In fact, the name choice was amazingly arbitrary in the face of Ford's expenditures in order to make the choice a scientific one. All of the Ford brothers went along with the choice of the committee.

In November of 1956, the public learned that the new Ford automobile had been named Edsel. It has been said that the time lag between this announcement and the actual appearance of the Edsel nearly one year later had something to do with leaving the car-buying public somewhat stale on the name.

Next, Ford set out to establish 1200 Edsel dealers from coast-to-coast. Why Ford chose to establish new dealers still remains somewhat of a mystery. There were numerous dealers already handling Ford products, but Ford took much care and spent great sums in establishing new Edsel dealers. Once Ford had signed these Edsel dealers, the Edsel program could not be discontinued. The Edsel had to get into production.

By June of 1957, Ford Motor Company had set aside \$200 million in production money, and \$50 million for initial advertising of the Edsel. The first advertisement for the Edsel appeared in *Life* in July, 1957.

Advertising Overdone

So intense was the advertising for the Edsel during the summer of 1957, that Ford officials later felt the resulting publicity actually hurt the Edsel cause. Wire services picked up stories about the new car, and by late summer, the public was hysterical to see the new car. As weeks went by and the public saw more advertisements, it visualized the Edsel as a dream car, different from anything it had ever seen.

Finally, early in September, 1957, the Edsel was revealed to the public, and nearly four million people presumably saw the Edsel in its first day in the showroom. To the disappointment of some, the car had four wheels and an engine, just like any other car. The Edsel was different, though. For less than \$4000, the Edsel was a radically-styled 4000 pound plus monster with up to 345 horsepower. It had gadgets inside including eight warning lights and even a push button array for the automatic trans-

A good name for a small sporty Ford and the 1964 Mustang began its career as a winner.

mission located on top of the steering wheel post, right in the middle of the wheel. The Edsel was longer than the biggest Oldsmobile, and as wide as any American car has ever been.

All was not disappointment, as the Edsel sold 6500 cars the first day, and the first month, September, had some sales.

Bad Publicity Caused By Poor Quality Control

Soon after the new Edsels began to sell, a grave error in Ford's management of quality control was discovered. In its rush to supply the dealers with Edsels, management had neglected to set and maintain rigid quality control standards, and Edsels began to fall apart at an ever-increasing rate. Consumers Union - which bought cars on the open market so as to test undoctored samples - purchased and tested an Edsel. The rear-axel ratio was wrong, an expansion plug in the cooling system blew out, the power steering pump leaked, the rear-axel gears were noisy, and the heater would not shut off. Same was, of course, published by Consumers Union. This was not the only bad

publicity the Edsel received, and while not all Edsels were that bad, it was only too typical of the publicity the Edsel received. Ford later estimated that only about half of the first Edsels performed as they were supposed to.

Despite costly advertising gimmicks Ford put on during the ensuing months, Edsel sales went from mediocre to poor. Dealer panic set in, but this time Ford management handled the situation well, and by December, dealers were ready to get sales moving again. Sales would not move, however, despite everything Ford did. At the end of the 1958 model year, Ford had sold less than 35,000 Edsels.

The 1959 Edsel was much lighter than its successor, and had less horse-power. It actually began to sell in November of 1958. Sales progressed somewhat during 1959, but were still only one-fourth of that needed to make a profit. The 1960 Edsel appeared and was discontinued in November of 1959.

Ford had attempted to give the public a large, luxurious, powerful car. Instead, just as the Edsel was discontinued, the Falcon was an instant success in the compact car field. The Edsel had been a giant step in the wrong direction.

The Mustang: Success

The Falcon was introduced by Ford in 1959, and was very successful. It was the product of very careful planning and recognition of the market. The Falcon had been designed and produced so as to hit the market when it was wanted. With stark simplicity and relatively few defects the first year, the Falcon was conservative much as the Model T had been.

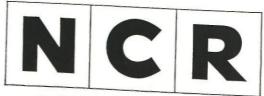
The success of the Falcon was slowed by the revamping of Chevrolet's Corvair with a new model called the Monza. The Monza appealed to young people, and a jazzed up Falcon still bore connotations of conservatism. It was in May of 1961, that Ford began to develop a sporty new model.

In 1962, Ford had designed the basic Mustang, and its shell began to emerge at automotive races where Ford was having tremendous success.

Before Ford would market a new (Continued on page 33)

If you want a career with the only big computer company that makes retail data systems complete from sales registers to computers, where would you go?

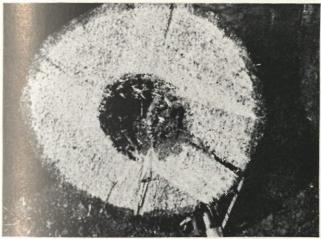
Guess again.

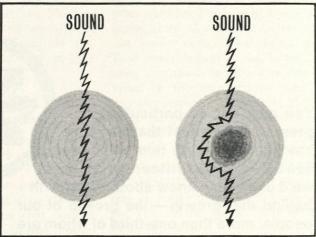

It's NCR, and this is not the only surprise you may get if you take a closer look at NCR.

We're a company alive with new ideas, research, development. A year never passes without NCR increasing its investment in research. We have hundreds of engineers, chemists, and physicists exploring their own ideas for the company that's willing to wait and let them do it.

Take a closer look and you'll see that NCR makes computers, electronic accounting systems, highly sophisticated solid-state communications systems for space and defense applications, and you'll see that even our good old cash registers have become advanced information machines for businessmen.

In a list of "emerging ideas of 1966," Business Management magazine credits NCR with two out of seven: pioneering in laser technology for recording data, and development of our new PCMI microform system that puts the Bible on a projector slide.


When you start looking, look closely at NCR. NCR can surprise you; maybe you have some surprises for us. Write to T. F. Wade, Executive and Professional Placement, NCR, Dayton, Ohio 45409.


An Equal Opportunity Employer.

Got an idea?

Detroit Edison's interested.

 Edison engineer, Dick Popeck, wanted to find a more effective method of determining the amount of pole decay.

Dick's idea: Measure the time required for sound to travel through a pole. Sound takes longer to traverse a decayed pole.

Transistorized circuitry was designed. And a Sonic Pole Tester was built and tested.

 Ed Hines, Director of Research, (left) discusses patent coverage with inventor Dick Popeck.

New ideas grow at Detroit Edison. The picture story here shows the progress of one, from its conception through its development, to finalization.

The development of the sonic pole testing device* has benefited the company and the young inventor both economically and professionally. The device helps Detroit Edison serve the electric industry's customers better and more economically.

Uses for the sonic pole tester range from the examination of wooden railroad bridges to the de-

termination of the soundness of standing timber.

Detroit Edison's forward looking management

. . . its engineering and research facilities . . .

along with its liberal patent policy . . . make it an

ideal place for the young man with ideas.

If you are interested in putting your ideas and energies to work—write to George Sold, The Detroit Edison Company, 2000 Second Avenue, Detroit, Michigan 48226, or visit the Edison representative when he interviews on campus. *U.S. Patent Applied for

DETROIT EDISON

OUR GROWTH AND YOURS

You may not be particularly impressed by the fact that our staff has gone from less than 50 to over 3500 in the past fifteen years. But we'd like you to know about the growth behind that growth—the growth of our people, more than one-third of whom are professional engineers and scientists.

Our people have grown because they have found satisfying work in a relatively small segment of a relatively large and important company. They are involved in programs with high continuity factors, experiencing the satisfactions derived from doing significant work in an advanced area of electronics.

Perhaps you are the kind of person to grow with us. Here you'll find the reasons we've attracted good people. Not the least of these is the exceptional environment of the San Francisco Peninsula, where the climate is as good as any you'll find in the West, and where your children will benefit from the exceptional public schooling available in the area.

Check us out; compare the opportunity here with that available anywhere else. If we look good to you and you look good to us, it could be the beginning of the most important phase of your career.

BS/MS ME BS/MS/PhD EE BS/MS IE MS/PhD Statistics/Math

See your college placement office for our brochure.

Campus Interviews February 19-20

Career opportunities exist in the following areas:

E. W. Systems • Countermeasure Systems and Techniques • Systems Vulnerability • Intercept and Detections Systems • Operations Research • Reconnaissance Systems • Broadband Antennas • HF/VHF Receivers • Transmitters • Transceivers • Signal Processing • Microwave Optics • Microwave Devices • Solid State Circuits • Advanced Instrumentation • High Speed Digital Data Handling Systems • Broadband Millimeter Wave Techniques • Electronic Packaging.

Choice of California locations: Our R & D facility on the San Francisco Peninsula in Mountain View or our manufacturing facility in the beach city of Santa Cruz.

An Equal Opportunity Employer

car, a tremendous market research study was undertaken. Models of a small, sporty Ford were made, and public reaction and acceptance were measured. The need for a car of this size had been established by the Falcon, and Ford felt that if it could avoid a boner in styling, it would have what the young set really wanted: the economy and simplicity of the Falcon, and the sporty look of a more costly vehicle.

Ford also knew the young set would react to a good name. The Monza had shown that. Ford itself conducted a study that ultimately showed the three best names were Cougar, Mustang, and Torino. Mustang was chosen by Ford officials on the basis of study information.

Rather than market a completely new car, Ford chose the Falcon drive train in the Mustang. Costly retooling was avoided, since only the body showed any real change. More important to sales, the defects that had plagued the Edsel were avoided since the engines and transmissions had already been in production for several years.

Advertising and Marketing Well Planned

Market time for the Mustang came within a few months after the public found out about the sporty new Ford. Advertising had been held to a minimum, and when the public saw the Mustang, the advertising intensity was increased Established Ford dealers were used to distribute the Mustang, so that if it didn't sell, Ford merely discontinued production, and very little dealer investment would be lost.

Notably, the Mustang was hitting the market where no established line of cars existed, much as the successful Falcon had done. Ford was no longer hitting General Motors head-on in the costly battle for sales. Instead, Ford was establishing completely new lines of cars, a practice known to the industry as model proliferation. Ford had already had success in this field with its now established Falcon, Comet, Fairlane, and Thunderbird. Unbelievably mammoth General Motors was spending millions of dollars trying to catch up with Ford in its newly established small car lines.

There was no doubt that the Mustang would be accepted after the first

month of sales. Ford's only problem for a while appeared to be making enough Mustangs so that dealer stock would not run short. Quality control standards were rigidly maintained throughout, however, and the quality of the new Mustangs was good. To the surprise of even Ford's officials, Mustang's first year showed a record 418,812 sales.

Mustang had hit the market at an optimum point. Mustang sales continued to set records. Sales of full-sized Fords and Mercurys increased indicating that the Mustang was producing Ford customers. Once again, Ford Motor Company had lived up to Henry Ford's axiom, "We are winners!"

Maturity and Present Day Ford Management

The structure of management at Ford has not changed drastically in the last ten years. The Ford family still owns 40 percent interest, and does not hesitate to exercise its power. Ford still is somewhat unique in large business terms in that it often bypasses organizational lines. Robert McNamara had many men between him and the top executive levels on his way up to the presidency. Ford is refreshingly different in the cutthroat automotive business. Management is young, brainy, alertly aggressive and restricted neither by traditional practices nor rigid organizational structure.

The biggest difference in top management levels at Ford recently is education of individual personnel. Most division heads are educated as engineers, and consequently, are not subject to the sneering and friction experienced by some of the "Buck Rogers" types of a decade ago.

Typical of the modern Ford management, top level research engineers have been assigned the project of determining the optimum level of new car inventories in the hands of dealers. The answer could be worth millions of dollars. Nothing less than a mathematical model demonstrating interrelationships of all principles involved satisfies the new Ford management.

Ford Learned From Its Mistakes

Ford, more than any of the big three automotive manufacturers uses computer techniques and sophisticated research methods in all phases of automotive production. It learned from the Edsel failure not to ignore what research had indicated. Large corporations have often been accused of rigging markets and dictating to the customer. The consumer certainly dictated without peer when Ford tried to sell the Edsel. \$50 million of advertising is a lot of advertising to ignore.

The Edsel was a tragic failure, and the only good Ford could tangibly claim was the demonstration of company stability. Ford could lose a staggering third of a billion dollars without losing rank. The Edsel gave Ford many lessons in marketing, the most important being a complete reversal in the management view of how to compete with General Motors. Sheer firepower is GM's hallmark, and Ford learned to respect GM in this way. Says one high official:

"We are like Chinese bandits. We hit them [GM] and run." The success of Ford's model proliferation in the last decade speaks well of this new approach.

Ford now realizes that it is suicide to hit GM head-on, and has gone even further in measuring its performance in absolute terms instead of GM's. In short, Ford management now realizes that Ford Motor Company is an entirely different creature than GM, and that Ford requires markedly different organization and policies.

Ford discourages direct comparisons with its biggest rival, but obviously believes in its brand of management in the long haul. Maturity has set in, and while Ford is not beyond mistakes, neither is General Motors. Ford now believes it is no longer impossible to take over from General Motors.

BIBLIOGRAPHY

Brooks, John, The Fate of the Edsel and Other Business Adventures. New York: Harper and Row, 1963, pp 17-75.

Sorensen, Charles E., My Forty Years with Ford. New York: Collier Books, 1956, pp 35, 301-308.

The Ford Story, Part Three. Detroit: Ward's Quartely, Powers and Co., Inc. 1965, pp 103-138.

Nader, Ralph, Unsafe at Any Speed. New York: Grossman Publishers. 1965, p 156.

Cordtz, Dan, "There's Another Generation of Whiz Kids at Ford," Fortune. New York: Time, Inc. pp 1-8 (Reprint).

How do you stop the ravages of cancer? Or control the weather? Can natural resources be synthesized? How do you unlock the secrets of the ocean? These, and many more questions of vital importance to society, need answers.

It is Varian's business to find these answers, through the design and production of scientific instruments and components. This requires an atmosphere where creativity is unhampered by rigid procedures, where technical breakthroughs and accelerated professional growth are commonplace. And this atmosphere is what Varian provides.

For example, all Varian employees are invited to frequent seminars conducted by renowned scientists from leading universities and industry. They are exposed to the latest scientific thinking and receive stimulating cross-learning exposure in a variety of fields, not necessarily related to company technologies. They're also able to continue their education, with tuition reimbursement, at the accredited universities and colleges near every Varian location. And your scope isn't limited at Varian. For example,

we led in the commercial development of the Klystron power tube, invented the VacIon pump and pioneered the commercial development and application of linear accelerators, NMR spectrometers, spectrophotometers, and gas chromatographs, to mention just a few. Further, Varian research is finding new uses for electronics principles in commercial applications, increasing man's understanding of life processes, using microwaves in heating and processing, and much more. You're invited to come along.

Positions offering hard work and intellectual stimulation exist, at all degree levels, for physicists, chemists, and electrical and mechanical engineers. You pick the department — research, development, design, manufacturing, or service engineering — and the area — California, New York, New Jersey, or Massachusetts.

For additional information about the opportunities at Varian, write to: David A. Hamlin, Manager, Corporate Professional Staffing, Varian Associates, 611 Hansen Way, Palo Alto, California 94303.

An equal opportunity employer

Varian has a lot of questions for you to answer.

Olin

PRODUCT GROUP	LOCATIONS HAVING CURRENT OPENINGS	MAJOR PRODUCTS PRODUCED	DISCIPLINE REQUIREMENTS	TYPE OF WORK PERFORMED	
CHEMICALS —Inorganic —Organic & Specialty —Agricultural	Augusta, Ga. Brandenburg, Ky. Charleston, Tenn. Joliet, III. Lake Charles, La. Little Rock, Ark. McIntosh, Ala. New Haven, Conn. Niagara Falls, N.Y. Pasadena, Texas Rochester, N.Y. Saltville, Va.	Chlor-Alkali Products Ammonia Phosphates Urea Nitrogen Acids Hydrazine Petrochemicals Insecticides Pesticides Polyurethane Carbon Dioxide Animal Health Products Automotive Chemicals Other derivatives	ChE ME IE Chemistry Accounting Business Adm. Transportation Marketing	Process Development, Design, Maintenance, Planning, Scheduling, Production, Sales, Accounting, Marketing, Financial Analysis, Distribution, Project Engineering (Plant Startup & Construction), Research Engineering, Technical Service	
METALS —Aluminum —Brass —Ormet, Corp.	Burnside, La. Chattanooga, Tenn. Gulfport, Miss. Hannibal, Ohio East Alton, III. New Haven, Conn. Sedalia, Mo.	Alumina Aluminum Aluminum Extrusions Aluminum Sheet, Plate, Coils Brass Fabricated Parts Sheet & Strip — Brass Roll Bond Wire & Cable	ChE IE ME Metallurgy Met. Engineering Accounting Business Adm. Ind Tech. Ind. Mgmt.	Manufacturing Production Sales Maintenance Finance Metals R&D	
FOREST PRODS, PAPER & FILM —Olinkraft, Inc. —Ecusta —Film	West Monroe, La. Pisgah Forest, N.C. Covington, Indiana	Carbonizing Paper Fine Printing Papers Specialty Paper Products Cigarette Paper & Filters Cellophane Kraft Bags Kraft Paper Kraftboard Cartons Corrugated Containers Olinkraft Lumber	ChE Chemistry Pulp & Paper Tech. IE ME Mathematics Business Adm. Accounting	Marketing Process Engineering Plant Engineering Research & Dev. Statistician Systems Engineering Production Management General IE Design and Development Accounting	
WINCHESTER- WESTERN	East Alton, III. New Haven, Conn. Marion, III. Kingsbury, Ind.	Sporting Arms Ammunition Powder Actuated tools Smokeless Ball Powders Solid Propellants Safety Flares Franchised Clubs	Ind. Tech. IE. ME. Mathematics ChE. Accounting Business Adm. Marketing Personnel Mgt. Physics Ind. Mgmt.	Production Control Purchasing Manufacturing Plant Engineering Sales Financial Analysis Personnel Marketing R&D	

If you find this chart interesting,

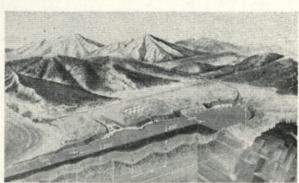
we're interested.

For additional information about Olin,
please contact your Placement Office or write Mr. Monte H. Jacoby, College Relations Officer,
Olin, 460 Park Avenue, New York, N.Y. 10022. Olin is a Plan for Progress company and an equal opportunity employer (M & F).

Well, there goes the old ball game.

No matter! As they climb the ladder of success at Bethlehem Steel, that lost National Championship will be forgotten. You, too, ought to be thinking career. Read "Careers with Bethlehem Steel and the Loop Course." Pick up a copy at your placement office, or write to Manager of Personnel, Bethlehem Steel Corporation, Bethlehem, Pa., 18016. An equal opportunity employer in the Plans for Progress Program

BETHLEHEM STEEL


ENGINEERS & SCIENTISTS

TECHNOLOGY FOR TOMORROW

Our work in advanced nuclear energy research requires original thinking to develop technology for the future.

Plowshare -

The use of nuclear explosives for peaceful purposes is a typical example of one of our long range programs which requires the interaction of many engineers and scientists. Practical applications include: cratering experiments for use in harbor and canal construction or modification; creating large underground cavities for extraction and storage of fuel; copper ore mining — fracturing of tons of low-grade copper ore and its subsequent leaching and precipitation as native copper.

Harbor Excavation. Harbor: 4-200 KT at 800 ft. DOB. Area \sim 180 acres. Channel \geq 5-50 KT at 500 ft. DOB minimum depth - 50 ft. MLW.

Electronics Engineers -

Design and develop electronic systems necessary icr assessing the effects of experiments.

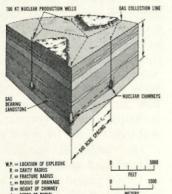
Mechanical Engineers -

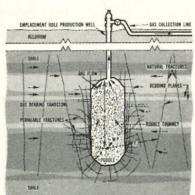
Design, develop and install the nuclear explosives and the diagnostics equipment to provide seismic and shock data.

Solid State Scientists -

Investigate the structural changes brought about by the excessive heat and pressure during a nuclear explosion so as to correlate the material properties with the history of the material and at the same time obtain a better understanding of the structure of matter.

Other Long Range Programs at LRL Include: radiation effects on the biosphere; development of controlled thermonuclear reactions; nuclear weapons for national defense; and reactors for power in space.


Additional Opportunities for Engineers:

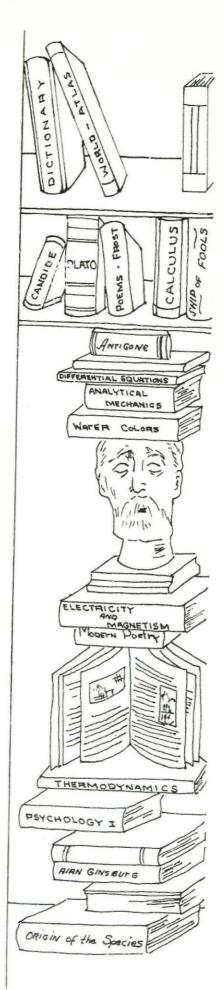

Electronics Engineers

Systems Design & Development Instrumentation Computer Technology Nuclear Effects (Field Engineering)

Mechanical Engineers

R&D Assignments in: Advanced Machine Design Materials Engineering Applied Mechanics Analytical & Experimental Stress Analysis

GAS RESERVOIR STIMULATION


We will be on campus to interview students in the Sciences & Engineering on February 12.

Call your placement office for an appointment or write: Personnel Department, Lawrence Radiation Laboratory University of California, P.O. Box 808,80-78 Livermore, California 94550

An Equal Opportunity Employer

U.S. Citizenship Required

BOOK REVIEWS

1967 Steam Tables

Electrical Research Association. New York: St. Martin's Press, 1967, 146 pp., \$18.50.

The 1967 Steam Tables diligently documents the thermodynamic and physical properties of water. 1967 Steam Tables was prepared with objectives in mind: the tables would be accordance with the International Skeleton Tables determined at the Sixth International Conference on the Properties of Steam held in New York in October 1963, and (2) they could easily be incorporated into analytical expressions to be solved with a computer.

Data on the properties of steam extended to higher temperatures and pressures was obtained from experimental work by laboratories around the world.

Included in addition to tables normally associated with steam data are tables of specific heat capacity and transport properties, dynamic viscosity and kinematic viscosity, thermal conductivity and Prandtl Number. Also included are the International Skelton Tables-1963, of the saturation line, specific volume, specific enthalpy, dynamic viscosity and thermal conductivity for water and steam.

The tables of specific enthalpy, entropy, and volume range from zero to 15,000 pounds of force per square inch and from 32 to 1500 degrees Fahrenheit.

Phase diagrams also are included for determination of the dynamic viscosity of water and steam as a function of temperature at various isobars, the kinematic viscosity of water and steam as a function of pressure for various isotherms, the thermal conductivity of water and steam as a function of temperature for a spectrum of isobars and critical mass flow per unit of area as a function of initial pressure and tempera-

A very adequate list of conversion factors for each property in all major systems of measurement is compiled and is easy to use.

All tables are presented in a forthright manner-the data are not

crowded, different styles of type are used whenever possible to facilitate interpretation and the formulae used to obtain theoretical correlations with experimental data are presented in the appendices with all units clearly indicated. Also, the eyepleasing quality of the low-gloss flat white paper should be mentioned.

However, two sets of information that are noticeably missing are the temperature-entropy plot and the Mollier Chart. If these two charts were included, the 1967 Steam Tables would be, in this writer's opinion, the compleat thermodynamic data book.

-Sam Carlsson

Digital Logic and Computer Operations

by Robert C. Baron and libert T. Piccirilli. New York: McGraw-Hill, October, 1967, 321 pp., \$13.50.

The principle aim of Digital Logic and Computer Operations is to introduce the fundamentals of the computer to the reader who has a basic mathematical background. Using diagrams, text questions, and lab experiments and demonstrations, the authors have created a good book for anyone who is just becoming acquainted with a computer.

Logically constructed, the book presents each idea in conjunction with diagrams in order to further their explainations. The history of the computer introduces the reader to the different types of computers and to the basic elements of the digital computer. The various number systems (binary, octal, etc.) are then explained in order to lay the foundations of the computer system. Expanding the idea of this system, the authors present next a chapter on logic reasoning and truth tables, followed by an enumeration of the various codes used by the computer. Then assembling these ideas, a few arithmetic operations are discussed as well as types of memory and the control element. The different input/output equipment available and a short introduction to computer programming complete this elementary summary of the basis of a computer.

Digital Logic and Computer Opera-

tions presents a fairly comprehensive study of the basic functions of a computer. Describing the fundamentals of all computers instead of the specific operations of one computer makes this book a valuable guide to the beginning computer student. Being a current book, it discusses the various uses the computer has found quite recently. The usefulness of any computer, however, depends on the capabilities designed into it, so it is of great value for one to understand the basic operation of the computer.

A well-written book, it develops four elementary building blocks of the computer in the first chapters, and then proceeds to organize these building blocks into the various working elements of the computer field. Written solely for the beginner, it makes no reference to specific electronic parts or complicated formulas, but follows a plan involving diagrams and problems to present the working idea behind the computer. The exercises at the end of each chapter are a definite learning instrument, but could be supplemented with an appendix giving some of the answers in order to show the student that he was on the right path. But, generally speaking, the book is an excellent guide for people unfamilar with com-

-Terry Lawry

Engineering Manual

Second Edition; Robert H. Perry, Editor. New York: McGraw-Hill Book Company, 1967, 770 pages, \$11.75.

The Engineering Manual is a compact volume containing reference data, not only on general engineering principles, but also on six specific fields of engineering. Prepared by a staff of specialists under the direction of Dr. Robert H. Perry, also editor of the Chemical Engineers' Handbook, the Engineering Manual is a ready reference, source on questions which commonly arise concerning engineering.

The Manual is divided into nine sections, the first three being devoted to general principles of interest to all engineers. Section 1, "Mathematical Tables and Mathematics," contains fifteen standard reference tables from Five-Place Common Logarithms to Wire and Sheet-Metal Gauges. It also presents condensed

sections on the basic areas of mathematics, with definitions, principles and methods. Section 2 is "The Engineering Core." Here, the basic engineering areas of thermodynamics, fluid flow and heat transfer are covered. In Section 3, the physical, chemical and mechanical properties of elements and compounds, as well as extensive data on metallic and plastic construction materials are contained.

In Sections 4–9, a noted authority in the fields of architectural, chemical, civil, electrical, mechanical and nuclear engineering has summarized the basic principles and design methods of his discipline, with all significant data clearly presented.

The Engineering Manual is wellorganized and indexed and is thus easy to use. Over three hundred illustrations, graphs and charts contribute to the clarity of the sections. Noticeably missing is a section on aeronautical engineering. However, the information continued on the other disciplines, as well as the general engineering data, is fairly complete, although not detailed, and references are cited where appropriate.

The Engineering Manual is a valuable book for any practicing engineer or engineering student. It provides easily found information on the everyday type questions which arise in the study and practice of engineering.

-Kathy O'Donoghue

Engineering: Its Role and Function in Human Society

Edited by William H. Davenport and Daniel Rosenthal. New York Pergamon: Press, 1967, 284 pages, \$7.50.

Engineering: Its Role and Function in Human Society, part of the Pergamon Unified Engineering Series, is an anthology of essays and articles attempting to relate engineering and humanism. The book is divided into four sections which examine different approaches to the relationship, comparing and contrasting the foundations of each area by presenting the historical views of each group, the problems which bring them together, and the future as viewed by engineers and humanists.

Part I, "The Viewpoint of the Humanist" traces the changing attitude of the humanist toward science and technology, beginning with the Nineteenth Century aloofness as expressed by John Henry Newman and Samuel Butler and developing into the modern concern and interest of D.A. Piatt and Aldous Huxley. The eight essays of this section, written from 1852 to 1963 demonstrate well the changes which have occured in the last one hundred years.

In Part II, "Attitudes of the Engineer," the viewpoint is reversed. The engineer looks at himself and society through the eyes of such men as Herbert Hoover, John C. Calhoun, Jr. and R. B. Lindsay. The engineer has changed from an aloof, self-conscious specialist to a very out-spoken and socially concerned individual who considers the human element integrally in his work.

"Man and Machine." the third part, considers the effects of technology on civilization and studies the question of the future relationships between man and machine. From Sadi Carnot to Norbert Wiener, the machine is dissected in its effect on human society.


The last section, "Technology and the Future," considers the role of science and engineering in the future of man. It emphasizes the responsibilities of the engineer, which do not stop with engineering but encompass the welfare of future civilizations. Robert L. Heilbroner, Vance Packard and Rachel Carson are among the fourteen authors presented in this final section.

Engineering: Its Role and Function in Human Society was compiled as a textbook for engineers in courses on the history of technology or sociology of engineering or for non-engineers in courses on engineering. The authors, one an engineer, the other a humanist, have attempted to present both sides of the question clearly. It is an unusual approach which they have taken, but one which is definitely needed.

The Pergamon Unified Engineering Series was established to fill the gap between the engineering sciences and the social sciences. The texts of this series add to the study of engineering an awareness and understanding of human values and social responsibilities which round out the engineers formal training.

-Kathy O'Donoghue

engineers

CONSIDER YOUR FUTURE CONSIDER BECHTEL

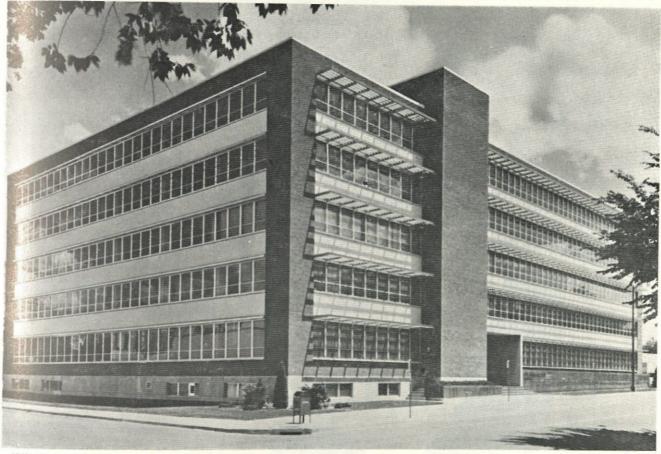
Bechtel Corporation has been a world leader in Engineering, Project Management and Construction for two thirds of a century, serving industry and government in such areas as conventional and nuclear power, metallurgical processing plants, refineries, chemical and petrochemical plants, pipelines, various hydro-related applications, mass transportation facilities, and land use and development.

Bechtel is committed to meet the challenge of advancing technology through continuing technical excellence in areas such as:

- saline water conversion
- urban planning
- mass transportation
- pollution control
- nuclear energy
- extraction of under-water resources

Bechtel engineers provide complete professional services, from economic feasibility studies and conceptual estimates to design, construction and pre-operational plant testing and start-up.

Bechtel encourages and supports continuing education and professional development. Internal technical and management development programs in Engineering, Estimating, and Construction provide the engineer with maximum opportunity for personal and professional development. A tuition refund plan and professional fee reimbursement program are also provided. If you are a Mechanical, Electrical, Chemical, Civil, Metallurgical, Mining, or Nuclear Engineer and want to learn more about a career in engineering and design, conceptual estimating, or construction, see your college placement officer or contact:


Richard S. Jamar, Jr., College Relations Bechtel Corporation Box 3965, San Francisco, California 94119

BECHTEL CORPORATION

Engineers & Builders for Industry
SAN FRANCISCO • Los Angeles
New York • Gaithersburg, Md.
Houston • Toronto • Paris
London • The Hague • Melbourne
An equal opportunity employer

ENGINEERING SERVICES TO INDUSTRY FROM HERE*

*DENVER: The Stearns-Roger central engineering offices.

PLANT DESIGN CONSTRUCTION MAINTENANCE EQUIPMENT FABRICATION One single source, one total responsibility for plant design and construction—that is a thumbnail description of the international capabilities of Denver-based Stearns-Roger.

Current projects include central power stations for major utilities, complete surface facilities for mining operations, petrochemical plants, industrial production facilities, water treatment and desalination as well as many other types of process plants. We are proud of a reputation for efficiently operating plants completed on time and on budget. Can we help you with an industrial or process engineering problem?

Qualified Engineers: Investigate possible openings. Address your resume attention Personnel Department.

P.O. BOX 5888 • DENVER, COLORADO 80217 • PHONE 303/222/8484

ENGINEERING GRADUATES!!!

Looking for the perfect place to work???

There ain't hardly any such animal!!!

No, the perfect job or place to work . . . is as elusive as the Fountain of Youth. This multiple hybrid, patchwork creature simply does not exist. Yet, we are convinced the Naval Ship Missile Systems Engineering Station has much to interest you in that direction. For example, we offer an excellent, smog-free, yeararound climate, (thirty miles from Santa Barbara) generous vacation and sick leave plans; opportunities for earning educational degrees up to the PhD level, as well as project responsibility and personal achievement recognition. Rapid career growth/salary increases are provided through our career development program.

As an expanding organization, engaged in equipment and systems engineering both ashore and at sea with the Navy's surface missile system ships . . . we offer a variety of stimulating assignments. They include such areas as systems equipment engineering · computer/data processing · weapons performance evaluation missile launching, handling and stowage... to name but a few.

So, if you're graduating with at least a BS degree in electronic, mechanical, electro-mechanical, electrical or general engineering and looking for a place to grow ... consider the Missile Engineering Station. We're not exactly perfect, but we have much in our favor. At least, we'd like the chance to convince you. Fair enough? If you agree, why not stop by and see us on Campus on one of the dates below:

> ON CAMPUS FEBRUARY 28 or write or call (collect) Wayne Dundore Dept. 121-F

NAVAL SHIP MISSILE SYSTEMS ENGINEERING STATION

Port Hueneme, California 93041, Area Code 805 Phone 982-4324 or 982-5124 An Equal Opportunity Employer/U.S. CITIZENSHIP REQUIRED UNLIMITED SICK LEAVE STIMULATING ASSIGNMENTS THREE HOUR LUNCHES PHD'S FOR 20-HOUR ALWAYS YOUR OWN BOSS WORK WEEK NO INCOME TAX RAPID CAREER GROWTH SIX-MONTH VACATIONS BEST CLIMATE IN THE WORLD RAISES ONCE A MONTH YOUR NAME ON EVERY PROJECT

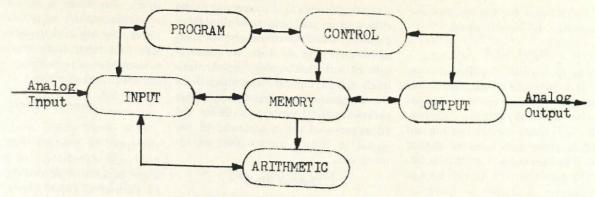


Figure 1 - Digital Computer Components

DIGITAL COMPUTER MAKE-UP

WILLIAM HINES

The applied mathematician of today does not concern himself with numbers but rather is interested in a conceptual or theoretical approach to understanding man's oldest science, mathematics. He devises and proves mathematical models and methods to obtain solutions to a wide variety of mathematical problems. After developing an efficient method of solving a problem, the mathematician need only substitute a given set of data which corresponds to the problem in question; thus the problem at this point reduces to busy work. Being rational, man has always sought to rid himself of this burden. His answer to laborious computations is the computer. But in solving this problem, he has also opened the doors to a vast number of areas in which

the benefits of computers are just now being realized. Indeed, the computer holds much promise for the future and probably ranks as one of the most important inventions of our generation.

The characteristics which set the computer apart from ordinary calculating devices and which make it superior to them are its ability to retain information and its ability to differentiate between quantities. Just how are these abilities built into the computer and how do they work in conjunction with the basic elements of the computer?

The History

Computers are divided into two branches: digital and analog. The digital computer is descended from the abacus, a mechanical extension of the idea of finger counting, and is mechanized to use actual numbering systems by utilizing the two extremes of a condition to represent the presence or absence of a number. The analog computer arose from the straight-edge and compass construction of the ancient surveys and utilizes voltages, shaft positions, rate of change, or some other analog of a discrete quantity. However, this paper will concern itself only with the digital computer.

All digital computers contain the following basic units: (1) input unit, (2) output unit, (3) memory unit, (4) arithmetic unit, (5) control unit, and (6) program unit. These units are illustrated in Figure 1 and it is with this schematic representa-

tion in mind that the function of the components will be discussed.

Input Unit

The input unit of the digital computer compiles the information introduced into it and encodes this information for computer use. Encoding is the process of translating information from any form to digital form. The necessity for this arises from the fact that the world outside the computer is analog or quantitative.

The two main classes of encoding are digital-to-digital and analog-todigital. Digital-to-digital conversions are a problem of time and amplitude adjustment. The problem of time arises from digital inputs operating at a slower or faster rate than the internal computer. The input unit solves this problem by sampling digits as they become available and storing them until it is possible to transfer them out at the computer's rate. Digital-to-digital conversions may also require amplitude adjustment to change the logic of data which is true at some incoming value and is true at another value within the internal computer.

Analog-to-digital conversion involves more problems than digital-to-digital. Most input is in the form of an electric signal; thus, the conversion of a scaled analog signal often loads the signal and thereby affects the magnitude of the signal. This rather involved problem calls for the adjustment of the magnitude of the signal to insure correct flow of information.

Output Unit

The output unit of the computer is essentially the opposite of the input unit. The function of this component is to decode the information in the computer, which is of digital form, to any other form. The most common decoding involves changes of digital-to-digital and digital-toanalog. Both methods of decoding involve the same problems as does encoding and the output unit solves them similarily. Once the decoding has been performed, the output unit releases its data in any one of a number of forms - typewritten, pictorial display, punched cards, etc.

In summary, the main functions of the input unit and the output unit are encoding and decoding respectively. Encoding is necessary to convert information to a form the computer can use and decoding is necessary to convert computer findings to a form that a person can readily understand and evaluate.

Memory Unit

One of the major contributions to the speed of modern digital computers is the elimination of the combersome process of recording the results of numerical calculations by the use of memory units in which intermediate results are automatically and quickly recorded, stored, and fed back into the circuits of the machine as needed. The memory unit is analogous to the human mental process of remembering but differs in one important aspect: the memory in the computer is not subject to forgetfulness.

The memory is subdivided into cells, each cell storing what is commonly called a word. A word may be a binary number, or binary roding for a word in the linguistic sense, or some combination of letters, numbers, and other symbols in a binary roded form.

Memory devices are divided into two groups called volatile and permanent. A volatile memory device is one that loses its stored data if the device loses its power source, or after a certain amount of time. A permanent memory device retains its stored data despite a power failure or the passage of time. Volatile memories are based on an on-off type of electric circuitry while permanent memories use a magnetic device to store information. The most common permanent memories are tapes, cores, and drums.

Storing data on magnetic tape is done by passing the tape under a recording device which will magnetize the tape in one direction to indicate a true state and magnetize it in the opposite direction to represent a false state. Thus, binary information may be impressed on the tape as it passes by. A reading device would then be able to interpret the information by noting in which direction the magnetic field lies.

Another device that can be used for permanent magnetic storage is the ferrite core, which consists of a ring of magnetic material. There are two directions of magnetization:

We're Looking for Slide Clydes

We need graduates. Combustion, electrical, mechanical, civil, industrial, and chemical engineering, metallurgical, and product design types. So if you're looking for action and a chance to make your mark, let's get together. Write: Director of Industrial Relations, CF&I Steel Corporation, P.O. Box 1920, Denver, Colorado 80201.

an equal opportunity employer

Service in Steel... It's part of our product hence, the storage of two logical states is possible. Ferrite cores are magnetized by electrical currents as are tapes. The core is more durable and faster than magnetic tape but magnetic tape is less expensive and requires no circuitry. These differences in properties make the magnetic tape better suited to function as an external memory and the ferrite core, as an internal memory (the external memory being used primarily for temporary storage and the internal memory being used primarily for permanent storage).

The magnetic drum is another form of storage and is essentially a stack of magnetic tapes. The surface of the cylinder is coated with a magnetic material and data is recorded on this in a similar fashion as the tape. The drum is divided into channels along its axis and each channel is divided into sectors. Each channel is like one magnetic tape and each sector corresponds to a word. With respect to performance, the magnetic drum acts like a combination of the tape and core memories.

The Arithmetic Unit

The arithmetic unit performs all the arithmetic computations which the computer operator desires. It is this unit from which most comparisons between desk calculators and digital computers are made. This comparison is good although it must be remembered that digital computers can be mechanized to perform all known arithmetic operations and that not all, but most, arithmetic operations can be reduced to some form of addition or subtraction.

Arithmetic operations are performed in the digital computer by electrical circuits. The design of these electrical circuits stems from the fact that all arithmetic operations can be reduced to just two logical operations. These operations come from the field of mathematical logic. However, the important concept is to realize that these circuits can indeed be built to perform the arithmetic operations.

The arithmetic unit also employs two special memory cells to hold the numbers actually being worked on by the electrical circuits. The first of these is the accumulator register which receives the sum in addition problems or the difference in subtraction problems. The other is the multiplier-quotient register which contains the multiplier in a multiplication problem while the product is being formed by repeated additions in the accumulator. In division, the multiplier-quotient register contains the quotient as it is being built up, while the accumulator contains the dividend as altered by repeated subtractions.

The Control Unit

Up to this point, nothing has been said about the regulation between the various units of the computer. The function of the control unit is to provide this regulation which is necessary in order that the computer performs its operations in a logical manner.

The basis of the operation of a control unit is the repeated application of electrical circuits, called gates, which are opened or closed by voltage pulses. There are electrical connections from each of the memory cells to the accumulator and multiplierquotient register, and from these to the electrical circuits of the arithmetic unit. These connections are interrupted by the gates. Thus, the process of control consists of opening the proper gates, at the proper times, to connect the desired combination of memory cells and arithmetic units. Each gate is designed so that only the correct combination of pulses will cause information to flow (or not to flow) from one unit of the computer to the next. But this leaves the problem of just when is the proper time and which is the proper gate. This problem is solved by the program

The Program Unit

Although the program unit is the last in this discussion of digital computer makeup, its importance should not be underestimated. In digital computers, the method for starting, performing, and stopping control at any time is called programming. The digital computer is capable of performing many varied operations in its arithmetic unit but this does not mean that it will automatically do them. It must be ordered to do them and do them in the right sequence. It is ordered to do them by the set of logical, sequencial instructions prescribed by the digital computer operator.

Thus, the operator determines the sequence of steps necessary to solve a problem within the capabilities of a computer. This sequence is placed in the program unit. The program unit (through the action of the control unit) causes inputs to be accepted (through the input unit), the problem to be manipulated (through an interaction of the memory unit and the arithmetic unit), and the answer to be displayed (through the output).

Summary

To say that this article has exposed the inner workings of the modern digital computer in all its detail would be a rather erroneous statement. However, it has provided a brief look at the basic components of the digital computer which, for their seeming simplicity, combine to form a machine which is revolutionizing the sciences.

Briefly then, the units of the digital computer work together to solve a problem in the following manner. The input unit takes in information and translates it to a form with which the computer can work. The control unit, as instructed by the program unit, regulates the flow of data between all units and especially between the arithmetic unit (where all computations are performed) and the memory unit (where data is stored). After the completion of the problem, the output unit transfers information out of the computer and into a desirable form. The time required for the computer to do this in most cases is a mere matter of seconds. Man has truly devised a highly productive and capable machine to eliminate laborious computations.

BIBLIOGRAPHY

Hintze, Guenther. Fundamentals of Digital Machine Computing. New York: Springer-Verlag, Inc., 1966.

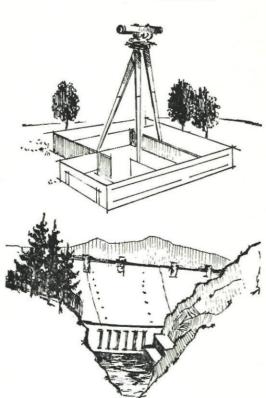
McCracken, Daniel D. A Guide to Fortran IV Programing. New York: John Wiley and Sons, Inc., 1965.

Organick, Elliott I. A Fortran Primer. Reading, Massachusetts: Addison-Wesley Publishing Company, Inc., 1963.

Pennington, Ralph H. Introductory Computer Methods and Numerical Analysis. New York: The Macmillan Company, 1965.

Stibitz, George R. and Larrivee, Jules A. Mathematics and Computers. New York: McGraw-Hill Book Company, Inc., 1957.

Litton Industries — Data Systems Division. Digital Computer Fundamentals. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1965.



CONSTRUCTION

THE ARMY CORPS OF ENGINEERS

offers you a challenging civilian career with:

- The world's foremost and largest engineering organization in the construction field, pioneering new and advanced engineering practices and concepts.
- An organization whose work spans virtually the entire range of modern engineering, including comprehensive planning for development of water and related land resources of entire river basins; design and construction of multi-unit, multi-purpose, integrated systems that encompass navigation, flood control and major drainage, hydroelectric power generation, municipal and industrial water supply, irrigation, water quality control, beach erosion control and hurricane protection, water-oriented recreation, preservation and enhancement of fish, wildlife, and natural beauty values; and planning, design, and construction of complicated, advanced-concept military structures such as the Nike-X anti-missile system, launch facilities and bases for the intercontinental ballistic missiles, airfields, housing, schools, laboratories, and nuclear power facilities. In addition are the allied fields of cartography, geodesy, mathematics and engineer intelligence.
- An organization that recognizes each engineer as an individual, providing well-rounded career development programs with on-the-job training; courses at government expense in colleges, universities, and seminars as necessary to assure steady progression to top professional and managerial levels; encouragement and assistance in attaining professional registration and recognition; and an opportunity to win national and international awards.
- An organization with offices and projects in nearly every one of the 50 States and in many foreign countries that encourages employees to further their development by accepting new and challenging assignments.
- An organization which provides excellent rates of pay with liberal fringe benefits, including generous retirement annuity, complete health and life insurance coverage, paid vacation leave, military training leave with pay, generous sick leave; and special pay awards for outstanding performance and suggestions that improve operating efficiency.

If you're thinking this is all too good to be true, you're wrong! All of the above is available to you in a civilian engineer career with the U. S. Army Corps of Engineers. If you are interested, you can get further information from the Chief of Engineers, Department of the Army, Washington, D. C. 20315.

AN EQUAL OPPORTUNITY EMPLOYER

WRITE FOR AN ILLUSTRATED BROCHURE "YOUR CAREER"

SYMBOL DEPLETION

We've almost lost a good word, and we hate to see it go.

The movie industry may feel the same way about words such as colossal, gigantic, sensational and history-making. They're good words—good symbols. But they've been overused, and we tend to pay them little heed. Their effectiveness as symbols is being depleted.

One of our own problems is with the word "opportunity." It's suffering symbol depletion, too. It's passed over with scant notice in an advertisement. It's been used too much and too loosely.

This bothers us because we still like to talk about opportunity. A position at Collins holds great potential. Potential for involvement in designing and producing some of the most important communication systems in the world. Potential for progressive advancement in responsibility and income. Unsurpassed potential for pride-in-product.

That's opportunity.

And we wish we could use the word more often.

Collins representatives will visit your campus this year. Contact your College Placement Office for details.

COMMUNICATION/COMPUTATION/CONTROL

An equal opportunity employer.

COLLINS RADIO COMPANY / DALLAS, TEXAS • CEDAR RAPIDS, IOWA • NEWPORT BEACH, CALIFORNIA • TORONTO, ONTARIO Bangkok • Frankfurt • Hong Kong • Kuala Lumpur • Los Angeles • London • Melbourne • Mexico City • New York • Paris • Rome • Washington • Wellington

APPLICATIONS OF MATHEMATICS IN DEALING WITH THE NATIVES AND THE PROBLEMS OF ZAN

MIKE COLGATE

In the year 2222 Phineus Fitzgerald's seventeen times great grandnephew, Finster Fitzgerald, found himself on the planet Zan, just onehundred million miles from the sun Parallax Four. Finster, a Fueler Third Class, was on a pass from the Space Marine base which was in the exact center of the visible surface of the planet's only moon (which, like our own, showed only one face to the planet). Finster was overdue because. although he was on a twenty-four hour pass and had only been gone since early morning, Zan had a rotational period of precisely fifteen times that of the planet Earth and Finster was already more the six Earth days late. (The reasons for Finster's lateness comprise another story, which may appear in a future issue.)

Zan was a planet of many odd features, not the strangest of which was the peculiar manner in which its inhabitants behaved. They always traveled in groups of four, and in each group there was one who wore a hat, another who had flat feet, a third who wore strange looking shoes and the last who was a confirmed drunk. Neither the flat-foot nor the one with shoes would speak a word to strangers, while the drunk would answer questions only with riddles. The hat wearer would answer questions only with "yes" or "no", and then only

one question per stranger, but he was either a consistant truth-teller or a consistant liar and it was impossible to tell which. As if those peculiarities were not enough, neither of the natives in each group who would answer questions would answer unless addressed by their correct name, which put strangers at a decided disadvantage.

Finster was walking down the road which led to his spaceship (and, ultimately, Zan's capital city). He knew that the 22,000 mile-per-hour ship was parked (in a metered zone) just midway between the fork in the road and the capital. When Finster got to the fork, however, he couldn't remember whether he should take the right or left road. While gazing into the sky, racking his memory, he noticed that the moon was exactly overhead and was half-full, so that the Space Marine base was cut in half by the advancing shadow.

Eight minutes and 35 seconds later, as the sun was just half hidden behind the flat Zan horizon, the answer to Finster's problem came walking down the road in the form of a four-man group of natives. In the half-light of the setting sun, Finster could see only that the tallest of the group was wearing a brown derby and that shortest was barefoot and quite sober. He could, however, hear

quite clearly the song they were singing:

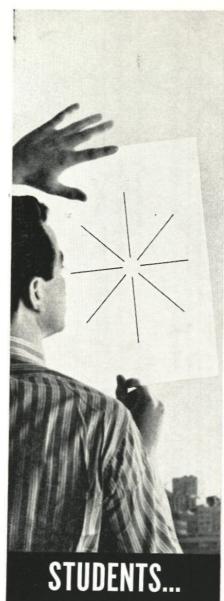
"Zug would be taller if he wore shoes; flat feet make you shorter than guys who drink booze; you can see Ug is taller than the one we call Lug; and Herman is shorter than Ug, Lug, or Zug."

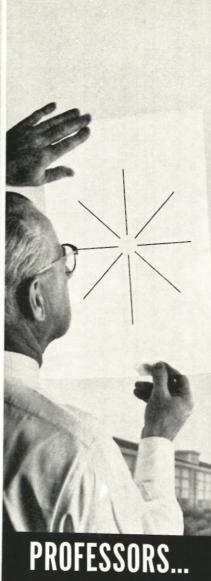
Before Finster could ask a single question, however, an ugly, venomous nastisnapper oozed out of the bushes and bit him on the leg. Knowing the venom took exactly twentyfour hours to take effect, that he could average ten miles per hour walking on the road, and that the only places anti-nastisnapper venom could be found were in the capital city or back at the Space Marine base, Finster immediately asked the drunk how far it was to the capital. The drunk answered, "It is onethousand times as far to the moon." Finster then asked the tallest native a question designed to determine which road to take and started off in a race against time (or nastisnapper venom, if you prefer.)

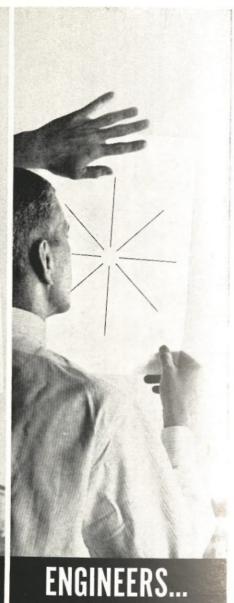
- 1. What were the names of the drunk and and the native with the hat?
- 2. What question did Finster ask the tall native?
- 3. Did Finster go to the capital city or to the moon and did he arrive in time?

MONTH'S PUZZLES

First of all. I (we?) must apologize for the first problem given in last month's issue. Those readers who succeeded in getting Phineus out of the buffalo grass with the maximum possible headstart on the race to the river undoubtedly noticed that the Indian should have caught him twenty-eight yards from the river crossing. The only way to explain Phineus's escape is to suppose he ran straight for the river and swam across, rather than crossing at the regular crossing. This assumption Phineus at the river four yards ahead of the Indian. For those readers who failed to get Phineus out of the buffalo grass, a workable solution does exist. Once one considers the fact that Phineus can generate a greater radial velocity than the Indian up to twentyfive yards from the center of the circle, it is easy to see how he could get to a point seventy-five yards from the perimeter, exactly opposite the Indian, then run to the edge and have


a 14.16 yard headstart on the race to the river.


The most efficient method of crossing the desert involves three journeys into the desert. On the first, one gallon of water is left twenty miles deep in the desert, the other gallon used on the forty mile round trip. On the second, two quarts are left forty miles deep in the desert, the other six quarts and half of the water at the twenty mile point used on the eighty mile round trip. The final journey reaches the other side of the desert, as the stores of water are just sufficient to replenish what has been used to those points and two gallons are available for the final eighty miles. Thus, six gallons or forty-eight pints are necessary in all, and at one hour work and one hour walking per pint, four days will be necessary for the crossing.


To determine the correspondance between office and feather color, it is only necessary to examine the clues given. The Head Medicine Man wore neither blue nor red, and neither the Head Chief nor the Assistant Medicine Man wore yellow feathers. The Assistant Chief didn't wear blue feathers (his son did) and the Head Chief couldn't wear blue because he was friendly with two of the others. This leaves only the Assistant Medicine Man to wear the blue feathers. Since the Assistant Medicine Man would not likely be on bad terms with his own father, the Assistant Chief couldn't wear yellow feathers. Thus, only the Head Medicine Man could wear yellow, and the green feathers must belong to the Assistant Chief, as he couldn't wear the red feathers. That leaves the red feathers for the Head Chief. Therefore, Phineus presented the bones to Red, Yellow, Green and Blue, in that order.

If anyone comments on Tanganoxie being in Kansas rather than Missouri, tell them it was possesed of an urge to move west nearly as strong as Phineus Fitzgerald's.

The answers to this month's puzzles from the planet Zan will appear in March, precluding any interference in interplanetary communications.

CLEARPRINT IS THEIR COMMON DENOMINATOR

The reason for that is quality. To do the best work you have to start with the best materials. For over 30 years Clearprint Technical Papers have served students, educators, and professionals with distinction. ■ Clearprint's unchanging character includes 100% rag uniformity, permanent transparency, outstanding erasing and handling qualities. You get all this in addition to Clearprint's ideal ink and pencil surface.

■ Everyone who uses technical papers should try this comparative test: Draw, erase, and hold the sheet to the light. Not a chance of a ghost! ■ Repeat and repeat this test. The results will amaze you. You will agree — Clearprint is America's finest technical paper. Introduce your students to it today. ■ Write now for Clearprint samples, sizes, and prices.

	CLEARPRINT PAPER
CLEARPUNT	1482-67th Street, En
	☐ Send me Clearprint sa
"FADE-OUT" PAPER	
TECHNICAL PAPER	Name
FORMS • CHARTS • GRAPHS "PRE-PRINT" PAPER	School
THERE IS NO SUBSTITUTE	Address
Clearprint is Watermarked For Your Protection 22	City

1482-67th Street, E	Emeryville, California
☐ Send me Clearprint	samples, with prices, for the following uses:
Name	
Name	
NameSchoolAddress	

Where does an <u>engineer</u> intern?

Before you decide on the job that's to start you on your professional career, it's good to ask a few point blank questions . . . like:

- Will this job let me rub shoulders with engineers doing things that haven't been done before, in all phases of engineering?
- Will I be working for an engineering oriented management whose only standard is excellence?
- Will I have access to experts in fields other than my own to help me solve problems and stimulate professional growth?
- Will I be working with the widest range of professional competence and technological facilities in the U. S.?
- Are engineering careers with this company stable . . . or do they depend upon proposals and market fluctuations?

Why not ask these questions about Bendix Kansas City when Mr. R. E. Cox visits your campus? Please check with your Dean or Placement Director for dates. Or write Mr. Cox at

Box 303-DA, Kansas City, Mo. 64131

PRIME CONTRACTOR FOR THE ATOMIC ENERGY COMMISSION
AND AN EQUAL OPPORTUNITY EMPLOYER

The engineer just back from hunting was describing the trip.

"Well, there was that big black bear hiding behind the tree. I realized that I had only one shot and that had to be bounced off the canyon wall. Well, I calculated the angle of approach, the windage, and how much the bullet would deflect due to the flattening after hitting the canyon wall."

"Did you kill the bear?" asked his friends.

Replied the engineer: "No, I missed the wall."

Not long ago, one of our city-bred engineering graduates was making a trip through the country. As he passed a fertile field he spied an unusual sight—a farmer helping a calving, and he stopped his car to watch the spectacle. He could tell that the farmer was having an awful time assisting the cow.

Presently he got out of the car, approached the farmer and said, "Want some help?" And so, sweating and straining, he assisted the farmer in the difficult task. Then at last the calf was born.

Gratefully, the farmer accompanied the engineer to his car to see him off. But, hesitating as he wiped his brow, the engineer looked up and said: "Say, mister, just how fast was the calf going when it hit the cow?"

Little Boy: "We've got a new baby at our house."

Neighbor: "How nice. Did the stork bring him?"

Boy: "No, he developed from a unicellular amoeba."

Wasn't it Albert Einstein who took a stitch in time?

"Boy, am I scared! I got a letter from a man saying he'll shoot me if I don't stay away from his wife."

"Well, all you have to do is stay away from his wife."

"Oh, yeah? He didn't sign his name!"

"How did Pat get his black eye?"

"He was leading the life of Riley and Riley came home."

Upon seeing a little girl lead a cow along a country road, the parish minister stopped her and asked, "Little girl, where are you taking the cow?"

"To the bull," replied the young lassie.

"Can't your father do it?" questioned the clergyman.

"Nope," answered the little girl. "Only the bull."

Patient (shortly after returning from the operating room): "Why are all the blinds drawn, Doctor?"

Doctor: "There's a big fire across the street, and I didn't want you to wake up and think the operation was a failure."

The farmer told his young son to watch a bull that was in the pasture with a red cow and a brown cow to see if they were mating. Meanwhile the farmer talked with the parson in the parlor.

The boy came running in and said, "The bull's getting it off the red cow."

His papa, very embarrassed said, "No, son You say "The bull surprised the red cow."

The boy came running back soon and said, "The bull surprised the brown cow."

"He did?"

"Yeah, he got the red cow again!"

Historians have done an extensive study of this country's past Presidents and they have discovered some surprising things about the Presidency. With Roosevelt, they found that the Presidency could be a lifetime job. Truman showed them that anybody could be President. Eisenhower demonstrated that we didn't really need a President. Kennedy proved that it was a dangerous job. And now, Johnson is demonstrating that it is dangerous to have one.

Overheard in a math class: "On the last quiz, I got docked three percent for placing a decimal point upside down."

The regular noontime poker session of a group of electronics engineers is neatly labeled with a sign reading: "Probability Seminar."

"My wife is afraid someone will steal her clothes,"

"Why doesn't she have them insured?"

"She has a better idea than that. She's got a guard in the closet to watch them. I found him there last night."

Sweet young thing: "Have a cigarette?"

Elderly lady: "What! Smoke a cigarette? Why, I'd rather kiss the first man that comes along."

Sweet young thing: "So would I, but have a cigarette while you're waiting."

The difference between amnesia and magnesia is that the fellow with amnesia doesn't know where he's going.

"She's a new girl with us and just fresh from the country, so we'll have to show her what's right and what's wrong," said the engineer to his assistant.

"Very good, sir," replied the assistant. "You show her what's right."


Did you ever hear the story about the farmer who was milking a cow on the side of a mountain? He slipped and would have fallen five hundred feet if he hadn't had something to hang on to. The poor cow saved him —but the neighbors thought it was an air raid.

"I've changed my mind."

"Thank Heaven! Does it work any better now?"

-Randy Lorance

This is the image of a Kodak mechanical engineer

fit in:

Correct, literally. But misleading because
Larry Wood's job is not typical of Kodak
engineers in general. Most of them get to handle
a camera—assembled or disassembled—only at home or
on vacation. Unless they happen to be personally hipped
on cameras (which Larry once told us he is).

Diversification has been going on here for a long, long time. That's why we can give an engineer plenty of solid ground for choice—at the outset and later. If his personal feelings incline him away from devoting his talents to fun things like cameras, he gets just as good a chance to demonstrate his capacity for higher responsibility through work in the 72% of our business that has nothing to do with fun cameras. He may be solving problems in the packaging of bulk vitamins for dairy cattle or designing spinnerets for polyolefin hay baler twine or making x-ray processing machines run faster so that society can get more use out of its short supply of doctors.

Kodak itself really serves as a magnificently effective machine through which M.E.'s and other engineers can apply their talents against society's demands. There can be no more valid excuse for Kodak's continued existence.

The engineer's duty consists of constantly improving effectiveness. Here are five ways—each suiting a different personality makeup—to

- 1. Designing new products and better performance into the established ones.
- 2. Figuring out the best possible ways to manufacture the products.
- 3. Applying pure reason through mathematical tools to make the laws of physics serve human needs, not oppose them.
- Creating the right physical tools, the right plants to house them, and the right services to keep them functioning.
- Getting out to where the products are being used, showing the users how to get their money's worth, and bringing back word on how to do even better in the future.

If you want more specific details than that, we are very glad. Just communicate with

EASTMAN KODAK COMPANY

Business and Technical Personnel Department

Rochester, N.Y. 14650

An employer that needs mechanical, chemical, industrial, and electrical engineers for Rochester, N.Y., Kingsport, Tenn., Longview, Tex., and Columbia, S.C., and offers equal opportunity to all, choice of location, and geographical stability if desired. A policy of promotion from within has long been maintained.

"... Accident in the left hand lane of the Queens-Midtown access ramp. Right lanes moving slowly. Fifteen minute delay at the Brooklyn Battery

Tunnel. Lincoln Tunnel backed up to the Jersey Turnpike. Extensive delays on Route 46 in the Ft. Lee area. That's the traffic picture for now, Bob."

However, technical people at GE are doing something about it. Development and design engineers are creating and improving electronic controls and propulsion systems to guide and propulsion systems.

Development and design engineers are creating and improving electronic controls and propulsion systems to guide and power transit trains at 160 mph. Application engineers are developing computerized traffic control systems. Manufacturing engineers are developing production equipment and new methods to build better transportation products. And technical marketing specialists are bringing these products and systems to the marketplace by working with municipal and government agencies.

Young engineers at GE are also working on the solutions to thousands of other challenging problems—products for the home; for industry; systems for space exploration and defense. When you begin considering a career starting point, think about General Electric. For more information write for brochure ENS-P-65H, Technical Career Opportunities at General Electric. Our address is General Electric Co., Section 699-22, Schenectady, New York 12305.

