

PUBLISHED QUARTERLY BY
THE COLORADO ENGINEERS
UNIVERSITY OF COLORADO

If you want to engineer a better world...

a great place to start is with one of the most diversified companies in the world.

Westinghouse thinks its response

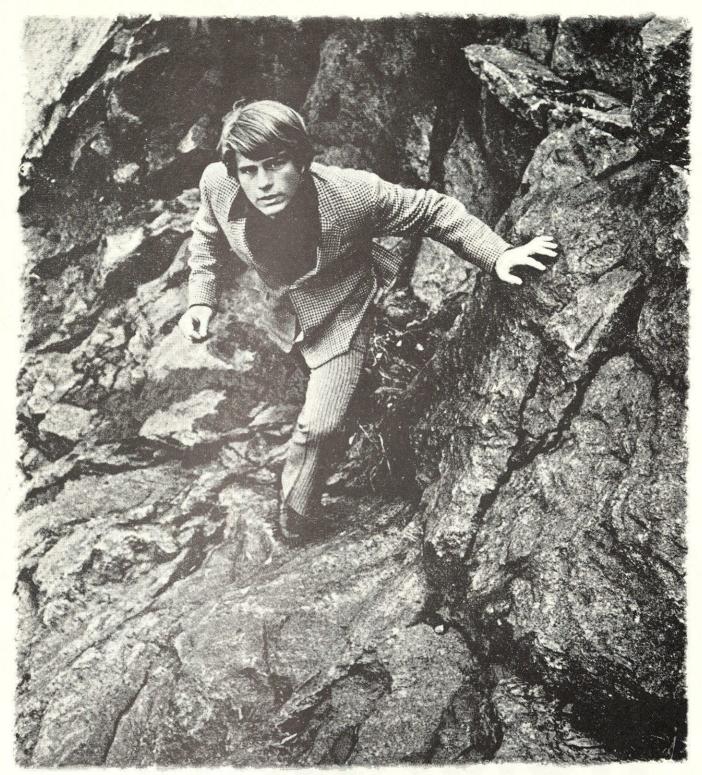
Westinghouse thinks its responsibilities are as big as its capabilities and that's big.

And when you're in everything from computers to urban development, to medical science, to mass transit, to oceanography—there's action. For example...

Transportation: Our computerized transit systems can operate on a 90-second schedule, and meet the transportation needs of many cities.

Urban Development: Our new construction concepts will provide better communities across the country. Projects are planned or underway in 30 major cities.

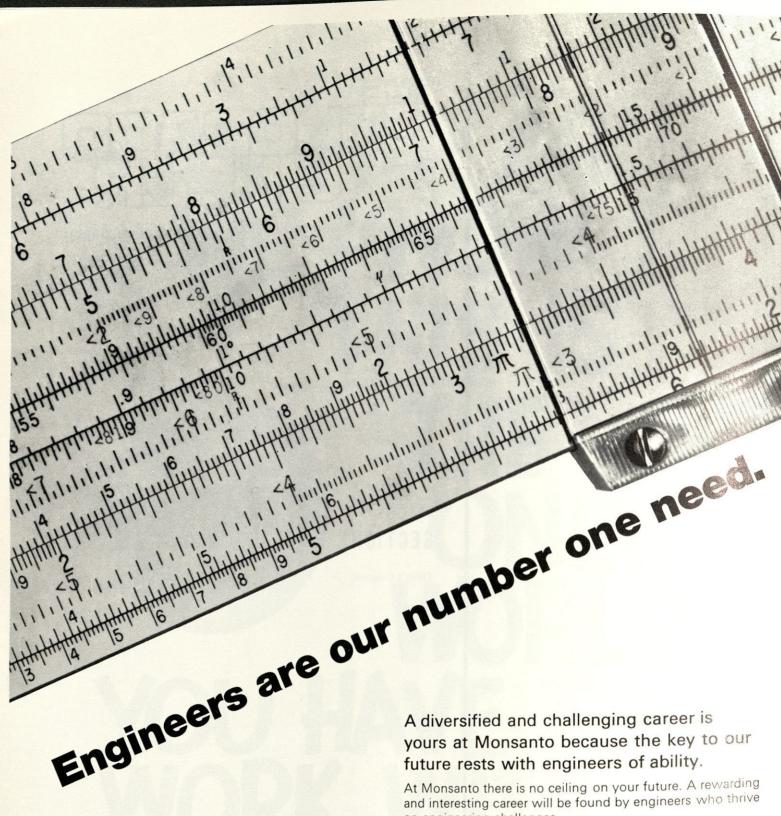
Health Care: We are using a sys-


tems approach to provide better medical care for more people. Example: electronic equipment that lets nurses monitor the hearts of eight patients simultaneously.

Nuclear Power: Westinghouse leads the way in nuclear power generation. Seven nuclear plants in operation, 34 in various stages of design. We're working on a breeder reactor to keep us ahead.

That's a sampling. We're just getting started. If you'd like to help us engineer a better world, talk with our campus recruiter. Or write Luke Noggle, Westinghouse Education Center, Pittsburgh, Pa. 15221. An equal opportunity employer.

You can be sure...if it's Westinghouse (


Working for us is no bed of roses!

It's a tough, demanding job from the very beginning. Practically the very day you join Western Electric we start giving you real responsibilities. You'll have your own decisions to make. Your own problems to solve.

In return we offer the chance to do thinking that may make your head spin – but will certainly

make it grow; the satisfaction of real achievements personally achieved; and the knowledge you're contributing something tangible to the world's largest and most advanced communications network.

Oh yes. One parting thought. If you're tempted by what *does* look like a bed of roses, remember: roses have thorns. **Western Electric**An Equal Opportunity Employer

and interesting career will be found by engineers who thrive on engineering challenges.

Important opportunities are offered to chemical, mechanical, electrical, industrial and civil engineers who are needed to maintain our outstanding growth record. Your professional challenge can be found in engineering, manufacturing, research or marketing at locations throughout the nation.

Excellent benefits and salaries are yours at one of the nation's largest chemical companies.

If you are interested in a career at Monsanto, ask your placement director for more information and see the man from Monsanto when he visits your campus. Or write to: Manager, Professional Recruiting, Department CL 815, Monsanto, St. Louis, Missouri, 63166.

An equal opportunity employer

Monsanto

The boat on the left is riding on water. The boat on the right is riding on Polyox.

When Union Carbide's Polyox resin is pumped out the bow of a boat, friction resistance between the water and boat is greatly reduced.

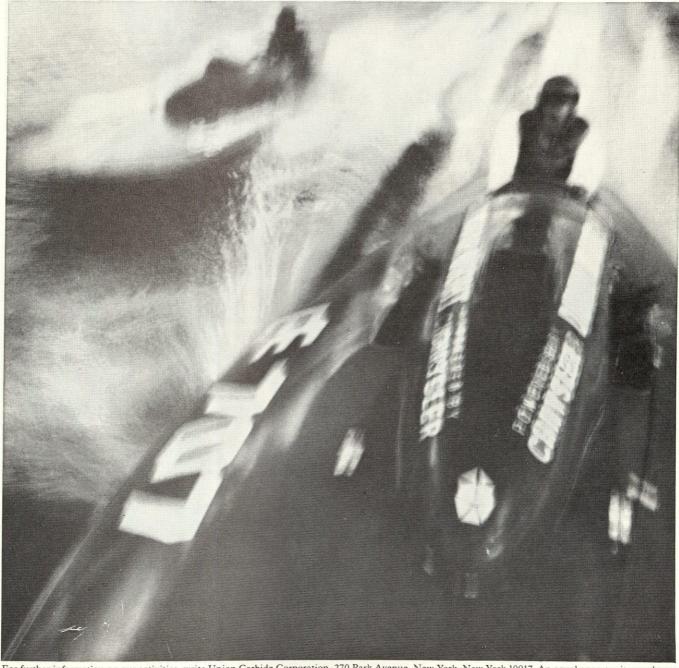
And the boat blurs ahead at record speed. With less than record

It works so well, as a matter of fact, international yachting and rowing competition rules politely call Polyox only one thing. Patently illegal. Totally contrary to purity of sport and all that.

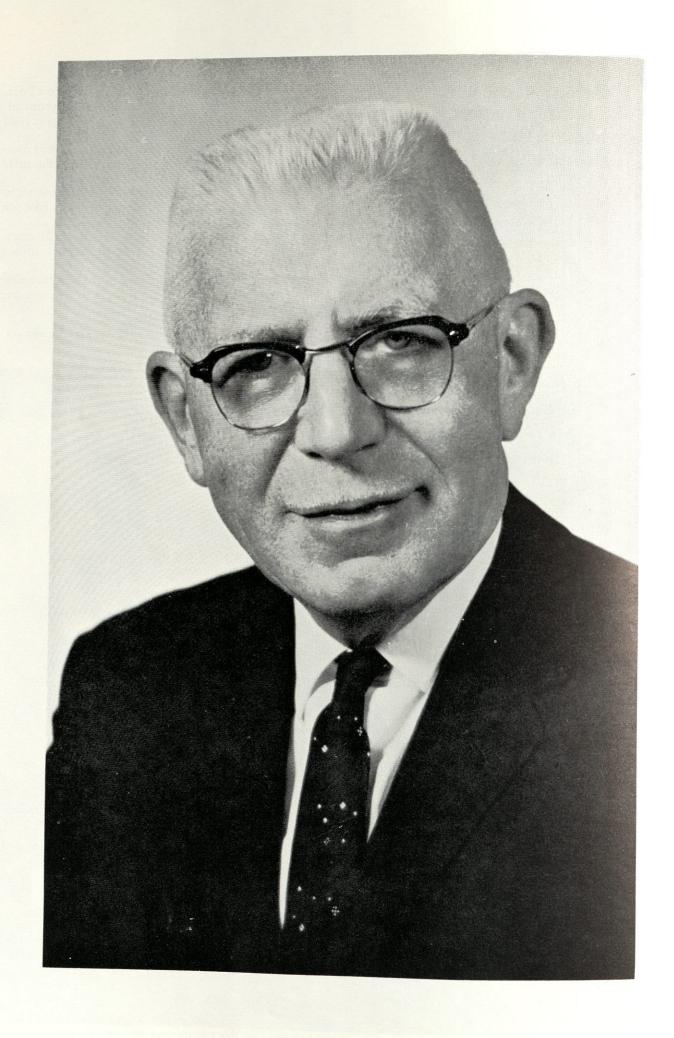
On the other hand, Polyox is the latest wrinkle in maritime technology. The newest way to get bursts of speed out of ships like ice

breakers and rescue boats. Maybe the best way.

We're looking in a thousand different Polyox directions at once. How about the "slippery water" theory for getting water into a burning house faster?


Or pushing concrete up a hose that's 12 floors high? Or pumping more water through an irrigation system? Or making a two-foot sewer pipe do the work of a three-foot pipe?

Or ...?


Polyox resin is one discovery on the verge of becoming 10,000 discoveries.

THE DISCOVERY COMPANY

For further information on our activities, write Union Carbide Corporation, 270 Park Avenue, New York, New York 10017. An equal opportunity employer.

IN MEMORY

OF DEAN HUTCHINSON

The staff of the Colorado Engineer wishes to express its regret at the death on January 13 of Charles A. Hutchinson. By now everyone in the university community has read at least one notice of his death and of his long career as a professional man, teacher, and administrator. His achievements and many honors have been fittingly described elsewhere; we feel it is not too late, however, to record here our respect and a sense of loss for the man and what he eminently represented.

Upon Mr. Hutchinson's retirement in 1966, Dean Peters

The rapport he has developed with his students and the inspiration he has been to them through his teachings is attested by the constant references made to the great influence his teaching has had on their lives by his former students.

Mr. Hutchinson was happiest as a teacher. That same day he remarked, "I've done what I've wanted to do—teach." That he would gladly teach is, it seems to us, the most just cause to honor a man of Mr. Hutchinson's bright and varied achievements. It seems to us that his long tenure as a teacher must be the grandest achievement, that his fifty-two years of affecting the minds and lives of his students is a responsibility given to very few men, and that Mr. Hutchinson filled his role and that responsibility with high distinction. In doing so he has recorded his own place of distinction beyond the customary praise and naming of his achievements.

Attention Bra Engineers!!

Bra-Design Contest In Engineering Schools Set by Garment Makers

Sponsor Says Bust 'Properties' Present 'Unusual' Challenge For Technological Students

By a Wall Street Journal Staff Reporter

June 12, 1968

NEW YORK — A contest to apply complex engineering principles of stress and load to improve brassiere design was announced by Lovable Co.

The national competition, open to engineering school students, is billed as the first of its kind in the country. It carries prizes of \$500, \$350 and \$150, with matching grants to the winners' schools. Entries, which close Oct. 31, become the property of Lovable, a women's undergarment maker with sales of \$60 million a year.

"Considering the complex structure of the garment, we feel that the application of engineering concepts may well make a significant contribution to improvements in design," said Arthur Garson, chairman of Loveable.

Mr. Garson said schools that have agreed to distribute application forms include Harvard University, Columbia University School of Engineering, City College of New York, Purdue University, and Carnegie Institute of Technology.

The Massachusetts Institute of Technology, Mr. Garson said, declined to distribute the forms, explaining such a contest "isn't for us."

A press release says entrants will be required to submit "supportive engineering-design calculations, which may range from slide-rule computations to elaborate studies employing digital computer methods."

While use of live models as design aids isn't covered by contest rules, Mr. Garson said, "Pre-

sumably, the application of scientific principles will have to be checked out on live models after the plans are drawn."

Mr. Garson says "the properties of the bust are unusual and unlike those of most engineering materials." As a result, he says, designing a strapless bra or one for an unusually large bust size "is a great engineering feat in itself."

Instructions accompanying the contest's application forms state that although engineering innovation is desired, designs must conform to elemental requirements of "function, styling, comfort, and safety."

"The factors of safety," the directions explain, "are based upon uncertainties in the stress distribution, uncertainties in material properties, as well as the static or moving nature of the load."

Seeing the sight of New York City via the Fifth Avenue bus, a very prim young lady was scandalized to hear an obviously newly immigrated man saying to an attentive companion:

"Emma coma first, I coma next, two assa coma together, I coma again, two assa coma together again, I coma one-a-more, pee-pee twice, then I coma for the lasta time."

The young lady was crimesonfaced when he finished, and then, noticing a policeman seated nearby, she whispered to him, "Aren't you going to arrest that terrible old man?"

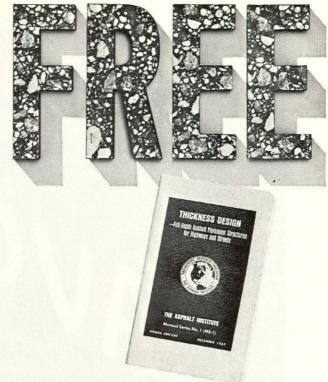
The policeman stared at her, and said, "What? For spelling Mississippi?"

Then there was the Aero and his new bride going to Colorado Springs for their honeymoon. The Aero put his hand on his bride's knee.

"Honey, now that we're married you can go further," she said sweetly.

So he went to Pueblo.

The ME. and his date had been sitting in the swing in the moonlight alone. No word broke the silence for more than a half an hour until —


"Suppose you had money," she said, "what would you do?" He threw out his chest, in all the glory of his manhood. "I'd do some travelling."

He felt her warm, young hand slide into his. When he looked she was gone. In his hand was a nickel.

It was a delightful spring day and four high school girls skipped morning classes to go for a drive. After lunch, they reported to a teacher that their car had had a flat tire on the way to school that morning.

To their relief, she smiled understandingly and said: "Girls, you missed a test this morning. Please take seats apart from one another and get out your notebooks."

When the girls were settled and waiting expectantly, the teacher continued, "No talking. Now write the answer to this question: 'Which tire was flat?'"

...a new manual featuring the latest method for the structural design of Full-Depth®(TA) Deep-Strength® Asphalt pavements.

Full-Depth (TA) Deep-Strength Asphalt construction employs asphalt mixtures for all courses above the subgrade or improved subgrade and the Asphalt base is laid directly on the prepared subgrade. The thickness of Full-Depth Asphalt pavement is mathematically calculated in accordance with traffic requirements and subgrade soil characteristics.

Just off the press, this new manual, THICKNESS DESIGN—FULL-DEPTH ASPHALT PAVEMENT STRUCTURES FOR HIGHWAYS AND STREETS, is published for engineers who determine thickness requirements for asphalt pavement structures. It also is a useful text for instruction of students in highway engineering. Methods are presented for evaluating the factors that should be considered in the overall thickness design of an Asphalt pavement structure. It includes such important topics as traffic evaluation, subgrade soil evaluation, total thickness and layer thickness determination, compaction, drainage and environmental effects.

Incorporated in this latest Asphalt pavement design system are solutions made from extensive third-generation computer analyses using new information from continuing laboratory studies and field tests in several states and Canada.

For your free copy, mail the coupon below.

The Asphalt Institute Engineering Research Education

Students and instructors: for your Free Copy of MS-1

Name		
Class and degree	(or title)	
School		
Address		
City	State	Zip

*CEILING AND VISIBILITY UNLIMITED

At Pratt & Whitney Aircraft "ceiling and visibility unlimited" is not just an expression. For example, the President of our parent corporation joined P&WA only two years after receiving an engineering degree. The preceding President, now Chairman, never worked for any other company. The current President of P&WA started in our engineering department as an experimental engineer and moved up to his present position. In fact, the majority of our senior officers all have one thing in common—degrees in an engineering or scientific field.

To insure CAVU*, we select our engineers and scientists carefully. Motivate them well. Give them the equipment and facilities only a leader can provide. Offer them company-paid, graduate education opportunities. Encourage them to push into fields that have not been explored before. Keep them reaching for a little bit more responsibility than they can manage. Reward them well when they do manage it.

Your degree can be a B.S., M.S., or Ph.D. in: MECHANICAL • AERONAUTICAL • ELECTRICAL • CHEMICAL • CIVIL • MARINE • INDUSTRIAL ENGINEERING • PHYSICS • CHEMISTRY • METALLURGY • MATERIALS SCIENCE • CERAMICS • MATHEMATICS • STATISTICS • COMPUTER SCIENCE • ENGINEERING MECHANICS.

Consult your college placement officer—or write Mr. William L. Stoner, Engineering Department, Pratt & Whitney Aircraft, East Hartford, Connecticut 06108.

CAVU* might also mean full utilization of your technical skills through a wide range of challenging programs which include jet engines for the newest military and commercial aircraft, gas turbines for industrial and marine use, rocket engines for space programs, fuel cells for space vehicles and terrestrial uses, and other advanced systems.

Pratt & Whitney Aircraft DIVISION OF UNITED AIRCRAFT CORPORATION

An Equal Opportunity Employer

Where Have All The Chem E's Gone

DEAN MAX S. PETERS

In the Fall of 1968, the AIChE conducted a survey of chemical engineering departments to obtain information on graduate student enrollments and possible effects of the draft regulations. The results of this survey gave a sound basis for considerable concern about the developing changes in the enrollments in chemical engineering graduate programs, showing a startling drop of 23 per cent from the Fall of 1967 to the Fall of 1968 for new male students entering chemical engineering graduate school who were United States Citizens. Other disconcerting trends were also indicated by this 1968 survey, and a definite recommendation was made to obtain additional data in the Fall of 1969 to see what the continuing effects would be on chemical engineering graduate school enrollments due to the draft situation.

To obtain the additional continuing data and permit a resonable extended analysis, questionnaires on the graduate student enrollments in chemical engineering were sent to the chairmen of all chemical engineering departments in the United States, asking for data on the Fall 1969 graduate enrollments and a repeat of data from the same schools for the Fall 1968 enrollments. Of the 125 questionnaires sent out, 80 usable ones were returned. The information presented in the following is based on the returns in 1969, along with results of calculations to permit extrapolation of data from 1967 through 1969 to give a three-year picture. In those few calculations where the 1968 survey results did not agree with the data given for 1968 in the 1969 survey, the 1969 data were used.

In interpreting the data in Table 2, changes are presented on a percentage basis for full-time male U.S. citizens, full-time foreign students, and totals for all chemical engineering graduate students. The changes from the Fall of 1968 to the Fall of 1969 are very disturbing when one

notes the very large percentage change of 17%, 37%, and 16% decrease respectively for first-year students, second-year students, and advanced students who are male U.S. citizens. This group, of course, represents our major future output of graduate degree holders in chemical engineering in the United States, and the situation that has developed this Fall on all three levels of graduate work is one about which we should have great concern.

The entire column under changes from Fall of 1968 to the Fall of 1969 on the graduate level in chemical engineering, as shown in Table 2, should cause every chemical engineering educator and every person in industry who is interested in hiring chemical engineers in the future to take careful notice and express sincere concern. It is also clear, by examining the column giving per cent changes for the Fall of 1967 to the Fall of 1968 in Table 2, that the effects we are now seeing for the Fall of 1969 were predicted by the results obtained in the Fall of 1968. Table 2 definitely confirms the reservations and concern we expressed in the Fall of 1968. However, we find we are now in an extrememly serious situation of a major drop in chemical engineering graduate enrollments, and it is necessary for us to face up to the problems which will be forthcoming in the near future as a result.

The seriousness of the situation is pictured graphically in Figure 1 where a series of bar charts is presented showing what has happened during the past three years. The basis for this bar chart is a total of 100 full-time graduate students in chemical engineering in the Fall of 1967. The first series of bar charts shows the decrease in the total number of students from 1967 to 1969. However, the second series of bar charts is the most distressing of the figures presented in that this particular emphasis on the great percentage reduction in full-time male U.S. citizens who are first-year students. These numbers, of course,

TABLE 2

AICHE

TABLES OF DATA FOR INTERPRETATION OF DRAFT EFFECTS CHEMICAL ENGINEERING GRADUATE STUDENT ENROLLMENT QUESTIONNAIRE

Fall, 1969

(80 schools responding of 125 questionnaires sent)

Table 2-A - Changes in Full-Time Male U.S. Citizens

Table 2-A - Changes 1	n Full-Time Male U.S. Citizens	Per cent change
		Fall '68 to Fall '67 to
	Fall 1968 Fall 1969	Fall '69 Fall '68 (*)
1st-year students	476 395	-17% -23%
2nd-year students	447 282	-37% - 3%
Advanced students	743 622	-16% +15%

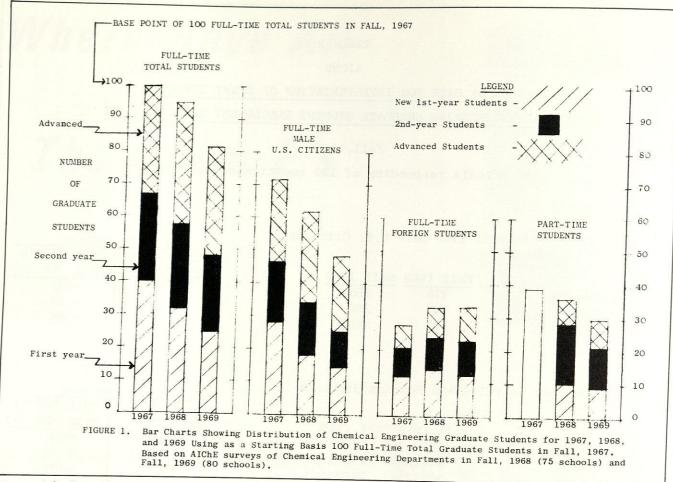

Table 2-B - Changes in Full-Time Foreign Students

Table 2-B - Changes in	Full-Time Foreign Students	Per cent	change
		Fall '68 to	Fall '67 to
	Fall 1968 Fall 1969	Fall '69	Fall '68 (*)
1st-year students	385 (44%) 337 (45%)	-12%	+12%
2nd-year students	255 (36%) 275 (49%)	+ 8%	+ 6%
Advanced students	262 (26%) 289 (32%)	+10%	+20%

Table 2-C - Changes in Totals for all Ch.E. Graduate Students
Per cent change

	Fall '68 to	Fall '6. to
Fall 1968 Fall 1969	Fall '69	Fall '68 (*)
1671 1315	-219	-4 to -10%
902 (35%) 901 (41%)	0	+12%
2573 2216		- 5%
983 817	-179	≈0 to +16%
	1671 1315 902 (35%) 901 (41%) 2573 2216	Fall 1968 Fall 1969 Fall '69 1671 1315 -219 902 (35%) 901 (41%) 0 2573 2216 -14%

(*) The Fall, 1967, to Fall, 1968, data are from the AIChE Graduate Enrollment survey made in the Fall of 1968 with 75 schools responding. See Chem. Eng. Progr., 65, No. 1, p.15 (1969).

represent the future for our graduate program, and it is very shocking to note that, in the Fall of 1967, about 28 out of every 100 full-time graduate students in chemical engineering were full-time male U.S. citizens in the first year of graduate work, while this number, on the same basis of 100 original full-time graduate students in the Fall of 1967, had been cut approximately in half by the Fall of 1969.

The bar charts in Figure 1 also show that the total number of full-time foreign graduate students has increased only slightly during the past three years and, surprisingly, the total number of part-time students has actually decreased during the past three years. With reference to the number of full-time foreign students, even though the numbers have only increased slightly, the foreign student percentage of the total enrollment has increased significantly and was more than 40% in the Fall of 1969.

Many of the individuals who filled out the questionnaires had comments on the general situation. Almost all of the comments reflected great concern about the decrease in the total number of graduate students, with particular reservations being expressed for the future because of the great problems in getting male U.S. citizens to enter graduate school on a full-time basis. Some of the schools in large cities were not particularly concerned because they were able to increase their part-time student enrollment, but this was not the situation in most of our universities which generally are not located near large industrial centers.

A number of the comments were related to the fact that many potential new graduate students had indicated a strong interest in going on to graduate school but had decided they must enter industry in order to keep from being drafted. There were many comments to the effect

TABLE 1 AICHE QUESTIONNAIRE - FALL, 1969 Summary of Results for Graduate Enrollment in Chemical Engineering

Number of questionnaires mailed = 125 Number of usable replies from Chemical Engineering Departments = 80

	Fall	, 1968		Fa	11, 1969
New first-year students	Full-time*	Part-time	F	ull-time	* Part-time*
Male U.S. Citizens	476	253		395	215
Female U.S. Citizens	4	4		13	2
Foreign	385	36		337	45
SUB-TOTAL	865	293	-	745	262
Number in above total re scholarship, fellowship,	ceiving finan assistantshi	cial support	through	Univers	sity as
	436	24		395	3
Second-year students					
Male U.S. Citizens	447	272		200	-
Female U.S. Citizens	1	0		282	291
Foreign	255	188		275	4 26
CUD Mames			_		
SUB-TOTAL Number in above total rec scholarship, fellowship,	703 eiving financ assistantshir	460	through	560 Univers	321 ity as
Number in above total rec scholarship, fellowship,	eiving financ	ial support	through	Univers	321 ity as
Number in above total rec scholarship, fellowship,	eiving financ assistantship 443	cial support	through	Univers	ity as
Number in above total rec scholarship, fellowship, Advanced students** Male U.S. Citizens	eiving finance assistantship 443	cial support	through	Univers	ity as
Number in above total rec scholarship, fellowship, Advanced students** Male U.S. Citizens Female U.S. Citizens	eiving finance assistantship 443 743 0	cial support o, etc.: 11 209 3	through	Univers	ity as
Number in above total rec scholarship, fellowship, Advanced students** Male U.S. Citizens	eiving finance assistantship 443	cial support o, etc.: 11	through	Univers	15 205
Number in above total rec scholarship, fellowship, idvanced students** Male U.S. Citizens Female U.S. Citizens Foreign	eiving financ assistantship 443 743 0 262	209 3 18	_	Univers 398 622 0 289	15 205 4 25
Number in above total rec scholarship, fellowship, Advanced students** Male U.S. Citizens Female U.S. Citizens Foreign SUB-TOTAL	eiving finance assistantship 443 743 0 262 1005	209 3 18	_	Univers 398 622 0 289	15 205 4 25
Number in above total rec scholarship, fellowship, Advanced students** Male U.S. Citizens Female U.S. Citizens Foreign SUB-TOTAL Sumber in above total rec scholarship, fellowship,	eiving finance assistantship 443 743 0 262 1005	209 3 18	_	Univers 398 622 0 289	15 205 4 25
Number in above total rec scholarship, fellowship, Advanced students** Male U.S. Citizens Female U.S. Citizens Foreign SUB-TOTAL fumber in above total rec scholarship, fellowship, OTAL full-time students	eriving finance assistantship 443 743 0 262 1005 eriving finance assistantship	209 3 18 230 ial support	through	Univers 398 622 0 289 911 Univers	15 205 4 25 234
Number in above total rec scholarship, fellowship, Advanced students** Male U.S. Citizens Female U.S. Citizens Foreign SUB-TOTAL Number in above total rec cholarship, fellowship,	reiving financ assistantship 443 743 0 262 1005 eiving financ assistantship 703	209 3 18 230 ial support	through	Univers 398 622 0 289 911 Univers	15 205 4 25 234 ity as 23
Number in above total rec scholarship, fellowship, Advanced students** Male U.S. Citizens Female U.S. Citizens Foreign SUB-TOTAL fumber in above total rec scholarship, fellowship, OTAL full-time students	reiving finance assistantship 443 743 0 262 1005 eiving finance assistantship 703 2573	209 3 18 230 ial support 12 983	through	Univers 398 622 0 289 911 Univers	15 205 4 25 234 1ty as 23 817

- * Full-time means students who are full-time at the University regularly as students. Thus a Fellow or a half-time teaching or research assistant would probably be considered as full-time, while 3/4 or full-time assistants as well as persons in industry taking a course or two per term would be considered as part-time.
- ** Includes all graduate students not counted as first or second-year students.

TABLE 3

CHEMICAL ENGINEERING GRADUATE STUDENT ENROLLMENT SURVEY

Data for Bar Chart Showing Distribution of Chemical Engineering Graduate Students for 1967, 1968, and 1969 Using as a Starting Basis 100 Full-Time Total Graduate Students in Fall, 1967.

	Fall	, 1967	Fall	, 1968	Fall	, 1969
	Full-time	Part-time	Full-time	Part-time	Full-time	Part-time
New First-year Students						
Male U.S. Citizens	27.9	-	17.6	9.3	14.6	7.9
Female U.S. Citizens	0.4	-	0.1	0.2	0.4	-
Foreign	11.8	-	31.9	1.3	12.5	9.6
	40.1	-	31.9	10.8	27.5	9.6
Second-year Students						
Male U.S. Citizens	18.2	-	13.6	10.1	10.4	10.7
Female U.S. Citizens	0.3	_	-	-	0.1	0.1
Foreign	8.5	-	9.4	6.9	10.2	1.0
	27.0	-	25.0	17.0	20.7	11.8
Advanced Students						
Male U.S. Citizens	25.5	-	27.4	7.7	23.1	7.5
Female U.S. Citizens	0.2		-	0.1	-	0.1
Foreign	7.2	-	$\frac{9.7}{37.1}$	0.7	10.7	8.6
	32.9	-	37.1	8.5	33.8	8.6
ALL-YEARS TOTAL	100	38.4	95	36.3	82	30
	Basis for Table & Ch	art)				

With the proposed changes in the draft regulations, many persons are indicating that the problem will be over and we do not need to worry about the difficulty anymore. I do not feel this is the situation, because we have clearly seen what sort of major problems can evolve from government decisions on Selective Service. These kinds of problems could easily occur again in the future, and we must be prepared with precise data to show what results are forthcoming when certain decisions relative to the draft are made. There will be a decrease in the number of graduate degree holders on both the Master's level and the Ph. D. level produced in chemical engineering in the United States during the next several years, and industry and university must be prepared for this reduction which is a direct result of the draft regulations in the years 1968 and 1969.

The fact that the number of part-time students did not increase with the reduction in total full-time students in graduate school suggests the chemical engineering departments in our country might give some special attention to the developing situation concerning part-time graduate work. Perhaps, the students are deciding to take graduate work in business school on a part-time basis or are switching to some other field because of the feeling that graduate work in chemical engineering, generally, is best accomplished on a full-time basis.

The comparative statistics as shown in Figure 1 clearly indicate where problems can develop in graduate activities as a result of governmental decisions. It is hope that this kind of comparative information will be useful for future evaluations of possible effects on graduate student enrollments.

that the students from the individual university who were seniors had, to a large degree, considered the graduate school possibilities seriously and then made the decision to enter industry directly and perhaps take graduate school later on a full-time basis or take up graduate work on a part-time basis. The results of the survey for the Fall of 1969 do not show any indication that the students are immediately picking up graduate work on a part-time basis in increased numbers over preceding years.

The overall conclusions on a numerical basis are illustrated visually in Figure 1, while Table 2 summarizes the results on a percentage basis. The large decrease in full-time male U.S. citizens as chemical engineering graduate students on an overall basis and on a first- and second-year basis is very apparent. Because of the nature of this decrease, it is assumed that it can be attributed essentially completely to the effects of the Selective Service regulations. The indication that the Selective Service requirements would be changed did not come soon enough to permit students to change their minds and go on to graduate work instead of going into industry to avoid the draft.

The large decrease in the number of second-year graduate students in chemical engineering supports the fact that, in addition to fewer students entering in the Fall of 1968, many of the students left graduate study either before they received their Master's degreee or after receiving the Master's degree instead of remaining on for further graduate work. This, of course, will cause a serious decrease in the number of Doctor's degree graduates within the next several years. It also represents a reduction in number of available students for advanced students to help as Teaching Associates.

Steel is our bag.

Today, CF&I means steel. We manufacture at plants in Colorado, New Jersey, Massachusetts, & California. We sell from locations throughout the nation. We make quality steel products that

serve every major industry in America as well as international markets. Today steel is our bread and butter as it has been for 100 years.

Tomorrow, CF&I may be known for a lot besides steel. We welcome ideas and the teamwork it takes to get them off paper and into production.

We are aiming to broaden our horizons. Present subsidiaries include: CF&I En-

gineers, Inc., CF&I Fabricators, Inc., Colorado & Wyoming Railway Co. If you aim to broaden your horizons, write to: Director – Industrial Relations, CF&I Steel Corporation, Box 1920, Denver, Colorado 80201.

What's next? for you...for

AN EQUAL OPPORTUNITY EMPLOYER

Mathmanship

In an article published a few years ago, the writer 1 intimated with befitting subtlety that since most concepts of science are relatively simple (once you understand them) any ambitious scientist must, in self protection, prevent his coleagues from discovering that his ideas are simple too. So, if he can write his published contributions obscurely uninterestingly enough no one will attempt to read them but all will instead genuflect in awe before such erudition.

What Is Mathmanship?

Above and beyond the now-familiar recourse of writing in some language that looks like English but isn't, such as Geologese, Biologese, or, perhaps most successful of all, Educationalese2 is the further refinement of writing everything possible in mathematical symbols. This has but one disadvantage, namely, that some designing skunk equally proficient in this low form of cunning may be able to follow the reasoning and discover its hidden simplicity. Fortunately, however, any such nefarious design can be thwarted by a modification of the well-known art of gamesmanship3.

The object of this technique which may, by analogy, be termed "Mathmanship" is to place unsuspected obstacles in the way of the pursuer until he is obliged by a series of delays and frustrations to give up the chase and concede his mental inferiority to the author.

The Typographical Trick

One of the more rudimentary practices of mathmanship is to slip in

the wrong letter, say a y for a r. Even placing an exponent on the wrong side of the bracket will also do wonders. This subterfuge, while admittedely an infraction of the ground rules, rarely incurs a penalty as it can always be blamed on the printer. In fact the author need not stoop to it himself as any copyist will gladly enter into the spirit of the occasion and cooperate voluntarily. You need only be trusting and not read the proof.

Strategy of the Secret Symbols,

But, if by some mischance, the equations don't get badly garbled, the mathematics is apt to be all too easy to follow, provided the reader knows what the letters stand for. Here then is your firm line of defense: at all cost prevent him from finding out!

Thus you may state in fine print in a footnote on page 35 that Vx is the total volume of a phase and then on page 873 introduce Vx out of a clear sky. This, you see, is not actually cheating because after all, or rather before all, you did tell what the symbol meant. By Surrepitiously introducing one by one all the letters of the English, Greek and German alphabets right side up and upside down, you can make the reader, when he wants to look up any topic, read the book backward in order to find out what they mean. Some of the most impressive books read about as well as backward as forward, anyway.

But should reading backward become so normal as to be considered straightforward you can always double back on the hounds. For example,

introduce μ on page 66 and avoid defining μ until page 866. ¹ This will make the whole book required reading.

The Pi-throwing Contest or Humpty-Dumpty Dodge

Although your reader may eventually catch up with you, you can throw him off the scent temporarily by making him think he knows what the letters mean. For example every schoolboy knows what r stands for so you can hold him at bay by heaving some entirely different kind of n into the equation. The poor fellow will automatically multiply by 3.1416, then begin wondering how a w got into the act anyhow, and finally discover that all the while # was osmotic pressure. If you are careful not to warn him, this one is good for a delay of about an hour and a

This principle, conveniently termed pi-throwing can, of course, be modified to apply to any other letter. Thus you can state perfectly truthfully on page 141 that F if free energy so if Gentle Reader has read another book that used F for Helmholtz free energy he will waste a lot of his own free energy trying to reconcile your equations before he thinks to look for the footnote tucked away at the bottom of page 50, dutifully explaining that what you are talking about all the time is Gibbs free energy which he always thought was G. Meanwhile you can compound his confusion by using G for something else, such as "any extensive property." F, however, is a particularly happy letter as it can be used not only for any unspecified brand of free energy but also for flourine, force, friction, Faradays, or a function of something or other, thus increasing the degree of randomness, dS. (S, as everyone knows stands for entropy, or maybe sulfur). The context, of course, will make the meaning clear, expecially if you can contrive to use several kinds of F's or S's in the same equation.

For all such switching of letters on the reader you can cite unimpeachable authority by paraphrasing the writing of an eminent mathematician 4:

"When I use a letter it means just what I choose it to mean-neither more nor less...the question is, which is to be master-that's all."

The Unconsummated Asterisk

Speaking of footnotes (I was, don't you remember?) a subtle ruse is the 'unconsummated asterisk" "ill-starred letter." You can use P* to represent some pressure difference from P, thus tricking the innocent reader into looking at the bottom of the page for a

footnote. There isn't any, of course, but by the time he has decided that P must be some registered trademark as in the magazine advertisements he has lost his place and has to start over again. Sometimes, just for variety, you can use instead of an asterisk a heavy round dot or bar over certain letters. In doing so, it is permissible to give the reader enough veiled hints to make him think he can figure out the system but do not at any one place explain the general idea of this mystic notation, which must remain a closely guarded secret known only to the initiated. Do not disclose it under pain of expulsion from the fraternity. Let the Baffled Barbarian beat his head against the wall of mystery. It may be bloodied, but if it is unbowed you lose the round.

The other side of the asterisk gambit is to use a superscript as a key to a real footnote. The knowledge-seeker reads that S is - 36.7, 14 calories and thinks "Gee what a whale of a lot of calories" until he reads to the bottom of the page, finds footnote 14 and says "oh."

The "Hence" Gambit But after all, the most successful device in mathmanship is to leave out one or two pages of calculations and for them substitute the word "hence" followed by a colon. This is guaranteed to hold the reader for a couple of days figuring out how you got hither from hence. Even more effective is to use "obviously" instead of "hence," since no reader is likely to show his ignorance by seeking help in elucidating anything that is obvious. This succeeds not only in frustrating him but also in bringing him down with an inferiority complex, one of the prime desiderata of the art.

These, of course, are only the most common and elementary rules. The writer has in grogress a two-volume work on mathmanship complete with examples and exercises. It will contain so many secret symbols, cryptic codes and hence-gambits that no one (but no one) will be able to read it.

References

1. Vanserg, Nicholas. How to Geologese, Economic Geology, Vol. 47, pp. 1952. 2. Carberry, Josiah. Psychoceramics, p. 1167, Brown University Press, 1945. 3. Potter, Stephen. Theory and Practice of Gamesmanship or the Art of Winning Games without Actually Cheating. London: R. Hart-Davis, 1947. 4. Carroll, Lewis. Complete Works, Modern Library edition p. 214.

April fool. See what I mean?

All these examples are from published literature. Readers desiring specific references may send a self-addressed stamped envelope. I * Reprinted from "American Scientist,"

Vol. 46, June 1958.

A tightwad went into a gift shop to find an inexpensive birthday present for a friend, but found everything very expensive-except for a vase which had been broken. He purchased it for practically nothing and asked the store to send it. He wanted the friend to think it had been broken in transit.

A week later, he received a thank you note which read, "Many thanks for the vase. It was nice of you to wrap each piece separately."

"I was married twice," explained the CE to a newly graduated EE, "and I'll never marry again. My first wife died after eating poison mushrooms and my second wife died of a fractured skull."

"That's a shame," offered the friend. "How did that happen?"

"She wouldn't eat her mushrooms."

The "COLORADO ENGINEER" has recently come into possession of Santa's list of bad girls.

INTERESTING ENGINEERING IN PROGRESS

And why not? Companies scattered from here to Istanbul are depending on plans drawn up in Stearns-Roger's Denver offices. The projects include new chemical facilities, ore beneficiation, commercial power plants, special materials handling, unusual manufacturing facilities, aerospace assignments and many more.

Some require on-site investigation. Some demand a breakthru in various engineering disciplines. Stearns-Roger engineering utilizes the latest in data processing. Always there's the chance for developing really good ideas and for recognition of capability.

Our staff is still short-handed for the contracts facing us. Is this the challenge and opportunity you have been seeking?

Contact Leo McKinney, Manager of Personnel

earns-

660 Bannock, Box 5888, Denver, Colo. ENGINEERS FOR INDUSTRY SINCE 1885 An equal opportunity employer

3 flops and 1 wild success from GT&E research.

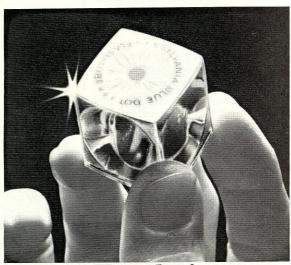
Let us be the first big corporation in America to admit it:

Sometimes we fall flat on our face.

That may come as a shock to you, but we've found it's a smart way to run our research laboratories.

Rather than saddle our scientists with a "Do It The Way It's Always Been Done" philosophy, we encourage them to stick their necks out—to poke around in places nobody ever poked around before.

Sometimes this philosophy makes millions of dollars for us (see Eureka!).


Sometimes it doesn't make us a penny. Take, for instance

Flop#1: The Wam-O-Scope—a new kind of radar set that was supposed to be 10 times more sensitive than ordinary radar. (This was because we put lots of little electronic parts right inside the radar tube, where nobody ever put them before.) Theoretically, it worked fine. Practically, it didn't work at all. Which brings us to

Flop#2: The Stacked Tube. After years of work, we perfected the world's best radio tube—long lived, practically indestructible. Unfortunately, we built it the same year the transistor was invented, making our tube instantly obsolete. Then there was

Flop#3: The Omegatron—a clever device designed to tell vacuum tube manufacturers precisely how much excess gas they had in their tubes (which, you remember from Physics 1, are supposed to be

completely empty). This, however, was more than they wanted to know. They wanted to get rid of the gas, not measure it. So finally, we come to

Eureka!

The Sylvania Flashcube—a little idea that revolutionized the whole camera business. For the first time, people could take flash pictures as fast as they could click the shutter—no more hot bulbs to change, no more missed pictures.

It looks simple. But it took more than 100,000 designs and years of fiddling and testing before we made the first one.

What are we up to now? Everything from electronic switching to total information systems. Which is why we're running this ad.

We need fresh thinking in these areas new theories, new ideas, new challenges.

After all, we can't go on resting on the same old flops and successes forever.

General Telephone & Electronics

Dan Schmidt, Missouri '64, met the challenge in mining at St. Joe

Since he graduated from the University of Missouri at Rolla, Dan found opportunity for progress at St. Joe. He's Plant Engineer at St. Joe's ultra-modern Fletcher mine. There he's responsible for some of the most sophisticated equipment to be found in any mine-mill complex on earth. He works with a young, aggressive team in a company that's tops in the industry.

Dan and his wife Carole and their two sons find life pleasant in Southeast Missouri. He hunts, fishes and competes in

softball and tennis. They live in the country but they are only 90 minutes drive from big city attractions such as major league baseball in St. Louis.

St. Joe has challenging opportunities for people with the ability and the drive to meet them. They are located in Southeast Missouri, Pennsylvania, Upper New York State and New York City.

You may find your challenge and your future with St. Joe.

ST. JOE

Producers and Marketers of Lead, Zinc, Zinc Oxide, Iron Ore Pellets, Iron Oxide, Agricultural Limestone, Cadmium, Copper Concentrates, Silver and Sulphuric Acid.

ST. JOSEPH LEAD CO., 250 Park Avenue, New York, New York 10017

sJ-389

They know the score!

Oh, maybe they don't savvy Sousa, but career-wise, they're virtuosos. How about you? Take note of our booklet, "Careers with Bethlehem Steel and the Loop Course." It could be instrumental in convincing you to make sweet music with *us*. Pick up a copy at your placement office or write: Manager of Personnel, Bethlehem Steel Corporation, Bethlehem, PA 18016.

BETHLEHEM STEEL

An Equal Opportunity Employer

Venture: Cook exhausts to clear the air.

The problem: minimize the part the internal combustion engine plays in air pollution.

The primary goal: reduce auto exhaust emissions dramatically through some simple, inexpensive but effective method.

The solution? Five years of research and development work by scientists, engineers and technicians at Du Pont have produced a non-catalytic emissions control device called the exhaust manifold reactor. It has achieved the best control of auto emissions by any system known to date.

Mounted in place of the conventional exhaust manifold, the reactor is an insulated outer shell with a tubular core. Exhaust gases, mixed with injected air, are held in the high-temperature zone of the inner core until they are almost completely oxidized.

The principle of finishing the combustion process in the exhaust system is not a new one. But what is new is the effectiveness of Du Pont's device.

In individual tests of up to 100,000 miles, emission levels have been below 30 ppm hydrocarbons and 0.6% carbon monoxide, compared with 1970 standards of 180 ppm hydrocarbons and 1.0% carbon monoxide. And reactors now being tested have further reduced carbon monoxide emissions to 0.26%.

The reactor system can be adapted to any gasoline-burning automobile engine. And soon metals research should develop the low-cost materials needed to make the reactor economical for all new cars.

Innovation—applying the known to discover the unknown, inventing new materials and putting them to work, using research and engineering to create the ideas and products of the future—this is the venture Du Pont people are engaged in.

For a variety of career opportunities, and a chance to advance through many fields, talk to your Du Pont Recruiter. Or send us the coupon.

s, Marketing, Producti	
Graduatio	on Date
	Graduati

On your way up in engineering, please take the world with you.

The best engineers are far from happy with the world the way it is.

The way it is, kids choke on polluted air. Streets are jammed by cars with no place to go. Lakes and rivers are a common dumping ground for debris of all kinds.

But that's not the way it has to be.

Air pollution can be controlled. Better transportation systems can be devised. There can be an almost unlimited supply of clean water.

The key is technology. Technology and the engineers

who can make it work.

Engineers at General Electric are already working on these problems. And on other problems that need to be solved. Disease. Hunger in the world. Crime in the streets.

General Electric engineers don't look for overnight solutions. Because there aren't any. But with their training and with their imagination, they're making steady progress.

Maybe you'd like to help. Are you the kind of engineer who can grow in his job to make major contributions? The kind of engineer who can look beyond his immediate horizons? Who can look at what's wrong with the world and see ways to correct it?

If you are, General Electric needs you. The world needs you.

An equal opportunity employer