HiBall Balloon Payload Workshop

Sensors Part 2

COLORADO SPACE GRANT CONSORTIUM

Partner

<u>Part 1 – Arduino Test Drive</u> <u>Sensors</u>

- A. LED Visual Display
- **B.** Analog vs. Digital
- C. Balloon Shield Build
- **D.** Thermometer

Part 2 – Arduino Road Trip Sensors

- A. Humidity Sensor
- **B.** Pressure Sensor
- C. Accelerometers
- D. External Temp Sensor

<u>Part 2 – Arduino Road Trip</u> Sensors

- A. Humidity Sensor
- **B.** Pressure Sensor
- C. Accelerometers
- D. External Temp Sensor

- Humidity sensor (or the Darth Vader Sensor)
- It measures moisture in the air, which is great for balloon flights (condensation failures)

- First need to solder header to sensor

- Install header like shown and solder from top of board
- Short side through the bottom of the board
- Keep header perpendicular to board

Shield attached to Arduino

- Wire Arduino 5V to Breadboard (BB) 5V PWR Rail
- Wire Arduino GND to BB GND Rail
- Wire Sensor 5V to BB 5V Rail
- Wire Sensor GND to BB GND Rail
- Wire Sensor OUT to Arduino A2

Leave your Balloon

Space Minor UNIVERSITY OF COLORADO BOULDER

Leave your Balloon Shield attached to Arduino

- Wire Arduino 5V to Breadboard (BB) 5V PWR Rail
- Wire Arduino GND to BB GND Rail
- Wire Sensor 5V to BB 5V Rail
- Wire Sensor GND to BB GND Rail
- Wire Sensor OUT to Arduino A2

Leave your Balloon Shield attached to Arduino

- Wire Arduino 5V to Breadboard (BB) 5V PWR Rail
- Wire Arduino GND to BB GND Rail
- Wire Sensor 5V to BB 5V Rail
- Wire Sensor GND to BB GND Rail

- Wire Sensor OUT to Arduino A2

- Modify sketch to read new sensor on A2 if(sensorVolt > 1.25) { Definitions // digitalWrite(5, HIGH); int sensor; float sensorVolt; if(sensorVolt > 1.75) { digitalWrite(6, HIGH); void loop() { put your main code here, to run if(sensorVolt > 2.25) { // digitalWrite(7, HIGH); sensor = analogRead(A2); sensorVolt = sensor*(5.0/1023);if(sensorVolt > 2.75) { Serial.print(sensor); digitalWrite(9, HIGH); Serial.print("\t voltage "); Serial.println(sensorVolt); delay(100); **EXTRA** Turn script running leds OFF at begin //

digitalWrite(5, LOW); //Green LED

Humidity Sensor:

- Compile and Upload
- Start Serial Monitor
- Breathe on humidity sensor like Darth Vader

- Watch LEDs on Shield

•••		/dev/d	cu.usbmodem
± 1.2	501301	yc	0.10
143	Sensor	Voltage	0.70
143	Sensor	Voltage	0.70
143	Sensor	Voltage	0.70
143	Sensor	Voltage	0.70
143	Sensor	Voltage	0.70
143	Sensor	Voltage	0.70
143	Sensor	Voltage	0.70
143	Sensor	Voltage	0.70
143	Sensor	Voltage	0.70
143	Sensor	Voltage	0.70
143	Sensor	Voltage	0.70
143	Sensor	Voltage	0.70
🗹 Autoscr	oll		No lin

- Next, let's convert volts to % humidity

- Look at the data sheet to understand output of the sensor
- We know Vout and Vsupply so using algebra

Space Minor

UNIVERSITY OF COLORADO BOULDER

Voltage output (1 st order curve fit)	V _{out} =(V _{supply})(0.0062(sensor RH) + 0.16), typical at 25 °C
Temperature compensation	True RH = (Sensor RH)/(1.0546 – 0.00216T), T in ℃

- % RH is a linear function of voltage
- 100% RH looks like ~3.7 V

- Here's the algebra and the equation to code

- Verify and upload your code

Humidity Sensor:

- Launch serial monitor
- Breathe on humidity sensor like Darth Vader

-		
· · ·	10100gc 1100	MILES E1.1
316	voltage 1.54	units 24.02
316	voltage 1.54	units 24.02
318	voltage 1.55	units 24.33
318	voltage 1.55	units 24.33
315	voltage 1.54	units 23.86
314	voltage 1.53	units 23.70
316	voltage 1.54	units 24.02
313	voltage 1.53	units 23.54
315	voltage 1.54	units 23.86
316	voltage 1.54	units 24.02
317	voltage 1.55	units 24.17

voltage 1.54

🗹 Autoscroll

315

No line ending

/dev/cu.usbmodem1451 (Arduino U

units 23.86

- Play with your new sensor some to make sure you understand how it works!
- Also, look at the data sheet and determine the voltage at maximum humidity

Balloon Shield Build Part 3:

- Disconnect you Balloon Shield and add the Humidity Sensor

Balloon Shield Build Part 2:

- Reconnect your Balloon Shield to the Arduino
- Connect USB and reload code
- Verify same results

		/dev/	cu.usbr	nodem1451	(Arduino l
/ - 1		1.55	MITE 00	- · • <i>±</i> •	
316	voltage	1.54	units	24.02	
316	voltage	1.54	units	24.02	
318	voltage	1.55	units	24.33	
318	voltage	1.55	units	24.33	
315	voltage	1.54	units	23.86	
314	voltage	1.53	units	23.70	
316	voltage	1.54	units	24.02	
313	voltage	1.53	units	23.54	
315	voltage	1.54	units	23.86	
316	voltage	1.54	units	24.02	
317	voltage	1.55	units	24.17	
315	voltage	1.54	units	23.86	
	-				

<u>Part 2 – Arduino Road Trip</u> Sensors

- A. Humidity Sensor
- **B. Pressure Sensor**
- C. Accelerometers
- D. External Temp Sensor

- Pressure Sensors is fragile and \$\$\$

- A bit tricky to see the markings to install correctly
- Can use it to determine pressure/altitude of payload
- To be safe, please disconnect power from your Arduino

- Connect GND to Pin 4, 5V to Pin 2, and Pin 3 to A3 on the Arduino

				-
Pin 1	Pin 2	Pin 3	Pin 4	
NC	Vsupply	OUTPUT+	GND	

- Connect GND to Pin 4, 5V to Pin 2, and Pin 3 to A3 on the Arduino

 Connect GND to Pin 4, 5V to Pin 2, and Pin 3 to A3 on the Arduino

- Look at the data sheet to understand output of the sensor
- Known:
 Vsupply = 5.0 V
 Pmax = 15.0 psi
 Pmin = 0.0 psi
 Output(V) = measured
 Pressure applied = solve

Space Minor

JNIVERSITY OF COLORADO BOULDER

Output (V) = $\frac{0.8 \text{ x V}_{\text{supply}}}{P_{\text{max.}} - P_{\text{min.}}} \text{ x (Pressure}_{\text{applied}} - P_{\text{min.}}) + 0.10 \text{ x V}_{\text{supply}}$

- Here's the algebra and the equation to code

$$Output(V) = \frac{\left(0.8 * V_{SUPPLY}\right)}{\left(P_{\max} - P_{\min}\right)} * (pressure_{applied} - P_{\min}) + 0.10 * V_{\sup ply}$$

$$Output(V) = \frac{\left(0.8 * 5.0\right)}{\left(15.0 - 0.0\right)} * (pressure_{applied} - 0.0) + 0.10 * 5.0$$

$$Output(V) = \frac{\left(4.0\right)}{\left(15.0\right)} * (pressure_{applied}) + 0.5$$

$$\frac{15.0}{4.0} * (-0.5 + Output(V)) = pressure_{applied}$$

- Build and Upload
- DO NOT BLOW or DO NOT APPLY PRESSURE; it will break the sensor
- Use solder sucker

		/d	ev/cu.usbm	odem1451	(Arduino
751	voltage	3.67	units	11.89	
751	voltage	3.67	units	11.89	
751	voltage	3.67	units	11.89	
751	voltage	3.67	units	11.89	
751	voltage	3.67	units	11.89	
751	voltage	3.67	units	11.89	
751	voltage	3.67	units	11.89	
751	voltage	3.67	units	11.89	
751	voltage	3.67	units	11.89	
751	voltage	3.67	units	11.89	
751	voltage	3.67	units	11.89	
751	voltage	3.67	units	11.89	
751	voltage	3.67	units	11.89	

Autoscroll Autoscroll PLEASE SAVE YOUR PLEASE SAVE FILE SKETCH FILE No line ending

- Play with your new sensor to get a feel for how it works
- Try to get your sensor to zero

- Install Pressure Sensor into headers

🗹 Autoscroll

- Reconnect your Balloon Shield to the Arduino
- Connect USB and reload code
- Verify same results

Pressure Sensor:

1				
751	voltage	3.67	units	11.89
751	voltage	3.67	units	11.89
751	voltage	3.67	units	11.89
751	voltage	3.67	units	11.89
751	voltage	3.67	units	11.89
751	voltage	3.67	units	11.89
751	voltage	3.67	units	11.89
751	voltage	3.67	units	11.89
751	voltage	3.67	units	11.89
751	voltage	3.67	units	11.89
751	voltage	3.67	units	11.89
751	voltage	3.67	units	11.89
751	voltage	3.67	units	11.89

/dev/cu.usbmodem1451 (Arduino

<u>Part 2 – Arduino Road Trip</u> Sensors

- A. Humidity Sensor
- **B.** Pressure Sensor
- C. Accelerometers
- D. External Temp Sensor

- Accelerometers are used to detect forces acting on a payload
- This is a 3 axis accelerometer
- Measures g forces in X, Y, and Z directions
- Only have two analog channels left so X and Z

- Solder 6 pin header to board

- Solder 6 pin header to board
- Short side through the bottom of the board
- Keep header perpendicular to board

- Wire accelerometer as shown

Accelerometer:

Vcc is to <u>3.3V</u> GND is to GND X is to A4 Z is to A5

- Wire accelerometer as shown

Vcc is to 3.3V GND is to GND X is to A4 Z is to A5

- Wire accelerometer as shown

Vcc is to 3.3V GND is to GND X is to A4 Z is to A5

- Looking at the data sheet...

GENERAL DESCRIPTION

Small, Low Power, 3-Axis ±3 g

Accelerometer

ADXL335

ANALOG

DEVICES

- 3.3V/2 is what it should read at "zero G" orientation or 1.65V

- Then 330 mV for every G so...
- Gs = (Accelvoltage 1.65 V) / (0.330 V)

ADXL335

The ADXL335 output is ratiometric, therefore, the output sensitivity (or scale factor) varies proportionally to the supply voltage. At $V_s = 3.6$ V, the output sensitivity is typically 360 mV/g. At $V_s = 2$ V, the output sensitivity is typically 195 mV/g.

The zero g bias output is also ratiometric, thus the zero g output is nominally equal to V_S/2 at all supply voltages.

- Upload you code and launch your serial monitor (no LEDs this time)
- Rotate your breadboard and look for changes in both X and Z
- X up and X down
- Z up and Z down

- Upload you code and launch your serial monitor
- When Z up ~ 1.0G
- When Z down ~ -1.0G
- When X up ~ 1.0G
- When X down ~ -1.0G

		/dev/cu.usbm
~y	0.10	-9
Xg	-0.13	Zg 1.07
Xg	-0.11	Zg 1.07
Xg	-0.13	Zg 1.07
Xg	-0.11	Zg 1.07
Xg	-0.13	Zg 1.

🗹 Autoscroll

- Disconnect your Balloon Shield and add the Accelerometer

- Reconnect your Balloon Shield to the Arduino
- Connect USB and reload code
- Verify same results

•	•	/dev/cu.usbm
~9	0.10	-9
Xg	-0.13	Zg 1.07
Xg	-0.11	Zg 1.07
Xg	-0.13	Zg 1.07
Xg	-0.11	Zg 1.07
Xg	-0.13	Zg 1.
	Autoscroll	

<u>Part 2 – Arduino Road Trip</u> Sensors

- A. Humidity Sensor
- **B. Pressure Sensor**
- **C.** Accelerometers
- D. External Temp Sensor

- Add Orange LED to D4 - Red wire to + and Black wire to -

- Add Blue LED to D3 - Red wire to + and Black wire to -

Add Temp2 to Temp2Note wire colors

- Open Temp1 Sketch; save as Temp2

}

// Definitions

int sensor;
float sensorVolt;
float sensorUnits;
float sensorUnitsC;

void setup() {
 // put your setup code here, to run once:

Serial.begin(9600);

// s <u>etup the LED</u>	Visual (Display
pinMode(3,	OUTPUT)	; //Blue LED
pinMode(4,	OUTPUT)	; //Orange LED
pinMode(5,	OUTPUT)	; //Green LED
<pre>pinMode(6,</pre>	OUTPUT)	; //Purple LED
<pre>pinMode(7,</pre>	OUTPUT)	; //Red LED
<pre>pinMode(9,</pre>	OUTPUT)	; //Yellow LED

Balloon Shield Build Part 6:

void	loop() {	
//	put your main code here, to run repeatedly:	if(sensorUnits > 78.0) {
	sensor = analogReat(A1).	<pre>digitalWrite(5, HIGH);</pre>
	sensorVolt = sensor($5.0/1023$):	}
	sensorUnitsC = $(sensorVolt - 0.5)/(0.01);$	if(sensorUnits > 79.0) {
	sensorUnits = (sensorUnitsC*($9.0/5.0$) + 32);	<pre>digitalWrite(6, HIGH);</pre>
	<pre>Serial.print(sensor);</pre>	}
	<pre>Serial.print("\t voltage ");</pre>	if(sensorUnits > 80.0) {
	Serial print("\t units ").	<pre>digitalWrite(7, HIGH);</pre>
	<pre>Serial.println(sensorUnits);</pre>	}
		if(sensorUnits > 81.0) {
//	Turn script running leds OFF at begining of l	<pre>digitalWrite(9, HIGH);</pre>
	<pre>digitalWrite(3, LOW); //Blue LED</pre>	}
	digitalWrite(4, LOW); //Orange LED	<pre>digitalWrite(3, HIGH):</pre>
	digitalWrite(5, LOW); //Green LED	digitalWrite(4, HIGH):
	digitalWrite(7, LOW): //Red LED	delav(100):
	<pre>digitalWrite(9, LOW); //Yellow LED</pre>	

- Build and upload your sketch
- Temp2 will stick outside your BalloonSat
- LED 3 and 4, will also stick outside your BalloonSat

	/dev/cu.usbmodem1451 (A				
153	voltage	0.75	units	76.60	
153	voltage	0.75	units	76.60	
153	voltage	0.75	units	76.60	
153	voltage	0.75	units	76.60	
153	voltage	0.75	units	76.60	
153	voltage	0.75	units	76.60	
153	voltage	0.75	units	76.60	
153	voltage	0.75	units	76.60	
153	voltage	0.75	units	76.60	
153	voltage	0.75	units	76.60	
153	voltage	0.75	units	76.60	
153	voltage	0.75	units	76.60	
153	voltage	0.75	units	76.60	
🗹 Autos	croll		se dente lla	No line	

- Build and upload your sketch
- Temp2 will stick outside your BalloonSat
- LED 3 and 4, will also stick outside your BalloonSat

<u>Part 2 – Arduino Road Trip</u> <u>Sensors</u>

- A. Humidity Sensor
- **B. Pressure Sensor**
- **C.** Accelerometers
- **D. External Temp Sensor**

<u>Part 2 – Arduino Road Trip</u> <u>Sensors</u>

- A. Humidity Sensor
- **B. Pressure Sensor**
- **C.** Accelerometers
- **D. External Temp Sensor**

- Now let's integrate all the code and sensors together and test
- We will review code but you will use a pre-coded sketch
- Everything should look familiar
- Download code from spacegrant.colorado.edu
 - Statewide Programs
 - DemoSat Program

// Definitions
// Temperature Sensor #1
 int temp1;
 float temp1Volt;
 float temp1C;
 float temp1F;

// Temperature Sensor #2
 int temp2;
 float temp2Volt;
 float temp2C;
 float temp2F;

// Humidity Sensor
 int humidity;
 float humidityVolt;
 float RH;

// Presure Sensor
 int pressure;
 float pressureVolt;
 float psi;

// Accelerometer X
 int accelX;
 float accelXVolt;
 float accelXG;

// Accelerometer Z
 int accelZ;
 float accelZVolt;
 float accelZG;

void loop() {
 // put your main code here, to run repeatedly:

// Turn script running leds OFF at begining of loop digitalWrite(4, LOW); digitalWrite(5, LOW); digitalWrite(6, LOW); digitalWrite(7, LOW); digitalWrite(9, LOW);

delay(500); //Amount of time between samples (milliseconds)

// Log the time
 timeStamp = millis();
 Serial.print(timeStamp);


```
temp1 = analogRead(A0);
temp1Volt = temp1*(5.0/1023);
temp1C = (temp1Volt - 0.5)/(0.01);
temp1F = (temp1C^*(9.0/5.0) + 32);
Serial.print(",");
Serial.print(temp1F, 2);
digitalWrite(4, HIGH);
temp2 = analogRead(A1);
temp2Volt = temp2*(5.0/1023);
temp2C = (temp2Volt - 0.5)/(0.01);
temp2F = (temp2C*(9.0/5.0) + 32);
Serial.print("."):
Serial.print (temp2F, 2);
digitalWrite(5, HIGH);
```



```
humidity = analogRead(A2);
humidityVolt = humidity*(5.0/1023);
RH = (((humidityVolt/5.0)-0.16)/0.0062);
Serial.print(",");
Serial.print(RH, 2);
digitalWrite(6, HIGH);
```

```
pressure = analogRead(A3);
pressureVolt = pressure*(5.0/1023);
psi = (pressureVolt-0.5)*(15.0/4.0);
Serial.print(",");
Serial.print(psi, 2);
digitalWrite(7, HIGH);
```



```
accelX = analogRead(A4);
accelXVolt = accelX*(5.0/1023);
accelXG = (accelXVolt - (3.3/2))/(0.330);
Serial.print(",");
Serial.print(accelXG,3);
```

```
accelZ = analogRead(A5);
accelZVolt = accelZ*(5.0/1023);
accelZG = (accelZVolt - (3.3/2))/(0.330);
Serial.print(",");
Serial.print(accelZG,3);
digitalWrite(9, HIGH);
```

```
Serial.println();
```


- Download code or get from desktop and run and verify it works....

COLORADO	SPACI	EGRANT	CONSO	DRTIUM		
Balloon Payload Workshop Scholarship	Transfer Program	COSGC Home		Search COSGC		
Hands-on How-to Balloon Payload Workshop 2017 University of Colorado Boulder						
	Ja	nuary 6 - 7, 2017				
Files and Instructions Each team/school will need a laptop with the Arduino software downloaded and installed. You can download the software for free by clicking the link here						
Below are links to the code and slides for the workshop. There is no need to download these files now.						
Code Code Chec	Slides dist Photos	Data Sheets Payload Acceptance Sh Foam Core Docum	Agenda neet Map ent			
Full Sensor Code Testing:

- Download code or get from desktop and run and verify it works....

Index	of /images	/GatewayTo	Space/Fall	2017/Code
			~ P	

	Name	Last modified	Size Description
 Parent Directory Balloon Shield T Balloon Shield T 	<u>Cest Code no SD.ino</u> Cest Code no SD.ino.zip	2017-01-04 14:33 2017-08-16 16:06	- 3.2K 1.3K

Apache/2.4.7 (Ubuntu) Server at spacegrant.colorado.edu Port 80

If .ino file doesn't work, try downloading the .zip version

- Should look like this

<u>Part 2 – Arduino Race Track</u> <u>Sensors</u>

- A. OpenLog Integration
- **B.** OpenLog Code Integration
- C. Data Retrieval

<u>Part 2 – Arduino Race Track</u> <u>Sensors</u>

- A. OpenLog Integration
- **B.** OpenLog Code Integration
- C. Data Retrieval

MicroSD Card Shield:

OpenLog:

- Solder 6 pin header to board
- Short side through the bottom of the board
- Keep header perpendicular to board

Similar to accelerometer shown here.

Micro SD Card OpenLog:

- Insert MicroSD card as shown

Place OpenLog in correct spot on Balloon Shield

Time, Temp1F, Temp2F, RH, Pres, AccX, AccZ 499,73.09,144.35,24.96,11.87,0.021,1.117 1003,72.21,120.59,24.96,11.87,0.021,1.102 1508,72.21,110.91,24.49,11.87,0.021,1.117 2012,72.21,114.43,24.96,11.87,0.021,1.117 2515,72.21,117.95,24.65,11.87,0.021,1.117 3019,72.21,111.79,24.65,11.89,0.021,1.117 3523,72.21,109.16,25.12,11.89,0.021,1.117 4027,71.33,116.19,24.80,11.89,0.021,1.102 4532,72.21,117.07,24.96,11.87,0.021,1.117 5036,72.21,110.91,24.80,11.87,0.021,1.117 5539,72.21,110.04,24.65,11.89,0.021,1.117 6043,72.21,117.07,24.96,11.87,0.021,1.117 6547,72.21,117.07,24.96,11.87,0.021,1.102 No line ending 9600 baud Autoscroll

/dev/cu.usbmodem1451 (Arduino Uno)

- Reconnect USB and rerun same code

Send

Part 2 – Arduino Race Track Sensors

- A. OpenLog Integration
- **B.** OpenLog Code
- C. Data Retrieval

OpenLog Code:

Now let's explore the code needed to record this data to the OpenLog

~ Morpheus' Warning To Neo (From The Film; "The Matrix") ~

- The super cool thing about **OpenLog** is that anything you serial print is written to the **OpenLog**
- A new file is created if power is removed
- A new file is created if sd card is removed and reinserted
- Can eject sd card while powered

Part 2 – Arduino Race Track Sensors

- A. OpenLog Integration
- B. OpenLog Code
- C. Data Retrieval

- Rotate your accelerometer like...

4. X Down

Sensor Testing:

5. X Up

Sensor Testing:

8. Z Down

- Eject the SD card and re-insert.Then record data as follows:
- 1. Breath on your humidity sensor twice
- 2. Suck on pressure sensor twice
- **3. Touch both temp sensors for 5 seconds each**
- 4. Orient your accelerometer (Z up/down, X up/down) 10 seconds each direction
- 5. Breath on your humidity sensor twice
- 6. Suck on pressure sensor twice
- 7. Disconnect USB from Arduino

- Remove microSD card from Uno and insert into SD card adapter

- Remove microSD card from Uno and insert into SD card adapter

- Insert SD card adapter into your laptop

- Navigate to card and copy last LOG file to your desktop

- Graph all data minus the time stamp (Using Excel)
- Mac Users you must change tab name to remove "."

n																						
*) 🏗 🖾		⇒ ≫	Ъ. 🕻	🖌 🖉)• @• 🔰	• 솭 • 🛐	🏹 💽 🛛	100%	• 🕐					Q- Search in Sheet								
A Home	ne La	ayout T	ables	Charts	SmartArt	Formulas	Data	Review										∧ ☆-				
Edit	t			Font			Alignment		Nu	mber		Forr	nat		Cells		Themes					
🖹 🗸 🖪	Fill 🔻	Calibri (B	Body)	· 12 ·	• A• A•		abc 🔻 🚟 🖓 W	/rap Text 🔻	General		· .	- N	ormal		i 🗸 🔂 .	-	Aa 🗐 🗸 🚦	Ŧ				
- C	Clear 🔻	BI	U		• A •	F		Merge -	* %	• € .0 ∠	Conditio	nal Ba	ıd	•			Thomas A	a.				
Paste 🥥	,		(- (-			()					Formatti	ng			sert Delete	Format	Themes The					and a second
AI	_	:00	(= Jx	D	E	E (V		м	M	0	D	0	D	• - 2				
1 millis (m	s) Pres	ssure (ps Acce	elX (g)	AccelY (g)	AccelZ (g) Hu	midity (% Thern	mo (Deg C)			ĸ	-	m		0	r	ų	N	3				
2	664	11.86	0.22	0.46	0.98	22.86	25.2															
3 1	173	11.86	0.27	0.46	0.98	22.86	25.2															
5 2	2190	11.84	0.24	0.43	0.98	22.80	25.2														_	
6 2	2707	11.86	0.22	0.48	1	23.18	25.68															
7 3	3216	11.86	0.1	0.53	0.96	23.34	25.2															
8 3	3724	11.86	-0.14	0.55	0.93	26.96	25.68											ľ				
9 4	1233	8.67	-0.11	0.53	0.96	30.42	25.68															
1 5	5259	8.93	-0.11	0.5	0.96	46.18	25.2															
12 5	5767	11.82	0.15	0.48	1	52	25.68															
13 6	5279	11.84	0.29	0.53	1.05	55.94	24.71															
14 0	7345	11.82	0.34	0.5	1.03	56.73	25.2															
16 7	7853	11.86	0.36	0.58	1.1	58.15	26.17															
17 8	3360	11.86	0.32	0.53	1.05	63.82	27.15															
8 8	3878	11.88	0.27	0.53	1.03	70.43	26.17															
20 9	1365	11.89	0.34	0.53	1.07	66.97	25.08															
1 10	0403	11.89	0.34	0.53	1.07	62.4	26.17															
2 10	0920	11.88	0.22	0.53	1.12	58.46	25.68															
3 11	1430	11.89	0.32	0.55	1.12	56.73	25.2															
25 12	2447	11.88	0.36	0.53	1.07	50.27	25.2															
16 13	3032	11.84	0.24	0.43	0.96	45.55	25.68															
27 13	3542	11.86	0.32	0.48	1	43.03	26.17															
8 14	1051	11.77	0.27	0.41	0.96	38.46	24.22															
14	5076	11./8	0.22	0.74	0.96	37.83	24.22															
11 15	5586	11.82	0.2	0.43	0.98	34.2	25.2															
16	5094	11.82	0.22	0.46	0.98	32.47	25.68															
16	5602	11.82	0.2	0.43	0.98	31.53	25.68															AND AND AN APPROXIMATION OF
17	7630	11.62	0.17	0.43	0.98	30.58	26.17														1.634	
16 18	8138	11.82	0.2	0.43	0.93	29.79	27.15															
37 18	8646	11.78	0.24	0.43	0.98	28.85	27.64													100		and the state of the
19	9163	11.78	0.22	0.46	0.98	28.06	27.15													100		A
10 20	0185	11.78	0.24	0.48	0.96	26.33	26.66															
1 20	0692	11.77	0.22	0.48	0.98	26.8	27.15															
12 21	1261	11.8	0.24	0.46	1	27.43	27.15											Ų				
13 21	2771	11.8	0.22	0.43	0.96	28.06	26.66											4				
	4 4 ++	LOGGE	ER15.CSV	+	0.90	20.22	a.r.1.0			<u></u>) 4 1 1				
▦∎≝,	Normal Vie	ew Rea	dy							Sum=0		-				·			1			

- Do you see your data markers?

- Re-plot just your accel data

- How can you use this data?

Part 2 – Arduino Race Track Sensors

- A. OpenLog Integration
- B. OpenLog Code
- C. Data Retrieval

SUCCESS

Because you too can own this face of pure accomplishment

- For balloon flight, need to power Arduino with 9V battery
- Do not connect USB and 9V ever

- Splice red and black wires onto switch terminals and solder taking care not to shrink tubing
- Take care not to overheat the switch

- Place heat shrink tube on black and red wiring at switch terminals
- Heat to shrink tubing, taking care not to overheat the switch

- Cut Red and Black wire to ~1 foot in length
- Cut black housing on barrel connector to reveal wires, being careful not to cut wires.
- Cut barrel connector black wire in half
- Strip ends of cut wire back ~1/3 inch

- Place heat shrink tubing on one side of wires that will be able to cover connections.
- Splice red and black extensions into connector and solder

- Place heat shrink tube around solder joint and heat

- Should look similar to this at the end

Plug battery and switch into Arduino (Remove USB cable)
Flip the switch ON

Alternate Power:

- You are now recording data until power is lost

Part 2 – Arduino Race Track Sensors

- A. SHIELD Integration
- **B.** SD Card Code Integration
- C. Data Retrieval

