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Geometric transformation and three-dimensional
hopping of Hopf solitons
Jung-Shen B. Tai1, Jin-Sheng Wu 1 & Ivan I. Smalyukh 1,2,3✉

Arising in many branches of physics, Hopf solitons are three-dimensional particle-like field

distortions with nontrivial topology described by the Hopf map. Despite their recent dis-

covery in colloids and liquid crystals, the requirement of applied fields or confinement for

stability impedes their utility in technological applications. Here we demonstrate stable Hopf

solitons in a liquid crystal material without these requirements as a result of enhanced

stability by tuning anisotropy of parameters that describe energetic costs of different gradient

components in the molecular alignment field. Nevertheless, electric fields allow for inter-

transformation of Hopf solitons between different geometric embodiments, as well as for

their three-dimensional hopping-like dynamics in response to electric pulses. Numerical

modelling reproduces both the equilibrium structure and topology-preserving out-of-

equilibrium evolution of the soliton during switching and motions. Our findings may enable

myriads of solitonic condensed matter phases and active matter systems, as well as their

technological applications.
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Three-dimensional (3D) topological solitons are marvels of
mathematical physics that arise in theoretical models in
diverse physical systems including elementary particle and

nuclear physics, condensed matter, and cosmology1–5. A parti-
cularly interesting type of them, the Hopf soliton, is described by
the mathematical Hopf map from a hypersphere to an ordinary
sphere6 (S3 ! S2), which in the physical 3D space exhibits inter-
linked circle-like or knotted localized regions of constant order
parameter values mapping to a single point in the order-
parameter space2–4. In condensed matter systems, materials with
order parameters being unit-vector fields (order-parameter space
S2), such as magnetization and electric polarization, or head-tail
symmetric director fields (order-parameter space S2=Z2), such as
molecular alignment in liquid crystals (LCs), are candidates for
hosting Hopf solitons. While the nontrivial nature of π3(S

2) = Z
and π3(S

2=Z2)=Z groups informs about the existence of the
corresponding topologically nontrivial constructs, it does not
guarantee their stability. In fact, the Derrick-Hobart theorem
predicts that such solitons cannot be stabilized within the sim-
plest linear field theories7,8. Nevertheless, by invoking chirality
and a corresponding free energy term as the mechanism of
overcoming the constraints of the Derrick-Hobart theorem in
LCs and magnets9, recent discoveries of stable Hopf solitons
include hopfions hosted in a uniform background (constant order
parameter far-field n rð Þ � n0; Fig. 1a, e, h, k) and the so-called
heliknotons in a helical background (nðrÞ perpendicular to and
twisting around the helical axis χ0; Fig. 1b, f, i, l), where they were
found both individually and within triclinic 3D lattices10–17. Hopf
solitons were also modeled in conical backgrounds at externally
applied fields, where nðrÞ is at a cone angle 0� < θc < 90� with
respect to χ0

17 (Fig. 1c, g, j, m). Localized structures of Hopf
fibration18 and structures resembling heliknotons19, albeit with
singular defects, were also found. In all cases, Hopf solitons
classified by the third homotopy group exhibit interlinked regions
of constant order parameter (preimages) with conserved linking
number, identified with their integral topological charge – Hopf
index Q (Fig. 1e, f, g). Another notable feature of topology of
Hopf solitons in elastically isotropic materials is that the
streamlines of skyrmion number density Ω (or emergent mag-
netic field in magents20,21) also nontrivially link into Hopf
fibrations13,17, and the surfaces of constant magnitude of sky-
rmion number density form tori or handlebodies (Fig. 1h-j,
Supplementary Movie 1). This is of interest for novel 3D spin-
tronic applications as the emergent fields describe the interaction
between magnetic solitons and the spin currents20,22. Topological
solitons attract fundamental as well as technological interest
because of their topology-preserving multi-stability, field driven
dynamics, and ability to act as individual particles or even form
crystals16, 22–26. Compared to their lower-dimensional counter-
parts – 2D skyrmions, Hopf solitons have an advantage that they
can be controlled in all three spatial directions.

Beyond chirality, the stability of Hopf solitons in experiments
so far has also relied on geometrical confinement or externally
applied fields. For example, hopfions in LCs, LC colloids, and
magnets have been realized in thin-film and nanodisk geometries
where surface boundary conditions (BCs) were shown to be
essential10–15. Heliknotons in LCs, on the other hand, can be
stable in the bulk without confinement, but an external electric
field was needed to sustain their stability16. While heliknotons in
chiral magnets17 and Hopf solitons as skyrmion knots in fru-
strated magnets27 have been shown in numerical simulations to
be stable per se, their experimental realizations are lacking. As a
result, the 3D mobility and control of Hopf solitons is so far not
fully utilized, precluding their technological applications. More-
over, though verified to be topologically identical, hopfions and

heliknotons are distinct embodiments of Hopf solitons in their
field configurations and are stable under different conditions.
Insights into how their field geometries are related to each other
are essential for understanding stability of Hopf solitons in and
out of equilibrium. In conventional nematic LCs made of rod-like
molecules, the twist deformation is favored over bend
deformation28, energetically hindering a smooth transition
between the uniform state and the helical state through conical
states, as well as the hopfion-heliknoton inter-transformation.
However, recently, LCs made of bent-core molecules were found
to have exceptionally low bend elastic constant within the
nematic phase they form, and mixtures of rod-like and bent-core
molecules exhibit tunable elastic anisotropy and are an ideal
material system to explore stability of various Hopf soliton
embodiments and their geometric inter-transformation29,30.

In this work, we demonstrate the structural stability of Hopf
solitons under different elastic material constants, applied electric
field E, and confinement conditions in chiral LCs. Our numerical
study reveals conditions when Hopf solitons are stabilized at no
applied field or confinement in the helical background and when
they are stabilized with the help of confinement or applied fields
in the uniform or conical backgrounds. Furthermore, we identify
a pathway for inter-transformation between hopfions and heli-
knotons, in confined LCs by switching E, where n rð Þ transforms
smoothly while preserving the soliton’s topology. We experi-
mentally demonstrate such facile inter-transformation. Our
findings indicate that elastic constant anisotropy, tunable by
adjusting the material composition, provides a new mechanism
for enhancing stability of Hopf solitons in different backgrounds.
Further, we have discovered a 3D hopping-like motion of Hopf
solitons that arises from repeated inter-transformation between
hopfions and heliknotons through periodic voltage switching.

Results
Structural stability of Hopf solitons. Using experimentally
determined and then numerically relaxed11,16 Hopf solitons as
initial conditions, we investigated the structural stability of ele-
mentary Q ¼ 1 Hopf solitons in chiral LCs by minimizing the
Frank-Oseen free energy density including the term describing
dielectric coupling effect of E (Methods)16,31,32

f CLC ¼ f elastic þ f electric ¼
K11

2
∇ � nð Þ2 þ K22

2
n �∇ ´ nð Þ2

þ K33

2
n ´∇ ´ nð Þ2 þ 2πK22

p0
n � ∇ ´ nð Þ � ε0εa

2
E � nð Þ2

ð1Þ

Here nðrÞ is the LC molecular alignment field; for continuous 3D
solitonic excitations, it can be treated as a vector field for
simplicity10,11. K11, K22, and K33 are Frank elastic constants for
splay, twist, and bend deformations, respectively, p0 is the
equilibrium pitch of the chiral LC at no field, ε0 is the vacuum
permittivity, εa is the dielectric anisotropy of LC, and E is along z.
Mimicking our experiments, we consider conditions where solitons
can be stabilized in an unconfined bulk (Fig. 2a and Supplementary
Fig. 1), for confinement with perpendicular BCs for n rð Þ along z
(Fig. 2b and Supplementary Fig. 2) and for unidirectional parallel
BCs (Supplementary Fig. 3) by varying the elastic anisotropy
associated with bend and twist deformation (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K33=K22

p
) and the

normalized electric field strength eE (Methods).
The translationally invariant backgrounds of n rð Þ that embed

Hopf solitons for unconfined chiral LCs can be derived
analytically by comparing their corresponding free energies
(Methods), as shown with the help of θc contours in Fig. 2a.
Here θc is the cone angle between the background n rð Þ and þẑ
direction, which is also the direction of χ0 and E (Fig. 1c). After
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energy minimization, Hopf solitons can preserve topology and
exist as stable or metastable structures when the energy of the
stabilized soliton is lower or higher than the embedding
background, respectively; metastable Hopf solitons appear as
particle-like, spatially-localized structures that are robust under
the effects of thermal fluctuations due to the energetic barrier
between these metastable structures and the corresponding
stable states (Fig. 2). Parameter regions where the final energy-

minimizing structure is topologically trivial or contains singular
defects are classified as unstable. At eE ¼ 0, Hopf solitons are
metastable in the helical background (heliknotons) with higher
energy density than the background when

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K33=K22

p
≤ 1:2 and

unstable otherwise (Fig. 2a, e). At larger
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K33=K22

p
, heliknotons

can remain metastable if eE is applied, consistent with previous
findings that heliknotons required a stabilizing eE in chiral LCs

Fig. 1 3D Hopf solitons in topologically trivial backgrounds. a–d Schematics of nðrÞ backgrounds in uniform (a), helical (b), and conical (c) states
represented by arrows for vector fields and ellipsoids for nonpolar director fields, respectively. The conical state is at a cone angle θc with respect to the
helical axis χ0. Vectors are colored based on their orientations as shown in the order-parameter sphere in insets and in (d). e–g Preimages of vector
orientations (shown in insets as arrows in the order-parameter sphere) of Hopf solitons stabilized in a uniform (e), helical (f), and conical (g) background.
h–j Visualizations of the skyrmion number density Ω and vortex lines of stabilized Hopf solitons in different backgrounds corresponding to
e–g, respectively. The inset in i shows vortex line in the heliknoton can form mutually linked rings17. k–m Hopf solitons observed in chiral LCs using bright-
field (left panels) and POMs (right panels) in a uniform (k), helical (l), and conical (m) background, respectively. The directions of cross polarizers are
shown in the insets and scale bars are 5 µm.
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with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K33=K22

p
> 1:516. Hopf solitons can also be metastable in

the bulk conical background for 30� ≲ θc≲ 40� at
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K33=K22

p
≤ 0:4

and 0:5≤ eE ≤ 0:8 (Fig. 2a, f). Excitingly, Hopf solitons are found to
have nðrÞ with lower energy than their embedding backgrounds
between patches of parameter regions of metastable Hopf solitons
and across the helical-uniform and helical-conical boundaries for

the background field in the structural stability diagram. In these
parts of the diagram, the Hopf solitons fill the computational
volume and form stable crystalline assemblies (Fig. 2a). The
lower-than-background energy of Hopf solitons results from the
unconstrained structural degrees of freedom in the solitonic
structures, which become lower in energy density in the
intermediate parameter regions than the background states

Fig. 2 Structural stability of Hopf solitons. a–b Structural stability diagrams of LC Hopf solitons in the bulk (a) and within a confined volume
with perpendicular BC and d ¼ 3p0 (b). The data points are colored based on the stability of Hopf solitons, and the contour lines of background mid-plane
cone angle θc are shown on each diagram. nðrÞ of labeled data points in (a–b) are shown in (d–f). c Structural stability diagram of magnetic Hopf solitons in
a confined volume with perpendicular BC and d ¼ 3λ. d–f, Preimages and director fields of representative Hopf solitons in a uniform (d), helical (e), and
conical background (f), respectively. Preimages and vectors are colored based on the color scheme shown in Fig. 1d.
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whose structural degrees of freedom is limited (θc and
equilibrium pitch p as functions of eE and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K33=K22

p
). Solitons

with lower energy density thus form crystalline assemblies to
lower the overall free energy. Similar stable assemblies of Hopf
solitons have been found in LCs and magnets, albeit here they can
occur even without confinement or applied fields16,17. Impor-
tantly, regardless of the distinct embedding backgrounds with
different θc, the Hopf indices of the stabilized solitons remain
unchanged, as evident from the linking number of preimages
(Fig. 2d–f).

When confinement and perpendicular BC were applied to the
chiral LC with a thickness d ¼ 3p0, the background θc contours
shifted (Fig. 2b). Here, due to confinement, θc is defined as the cone
angle the background n rð Þ make with þẑ direction in the xy mid-
plane of the volume. The parameter regions of stability and
metastability of Hopf solitons found in the bulk LC diagram are
present also in the case of confinement. However, additional
metastability regions of Hopf solitons emerge in the uniform
background with θc ¼ 0� (hopfions, Fig. 2d) under the confinement,
differing from the case of no hopfions in the fully unwound LC bulk
shown in Fig. 2a. This further demonstrates how confinement of
LCs at surfaces with perpendicular BCs helps stabilize
hopfions10,11,13. Remarkably, our structural stability diagram
reveals that, with confinement and perpendicular BCs, hopfions
and heliknotons can be metastable at different eE at 0:8≲ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K33=K22

p
≲ 1:3, suggesting an in situ pathway for inter-

transformation by varying the applied voltage. Beyond their
structural stability region, Hopf solitons either collapse into the
topologically trivial background through proliferation and annihila-
tion of singular defects12 or transform into point-defect-dressed
solitonic structures such as torons33 (Supplementary Figs. 1 and 2).
Hopf solitons in confinement with parallel BCs show structural
stability similar to that in bulk LCs (Supplementary Fig. 3).

To understand if similar structural stability and structural
transformations of Hopf solitons can also occur in other material
systems, we performed stability analysis for Hopf solitons in the
magnetization field mðrÞ of chiral magnets with perpendicular
BCs at confining surfaces (Fig. 2c and Supplementary Fig. 4). The
micromagnetic Hamiltonian of chiral magnets resembles the
Frank-Oseen elastic free energy in the isotropic elasticity limit of
K11 ¼ K22 ¼ K33 � K in Eq. (1), with K and 2πK=p0 related to
the exchange and Dzyaloshinskii-Moriya interaction constants,
respectively (Methods), suggesting similar energetics and struc-
tures can be anticipated in these distinct physical systems10,23.
We subject this chiral magnetic material to an applied magnetic
field H (normalized field strength eB) and a uniaxial magneto-
crystalline anisotropy (normalized anisotropy strength eKu), both
along ẑ, which couple to mðrÞ linearly and quadratically
(Methods). We find that magnetic heliknotons can be metastable
at zero eKu and eB, while finite eKu promotes a uniform background
and metastable magnetic hopfions under confinement (Fig. 2c),
similar to the structural stability of Hopf solitons in LCs atffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K33=K22

p
� 1 (Fig. 2b). Through Zeeman coupling, H aligns

mðrÞ linearly, and Hopf solitons can be metastable or stable for
either direction of H in a helical or conical background, while
hopfions in a uniform background are metastable only when H is
in the same direction as the BC magnetization on the surfaces
(along þẑ). Outside of the stability regions of Hopf solitons,
magnetic torons form withmðrÞ resembling the nðrÞ of LC torons.
As with previously studied magnetic Hopf solitons, the
streamlines of skyrmion number density Ω (or emergent
magnetic field) derived from equilibrated Hopf solitons form
Hopf fibration, regardless of the embedding background or
confinement conditions13,17 (Fig. 3).

Geometric transformation of Hopf solitons driven by electric
field. Inspired by the numerically revealed pathway for inter-
transforming LC heliknoton and hopfion, we performed simu-
lations and experiments in a confined chiral LC to demonstrate
this. Simulation results show that under confinement with per-
pendicular BCs for

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K33=K22

p
≲ 1:1, the helical state in nðrÞ can

transition smoothly, through conical state, to the uniform state by
increasing eE (Fig. 4a). Concomitantly, a heliknoton transforms
smoothly into a hopfion (Fig. 4b–d and Supplementary Fig. 5).
We experimentally generated a heliknoton with laser tweezers in
a confined (d ¼ 3p0) chiral LC mixture with reduced

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K33=K22

p
(Fig. 4e, Supplementary Fig. 6, Methods), which remained stable
at no eE. Upon increasing the voltage applied across the LC cell,
the heliknoton-to-hopfion transformation was revealed by bright-
field and polarizing optical microscopies (POMs) (Fig. 4e and
Supplementary Fig. 7). Notably, though hopfions and heliknotons
have been known to share the same nðrÞ topology16, this is the
first time the two are shown as geometric embodiments of the
same field topology through direct imaging of their inter-
transformations. This process can be paralleled with transfor-
mations between geometric shapes of objects that preserve
topological invariants, like the transformation between a coffee
mug and doughnut that retains the genus-one surface topology.
Remarkably, this transformation is reversible when the voltage is
switched off and a heliknoton can undergo a full cycle of trans-
formation to a hopfion and back to heliknoton (Fig. 4e, Supple-
mentary Fig. 7, Supplementary Movies 2-4). The full-cycle
transformation is also accurately captured by simulations
(Fig. 4f–g, Supplementary Fig. 5, Supplementary Movie 5). A
close inspection of the POM micrographs and simulated pre-
images of the Hopf soliton during transformation show that the
full-cycle transformation process of nðrÞ is nonreciprocal
(Figs. 4e–g and 5).

The elapsed time needed to transform from one geometric
embodiment (e.g., hopfion or heliknoton) to the other is also
asymmetric, with the transformation from a hopfion to a
heliknoton roughly three times longer than in the opposite
direction (Fig. 4e). The full-cycle transformation is accompanied
by a displacement of � 1:2 µm along the long axis of the
heliknoton, or � 0:52 of the helical pitch p0 of the chiral LC,
which is also quantitatively reproduced in simulations (Fig. 4f-g).
Throughout the transformation, the field topology of the Hopf
soliton is preserved, evident by the linking number of preimages
(Figs. 4f and 5, and Supplementary Movie 5). Additionally, we
identify Hopf solitons embedded in a conical background at an
intermediate eE with an intermediate state of the transformation,
showing how the inter-transformation between hopfion and
heliknoton progressed through an intermediate stage of a Hopf
soliton in the conical background (Supplementary Fig. 8).

3D hopping and squirming of Hopf solitons. The heliknoton-
hopfion intertransformation and the ensuing spatial displacement
repeat with periodic switching of the applied voltage on and off,
leading to an activated propelling motion (Fig. 6a, b, Supple-
mentary Movie 6), similar to the squirming motion of 2D
skyrmions34. This translational motion is enabled by the non-
reciprocal evolution of nðrÞ during the inter-transformations
between the various geometric embodiments of the Hopf soliton
with the voltage modulation within each modulation period. Both
experiments and simulations show the consistent direction of
displacement, suggesting the long axis of the heliknoton embo-
diment of the inter-transforming Hopf soliton is oriented. This is
because the presence of confinement and perpendicular BCs
preselect one of the two polar preimages ( ± ẑ; white and back in
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Fig. 3 Interlinked streamlines of skyrmion number density in magnetic Hopf solitons. Skyrmion number density Ω shown by streamlines and magnitude
isosurfaces in Hopf solitons stabilized at eB ¼ 0, eKu ¼ 1 (a) and eB ¼ 0:3, eKu ¼ 0:1 (b), respectively. Cones on the streamlines indicate the local orientation
of Ω. The schematic in a shows that each pair of closed streamlines has a linking number +1.

Fig. 4 Geometric transformation of Hopf solitons driven by electric field. a Schematic illustration of the experimental setup and the switching of
topologically trivial backgrounds; θc at midplane decreases from 90° to 0° as the applied voltage increases. b–d Vertical midplane cross-sections through
the Hopf soliton going through intertransformation from a heliknoton to a hopfion. b–d correspond to simulated nðrÞ at 0.00%, 0.19%, 6.07% of the total
simulation time in f–g. The 100% simulation time corresponds to the total inter-transformation time (48.06 s) in experiments. e Experimental POM
snapshots of Hopf soliton switching from a heliknoton (0 s) at U = 0V to a hopfion (11.73 s) at U = 3.85 V, and back to a heliknoton (48.06 s) at U = 0 V.
d=p0 ¼ 3, d ¼ 7 µm and scale bars are 5 µm. f–g Simulated transformation shown by preimages of two antiparallel orientations (f; white:þẑ, black: �ẑ) and
simulated POMmicrographs (g). The vertical red line going through the center of the volume in f is a guide to the eye. The progress of inter-transformation
in numerical simulations shown as percentage of the total simulation time is labeled in each panel. In simulations, K33=K22 ¼ 1 and d=p0 ¼ 3.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30494-2

6 NATURE COMMUNICATIONS |         (2022) 13:2986 | https://doi.org/10.1038/s41467-022-30494-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Fig. 4f) as associated with the far-field upon transitioning into a
uniform background by an electric field E, thus distinguishing the
two polar preimages and orienting the long axis of the heliknoton
in a confined LC. We also note that the directions of motion are
the same during the heliknoton-to-hopfion and hopfion-to-
heliknoton transformations (Fig. 4e–g); this is different from the
case of 2D skyrmions that move in opposite directions during the
forward and backward transformations under a modulated E but
with different magnitudes, giving rise to a rectified motion34,35.
Experimental and computer-simulated preimage visualizations
and POM micrographs, which exhibit a good agreement
(Fig. 4e–g), vividly reveal these origins of the nonreciprocal
structural evolution and soliton motion.

Interestingly, such translational motion of a Hopf soliton
deviates from a linear trajectory. Within each transformation
cycle, the Hopf soliton undergoes a net displacement along the
direction of heliknoton’s long-axis orientation, while the long-
axis orientation of the heliknoton with respect to x-axis (ϕ) slowly
changes with time (Fig. 6a–c, Supplementary Fig. 9). Moreover,
we found heliknotons adopt various orientations even at static
equilibrium with no applied voltage and when the substrates are
rubbed to achieve a uniform in-plane orientation in the

background helical state at the sample mid-plane (Fig. 6d). Since
the orientation of the soliton correlates with its z position along
χ0 in a helical background, as previously revealed by direct 3D
imaging16, this suggests that, beyond 2D lateral dynamics, Hopf
solitons also undergo orientation-correlated displacements in the
third dimension along χ0. To further understand the propensity
of Hopf solitons to adopt certain orientations and z positions, we
numerically investigated the initial (zi) and final, energy-
minimizing z positions (zf ) with respect to the sample midplane
before and after equilibration, as well as the final free energy
(Fig. 6e–g). This was done by numerically displacing a hopfion or
heliknoton from the sample midplane in their respective back-
grounds before relaxing them towards equilibrium (Heliknotons
so displaced were also rotated in a way consistent with the helical
background; see Methods). Our results revealed that hopfions
quickly relaxed and symmetrically filled up the entire vertical
space between the confining substrates (zf ¼ 0), regardless of its
initial position zi; this yields a linear relation between zf � zi and
zi (Fig. 6e). On the other hand, we found the energy landscape of
a heliknoton in a helical background with confinement and
perpendicular BC contains multiple energy minima for spatial

Fig. 5 Preimage visualization of the simulated geometric transformation of a Hopf soliton. Simulated geometric inter-transformation of a Hopf soliton
from the heliknoton embodiment in the helical background to the hopfion embodiment in the uniform background, and back to the heliknoton embodiment
visualized by preimages (white: þẑ, black: �ẑ, red: þx̂, cyan: �x̂). The corresponding percentage of the total inter-transformation time in simulations is
labeled in each panel. The conserved linking number of each pair of preimages demonstrates the conserved field topology of the Hopf soliton during the
transformation process.
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locations along z. The lowest energy minima were at � 0:5p0
away from the confining substrates, whereas local energy minima
were distributed symmetrically around the cell midplane, leading
to a nontrivial relation between zi and zf of the soliton (Fig. 6f, g).
The midplane is an unstable position and corresponds to a local
energy maximum. As a result, the dependence of heliknoton
orientation ϕ on z is slightly perturbed from the anticipated linear
relation, though it is still monotonic and allows for the z position
of a heliknoton to be inferred by its orientation in POM
micrographs within the same 2π rotation period (Fig. 6h). The
displacement in z and energy landscape are qualitatively similar
for d ¼ 3p0 and d ¼ 4p0, showing these features are general for
heliknotons in a helical background with confinement.

Our analysis suggests the following scenario of periodically
repeated geometric inter-transformation and activated motion. In
each geometrically distinct state as a hopfion, the soliton
equilibrates as it moves towards the z ¼ 0 midplane in a uniform
background when the voltage is on. In the subsequent heliknoton
state with the voltage turned off and the background being helical,
thermal fluctuations and/or sample imperfections tip it away
from the then unstable z ¼ 0 position towards the nearest energy
minimum accompanied by a rotation. The soliton again

equilibrates towards z ¼ 0 in the following hopfion state, and
so on and so forth. In this process, the nonreciprocal director
evolution causes squirming and the Hopf soliton propels along
the lateral directions while, at the same time, moves vertically
between energy minima along z – an effective hopping dynamics
in the 3D space.

The squirming motion of Hopf solitons does not require complete
inter-transformation between hopfion and heliknoton and their
respective uniform and helical backgrounds (Fig. 7). In thinner
confined chiral LC slabs ðd ¼ 1:7p0Þ with perpendicular BCs, Hopf
solitons also propel in response to low-magnitude voltage modulation
with extremes corresponding to a hopfion in a uniform background
and a perturbed hopfion in a helical background (Fig. 7a–c). We
found that such activated motion is characteristic for hopfions with
both +1 and -1 Hopf indices (Fig. 7b–e, Supplementary Movies 7
and 8). Numerical modeling shows the details of nonreciprocity in
nðrÞ of temporal evolution of the Hopf soliton during a single period
of voltage modulation that drives the activated motion (Fig. 7f).

Discussion
To conclude, we have shown, for the first time, that Hopf solitons
can exist as spatially localized structures without external fields or

Fig. 6 3D Hopping of Hopf solitons. a–b Translational and orientational displacement of a Hopf soliton by repeated voltage switching shown at its initial
(a) and final (b) position. The 2D trajectory is color-coded by time and the long-axis orientations of the Hopf soliton in helical background at intermediate
positions are shown by double arrows (plotted for every two switching cycles). c Distance and accumulated change in orientation in each transformation
cycle (Δϕ) of a hopping Hopf soliton shown in a–b. d Hopf solitons in different long-axis orientations in a helical background with perpendicular
confinement. e Displacement in z as a function of initial position zi of a hopfion in the uniform background. f Displacement in z as a function of initial
position zi of a heliknoton in the helical background. g–h Free energy (g) and orientation (h) dependence of a heliknoton on equilibrium position zf . In
f–h, heliknotons with d ¼ 3p0 and d ¼ 4p0 are shown in blue and orange, respectively. The insets in e, f show the initial and final equilibrated Hopf solitons
of the corresponding data points by polar preimages. Insets in h show the simulated POM images (viewed along ẑ) and the preimages (viewed along ŷ) of
the solitons with z positions 0, 0.42p0, and 1p0 relative to the midplane (left to right) for d ¼ 3p0. The line in h shows ϕ ¼ 2πðzf=p0Þ for bulk heliknotons is
a guide to the eye. Free energy is in units of Kp0 and kBT, where K ¼ 6:47 pN is the average elastic constant of 5CB and p0 ¼ 2:33 µm, kB is the Boltzmann
constant, and temperature T ¼ 300 K. d ¼ 3p0 in experiments in a–d and scale bars are 10 µm.
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confinement in the helical background of chiral LCs within the
proper range of elastic anisotropy parameters, as well as can be stable
or metastable in the conical backgrounds when an external electric
field is applied. The composition-based engineering of elastic con-
stant anisotropy – energetic costs between different components of
the gradient of field – provides a novel route for enhancing soliton
stability, beyond the known methods of overcoming constraints of
the Derrick-Hobart theorem3,9,27. Materials such as novel LCs with
exceptionally large elastic-constant anisotropy and their
mixtures29,36,37, as well as magnetic LC colloidal materials based on
them10, can be used as testbeds for the stability of 3D topological
solitons, expanding the selection of material systems hosting them.
Moreover, we show that, by reducing the bend elastic constant,
soliton stability in LCs resembles that in elastically isotropic magnets.
This demonstrates elastic anisotropy engineering can further estab-
lish LCs as a testbed for general magnetic structures at a quantitative
level. We note that the magnitude of splay elastic constant, which
represents the other degree of freedom in engineering the elastic-
constant anisotropy in LCs, potentially can be additionally adjusted
to modulate the stability of Hopf solitons; the independent and
coordinated effect of elastic anisotropy engineering on the stability of
solitons hosted in these materials warrants further future studies.

We have also unambiguously demonstrated that hopfions and
heliknotons are geometric embodiments of the same underlying field
topology and can be transformed reversibly between one another by

an electric field, in a way resembling inter-transformations between
geometrically different but topologically identical surfaces where the
topological invariant, genus, is preserved. Furthermore, using a
simple modulating electric field, we demonstrated 3D hopping-like
dynamics of Hopf solitons as a result of combined nonreciprocity in
the transformation of field configurations and multi-minima ener-
getic landscape in a confined chiral LC. In principle, a more complex
modulation profile including asymmetric ON/OFF periods, delays,
or arbitrarily shaped profile, may be optimized to control the speed
or even the direction of the hopping of Hopf solitons, enabling novel
active matter systems made of topological solitons38. The newly
discovered stability of Hopf solitons and their 3D hopping dynamics
is of great interest for technological applications and adds to the
diversity of spatio-temporal manipulation methods of topological
quasi-particles.

Methods
Preparation of samples. Homogeneous mixtures of 4-Cyano-4’-pentylbiphenyl
(5CB, from EM Chemicals) and 4’,4”-(heptane-1,7-diyl)-dibiphenyl-4-carbonitrile
(CB7CB; from SYNTHON Chemicals, Germany) were obtained by mixing the two
compounds at 125°C in the isotropic phase with active stirring. The resulting
mixtures at 60 or 70 wt% of 5CB were in nematic phase at room temperature30.
The nematic mixtures were then added with a small amount of right-handed chiral
additive CB-15 (EM Chemicals) to achieve right-handed chiral LC mixtures with
helical pitch p0 ranging from 2.33 to 10 µm as measured in a Grandjean-Cano
wedge cell39.

Fig. 7 Squirming of Hopf solitons. a–c Snapshots of POMs of a Q ¼ þ1 (b) and a Q ¼ �1 (c) Hopf soliton subject to background modulation by a
modulating voltage profile shown in (a). Time points in the modulation period corresponding to snapshots in b–c are labeled in a. The modulation period T
= 2 s. d–e Squirming of Hopf solitons of Hopf indices Q ¼ þ1 (d) and Q ¼ �1 (e) shown by superimposed POMs of Hopf solitons at different times. f Field
configurations of a Q ¼ þ1 Hopf soliton under voltage modulation in numerical simulations visualized by ± ẑ preimages (in white and black). Shown as
insets are the corresponding simulated POM micrographs. d ¼ 1:7p0 and scale bars are 20 µm.
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The LC cells were made with Indium Tin Oxide (ITO) coated glass slides or
coverslips. The ITO glasses were treated with polyimide SE5661 (Nissan
Chemicals) by spin-coating at 2,700 rpm for 30 s and then baking at 90°C, followed
by 1 h at 180°C to set strong perpendicular boundary conditions for nðrÞ at the LC-
glass interface. The polyimide-treated ITO glasses were then rubbed mildly and
assembled in antiparallel rubbing directions to ensure the background nðrÞ is a
uniform helical state with constant in-plane orientation at sample midplane at no
electric field (Fig. 4a). To assemble into a cell, silica micro-cylinders with diameters
7 µm to 20 µm were used as spacers and were sandwiched between ITO glasses and
fixed by UV-curable glue. Metal wires were additionally soldered to ITO glasses as
electrodes for electric control. Chiral LC mixtures were then introduced into the
cell by capillary forces.

To achieve electric control of LC background fields and solitons, the electrodes
of the LC cells were connected to a function generator (DS345; Stanford Research
Systems) operating at 1 kHz carrier frequency with sinusoidal output to preclude
complex hydrodynamic effects31. Additionally, we used an in-house MATLAB
code controlling a data acquisition board (NIDAQ-6363, National Instruments)
connected to a computer for fast modulation of voltage output.

Laser generation and imaging of Hopf solitons. Hopf solitons were generated by
holographic laser traps capable of producing predesigned patterns of laser intensity
within the LC sample16. The tweezers setup is based on an ytterbium-doped fiber
laser (YLR-10-1064, IPG Photonics, operating at 1,064 nm) and a phase-only
spatial light modulator (P512-1064, Boulder Nonlinear Systems) integrated with an
inverted optical microscope (IX81, Olympus)33. Upon focusing the 1,064 nm laser
into the LC sample, local heating and optical realignment created initial nðrÞ that
eventually relaxed into Hopf solitons under suitable energetic conditions16.

Bright-field microscopy, polarizing optical microscopy and videomicroscopy
were performed using the same IX-81 Olympus inverted microscope and a charge-
coupled device camera (Flea-COL, from PointGrey Research)33. Phase-contrast
microscopy was performed using a condenser annulus and a 60X oil-immersion
phase contrast objective. Differential interference contrast microscopy was
performed by introducing Nomarski prisms into the light path between crossed
polarizers.

Three-photon excitation fluorescence polarizing microscopy (3PEF-PM)
imaging of n rð Þ in Hopf solitons was performed by a setup built around the same
IX-81 microscope integrated with bright-field microscopy and laser tweezers16,34.
5CB molecules in the LC mixture were excited via three-photon absorption by
using a Ti-Sapphire oscillator (Chameleon Ultra II; Coherent) operating at 900 nm
with 140-fs pulses at a repetition rate of 80 MHz40. The fluorescence signal was epi-
collected by an 100X oil-immersion objective with NA = 1.4 and detected through
a 417/60-nm bandpass filter by a photomultiplier tube (H5784-20, Hamamatsu).
The polarization state of the excitation beam was controlled by using a polarizer
and a rotatable half-wave retardation plate or a quarter-wave retardation plate. In
3PEF-PM imaging experiments, a third-order nonlinear optical process was
involved, and the image intensity scales as cos6β, where β is the angle between the
dipole moment of the LC molecule, orientating along n rð Þ, and the polarization of
the exciting light. 3PEF-PM reveals the 3D n rð Þ field in LCs and were used to
unambiguously confirm the geometry and topology of the observed solitonic field
configurations10–12,16.

Computer-simulated polarizing optical micrographs were based on the Jones
matrix approach12,33 for energy-minimizing n rð Þ configurations and by using the
optical birefringence value of 5CB (Δn ¼ 0:18). Computer simulations of the
3PEF-PM images were based on the cos6β dependence in the image intensity, using
the n rð Þ of Hopf solitons from energy minimizations.

Numerical modelling. We used numerical modelling based on energy minimiza-
tion to explore the stability of Hopf solitons in chiral LCs and chiral magnets. For a
chiral LC subjected to an external electric field, the total free energy density consists
of Frank-Oseen elastic terms and the dielectric coupling term as shown in Eq. (1).
Surface anchoring (anisotropic surface energy term accounting for preferred nðrÞ
orientation at the surface) and saddle-splay deformation terms were not included
in our modeling due to strong anchoring strength at the boundaries achieved in
experiments. The material parameters were chosen to match those of 5CB except
for K33, which was a variable parameter to account for the change in bend elastic
constant enabled by varying the composition of LC mixture; namely, K11 ¼ 6:4
pN, K22 ¼ 3 pN, and εa=13.816. We used a normalized electric field strength

eE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε0εa
K22

p0
2π

� �2q
E in our modeling and structural stability diagrams such that the

first-order transition between the helical and the uniform state happens at eE ¼ 1
for bulk LCs when

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K33=K22

p
> 1 (see below). The energy was iteratively mini-

mized using an energy-minimization routine with finite-difference discretization in
space and forward Euler method in time implemented in an in-house MATLAB
code16,32. Briefly, nðrÞ was updated iteratively from an initial structure using the
Euler-Lagrange equation derived from Eq. (1). Relaxation was terminated when the
change in the spatial average of functional derivatives, between iterations, con-
verged and dropped below a threshold value determined for the steady-state
stopping criterion, indicating an energy minimum is attained. In all simulations,
the computational volume was sampled isotropically by a cubic grid at 24 gird
points per p0.

In bulk LC, topologically trivial background fields at different K33=K22 and
eE can be derived analytically by energy-minimizing the ansatz for a general
conical state twisting around χ0 along ẑ with variable pitch p and cone angle
θc: nðrÞ ¼ cos 2πz=p

� �
sin θc

� �
x̂ þ sin 2πz=p

� �
sin θc

� �
ŷ þ cosðθcÞẑ41. Forffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K33=K22

p
> 1, no conical state is stable, and a first-order phase transition

boundary exists at eE ¼ 1 between the helical and uniform states. Conical states

emerge when K33=K22 ≤ 1 and eE 2 ½ek; 1=ek� and the corresponding equilibrium

pitch and cone angle are p ¼ p0
ek=eE and cos2 θc

� � ¼ 1�ek=eE
1�ek2 , where

ek �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K33=K22

p
.

The structural diagram of trivial background states in bulk LC is shown in Fig. 2a
by θc contours. For the background fields of LCs in confinement, 1D simulations
along z (translationally invariant in x and y) with Dirichlet boundary conditions
were performed. θc was measured at the xy-midplane of the volume to yield the
background θc contours shown in Fig. 2b, c and Supplementary Figs. 2-4.

To model solitons in bulk LCs without confinement (Fig. 2a, Supplementary
Fig. 1), the size of the computational volume was 4p0 in x and y and thickness
d ¼ 10p in z. Note that since p depends on eE in conical state, d has to be an integral
number of the equilibrium pitch p (a function of ek and eE) to avoid artificial
frustration caused by the finite computational volume. Analytically derived θc was
used as the boundary condition at the top and bottom surfaces. For solitons in a
confined volume, Dirichlet boundary conditions of either perpendicular (along ẑ,
Fig. 2b, c, Supplementary Figs. 2 and 4) or unidirectional parallel (along �ŷ,
Supplementary Fig. 3) alignment at top and bottom surfaces were implemented.
Periodic boundary conditions were implemented in x and y directions for all
simulations. Two initial conditions of nðrÞ were constructed by either inserting a
previously relaxed hopfion11 into a uniform background with n0 parallel to ẑ or a
heliknoton16 into a helical or conical background with χ0 parallel to ẑ. The
topology of the steady states after energy relaxation was analyzed and a data point
is marked with Q ¼ 1 if a Hopf soliton was stabilized with one of the initial
conditions. Hopf index Q was determined by both the linking number of preimages
and numerical integral of the relaxed nðrÞ12,16. In all cases the two methods yielded
consistent results except when nðrÞ contained singular defects and a Hopf index
cannot be properly defined. The nonpolar chirality axis field ωðrÞ was derived from
the as relaxed soliton structure by identifying the chirality axis at all spatial
coordinates with the eigenvector of the local chirality tensor Cij ¼ nkϵljk∂inl

16. The
singular vortex lines in ωðrÞ were determined by finding connected spatial regions
where ωðrÞ is ill-defined.

The algorithm for energy minimizing solitons in chiral magnets is the same as
described above for chiral LCs. The micromagnetic Hamiltonian density of a chiral
magnet under an external magnetic field and uniaxial magnetocrystalline
anisotropy (Fig. 2c, Supplementary Fig. 4) reads13,17

fmagnet ¼
J
2
∇ �mð Þ2 þ D m � ∇ ´mð Þ � μ0Msm �H � Ku m � l0

� �2 ð2Þ

with m rð Þ the magnetization field, J the exchange constant, D the Dzyaloshinskii-
Moriya interaction constant, μ0 the vacuum permeability, Ms the saturation
magnetization, H the applied magnetic field, and Ku , l0 the strength and direction
of bulk uniaxial anisotropy, respectively. H and l0 were both along ẑ. The similarity
between the continuum energy functionals of LCs and magnets suggest that, at
some level, similar structures and phenomena can be anticipated in these distinct
physical systems, though it should be noted either system has physical properties
unique to itself that can contribute additional relevant free-energy terms and
distinct phenomena. For example, additional terms in the micromagnetic
Hamiltonian can arise from magnetocrystalline anisotropies, Zeeman energy
coupling to external fields, and nonlocal dipole-dipole interaction. Here, the
nonlocal dipole-dipole interactions were neglected for simplicity, as often done in
literature17,42,43. The computational volume is parameterized by helical wavelength
λ � 2πJ=D (equivalent to p0 in LCs) and Hamiltonian by dimensionless magnetic
field eB � μ0

MsJ
D2 H and dimensionless anisotropy strength eKu � J

D2 Ku . The
skyrmion number density Ω, which is proportional to emergent magnetic field in
magnetic solids, was calculated as Ωi ¼ 1

8π ϵ
ijkm rð Þ � ð∂jm rð Þ ´ ∂kmðrÞÞ, where ϵijk is

the totally antisymmetric tensor.
To understand the energy landscape and the stability of Hopf solitons at

different z positions in a confined chiral LC with perpendicular BCs summarized in
Fig. 6e–h, Hopf solitons were displaced from the sample midplane to different z
positions before relaxing towards equilibrium. For heliknotons, the nðrÞ of a
localized heliknoton was cropped away from the bulk simulation and displaced zi
along z-axis from the midplane while rotated 2πðzi=p0Þ in the sense of the material
chirality as the initial condition and relaxed at eE ¼ 0 and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K33=K22

p
¼ 1, the same

parameters used for the initial simulation of heliknoton in the bulk. The
thicknesses of the simulated cells were d ¼ 3p0 or 4p0. After relaxation, the average
position of the geometric centers of polar preimages (n rð Þ ¼ ± ẑ) was used as the
final position zf of a heliknoton, and the in-plane orientation of the vector
connecting the geometric centers of the polar preimages was used as heliknoton
orientation ϕ and agrees with the long axis of a heliknoton in POM images. The
geometric centers of each polar preimage associated with the heliknoton was
determined by finding the center of the minimum bounding sphere44 of each
preimage after excluding the preimages close to the top and bottom surfaces due to
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boundary conditions. Hopfions stabilized in a uniform background in a confined
LC (perpendicular BCs) with d ¼ p0 were placed in a d ¼ 3p0 cell at different zi
positions and relaxed at eE ¼ 1:1 and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K33=K22

p
¼ 1. Free energy of the relaxed

solitons was calculated by integrating Eq. (1) and the energy of a bulk helical state
at eE ¼ 0 was taken as the reference.

Data availability
All data generated or analyzed during this study are included in the published article and
its Supplementary Information and are available from the corresponding author on a
reasonable request. Data generated in this study are provided in the Supplementary
Source Data file.
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