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Solitons are ubiquitous in nature and technology1. They are 
found as water waves, pulses of light, wavefunctions of Cooper 
pairs in superconducting Josephson junctions, propagating 

pulses in biomembranes and nervous systems1–4, models of elemen-
tary particles5 and even cosmological objects like black holes6–8. An 
optical soliton generally refers to an optical waveform that main-
tains its shape when evolving over long distances and/or times, and 
even after collisions. This concept now encompasses a broad class 
of wavepackets with multiple spatial and temporal dimensions9. 
Having a particle-like nature, optical solitons can mutually attract, 
repel or yield fusion, fission and annihilation in media with nonlo-
cal optical nonlinearities10.

Many recent studies have focused on optical solitons in liquid 
crystals (LCs). These soft birefringent media exhibit giant nonlinear 
and nonlocal optical responses, with a facile reorientation of their 
optical axis fields under external stimuli, enabling the generation of 
optical solitons at powers as low as ~1 mW. An archetypal example 
of optical solitons in LCs is the so-called nematicon, which propa-
gates without diffracting by creating its own waveguide in the optical 
axis field of the LC11–13. Trajectories of nematicons may be modi-
fied using optical reflections from dielectric interfaces and various 
deformed regions of the background optical axis field14–17. Their 
potential for photonics applications has recently been demonstrated 
with mode transformations18, bistability19,20 and soliton-assisted 
random lasing21. Other types of optical solitons in LCs include dis-
crete solitons22, optothermal and dark solitons in dye-doped LCs23,24, 
self-focused beams with fast-evolving polarization states and spin–
orbit interactions25–27, and optical solitons in non-frustrated28 or 
frustrated chiral LCs29. At the same time, chiral LCs are also known 
to host a fascinating variety of topological solitons, like skyrmions, 
hopfions, torons and fingers30–34, which correspond to localized and 
topologically protected patterns of the optical axis embedded within 
their uniform backgrounds n0. These robust structures can be cre-
ated on demand with strong external stimuli35,36, they are stable 

without external fields, and they cannot be continuously deformed 
into the uniform background n0.

Discoveries of different types of laser light and matter inter-
actions have had a strong impact on the development of funda-
mental science and technologies throughout recent history, from 
laser surgery to laser trapping of tiny particles, to laser cooling of 
atomic gases, and to the generation of Bose–Einstein condensates. 
However, to the best of our knowledge, none of these diverse forms 
of light–matter interactions have exploited the regime when both 
light and matter take solitonic embodiments.

Here, we experimentally discover and theoretically explain the 
fascinating interactions between topological solitons and two classes 
of optical solitons in LCs, thus showing how the particle-like nature 
of optical solitons enables optomechanical interactions with topo-
logical solitons. By focusing on a regime where each type of soliton 
is not perturbed too much, we experimentally characterize these 
interactions and theoretically explain them in an elegant and accu-
rate manner with an effective Langevin equation that accounts for 
optical forces similar to the ones of optical traps, as well as nonlocal 
effects associated with the light-induced realignment of the optical 
axis field. The surprising findings within this new regime of light–
matter interactions reveal that the interplay of nonlinear effects 
that stabilizes these different solitons can lead to the self-assembly 
of topological solitons beside the optical solitons. Such interactions 
yield exceptionally rich types of behaviour that may find practical 
uses ranging from nonlinear optics to nanophotonic devices and 
spatial light–matter co-patterning.

Results
Physics of inter-solitonic interactions and co-assembly. Our 
experimental investigations show that topological solitons in the 
optical axis of a uniaxial chiral nematic LC can not only be attracted 
or pushed away from the optical solitonic beam’s axis but can also 
co-assemble in highly nontrivial ways (Fig. 1c) when forming  
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one-dimensional arrays of topological solitons localizing on the 
sides of the optical soliton. We experimentally reveal that this 
behaviour stems from the elaborate dynamical trajectories of topo-
logical solitons navigating their way when guided by particular opti-
cal solitons (Fig. 1c, bottom). What is the physical underpinning of 
this unexpected behaviour?

Our unwound chiral LC system is confined between glass plates, 
imposing an optical axis orientation n0 normal to the surfaces 
(see Methods). These samples host localized patterns of optical 
axis embedding an emblematic example of a topological soliton—
the baby skyrmion—whose optical axis field is shown in Fig. 1a 
and whose name refers to Skyrme’s topological solitons used to 
describe subatomic particles with different baryon numbers5. It 
covers twice the order parameter space of nonpolar unit vectors 
n with antipodal symmetry n ↔ −n, that is, antipodal points on a 
sphere (Fig. 1a, right). To emphasize the topological and nonpolar  

properties of these optical axis patterns, we introduce a colour 
scheme that associates an optical axis orientation with a colour. 
Our topological colouring is used for all cylindrical-glyph-based 
or continuous-colour plots of topological solitons and is detailed in 
Supplementary Section 2C, where we explain all the subtleties. For 
the skyrmion of Fig. 1a, one can easily check that white corresponds 
to the far-field optical axis n0 and that the primary colours blue, red 
and green (associated with tilted cylinders) appear twice. Each of 
these colours is associated with the antipodal peaks on the sphere 
of Fig. 1a. The two-dimensional structure of Fig. 1a corresponds to 
the mid-sample plane of the three-dimensional structure of Fig. 1b, 
which shows a few isosurfaces with fixed angles between n and n0. 
The quantity δnTS corresponds to the deviation of the optical axis 
field nTS with respect to the far-field optical axis n0 ≡ ex (unit vector 
of x-axis on Fig. 1) imposed by the confining plates and fully defines 
this class of topological structures called torons32, where ‘TS’ refers 
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Fig. 1 | Host system with coexisting topological and optical solitons. a, Optical axis pattern of a baby skyrmion. Each nonpolar orientation of the optical 
axis is associated with a single colour. b, Toron embedding the optical axis pattern of a in the mid-sample plane. The confining plates impose the far-field 
optical axis orientation n0. The inner black circles in a and b have a one-to-one correspondence and the red balls represent topological point singularities 
on which the baby skyrmion terminates while embedded in the uniform far-field background. The coloured surfaces are isosurfaces with fixed angles 
between n and n0. c, Schematic representation of the spin–orbit (top) and bouncing (bottom) optical solitons. The small spheres with pink converging 
arrows represent equilibrium points of the optical force field. d, The force FL arises from the conservation of momentum, when light rays are deflected by 
the toron’s birefringent pattern. pi (pf) is the initial (final) momentum of light. e, The force FNL is related to the nonlocal elastic interactions between the 
optical axis patterns δnTS (red isocontours) and δnEM (black isocontours).
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to topological solitons. Although more complex torons32 and other 
solitons30–34 can be realized, our study in this work focuses solely on 
the simplest type of elementary toron depicted in Fig. 1. Further 
details are given in Supplementary Section 2A.

We consider the light–matter interactions of torons with two 
classes of optical soliton. The first class (Fig. 1c, top) corresponds 
to a beam propagating parallel to the confining plates of the sample, 
with a polarization state evolving in the xy plane orthogonal to the 
axis of propagation z. The second class (Fig. 1c, bottom) corresponds 
to a beam bouncing between the two confining plates due to total 
internal reflection, with a polarization state evolving in the xz plane 
aligned with the axis of propagation. Owing to the facile response 
of LCs to fields, both types of beam, when associated with an opti-
cal power that is sufficiently high (typically 1–100 mW), introduce 
a nonzero deviation δnEM of the optical axis field nEM with respect 
to the far-field n0, which enables their self-focusing. However, the 
physical origins of the self-focusing are different: in the first class, 
the self-focusing is due to the giant spin–orbit interactions arising 
from the Pancharatnam–Berry phase of uniaxial LCs25,26, which 
define an effective waveguide for the mutually coupled and orthog-
onal photonics mode of propagation with extraordinary/ordinary 
polarization; in the second class, the self-focusing arises from the 
optically induced modulation of the effective refractive index of a 
single photonics mode with an extraordinary polarization, boosted 
by the medium’s chirality29. We call the first class spin–orbit optical 
solitons (as they are associated with spin–orbit couplings) and the 
second class bouncing optical solitons, with the index ‘EM’ (electro-
magnetic solitons) referring to either class.

When a toron and an optical soliton coexist, the total optical axis 
field can be obtained by summing the deviations δnTS and δnEM and 
the far-field n0. Since the toron contains all optical axis field orien-
tations, the general order of magnitude of the optical axis devia-
tions for the topological soliton is approximately unity. To reveal 
the physical mechanisms behind our system, we focus here on the 
experimental and theoretical settings for which the magnitude of 
optical axis deviations for the optical soliton are weak (typically 
below 0.04).

Optical solitons exert a mechanical action on torons, as vis-
ible by the dynamical trajectories they adopt in our experiments 
(Fig. 1c). We model this optomechanical interaction by integrat-
ing the densities of force over the confined LC volume and writ-
ing a two-dimensional overdamped Langevin equation for the 
in-sample-plane trajectory R of a toron (see Supplementary Section 
3A):

γ
dR
dt = FL + FNL +

√

2γkTξ. (1)

Here, γ is the dissipation coefficient associated with viscous damping, 
kT is the thermal energy, ξ is a vector of zero-mean delta-correlated 
stationary Gaussian processes representing thermal fluctuations, FL 
(FNL) is the local (nonlocal) contribution to the total optical force 
F, and t is time. Including thermal fluctuations enables measure-
ment of the dissipation coefficient (see Supplementary Section 1B), 
thus unlocking the possibility of measuring optical forces from the 
experimentally observed velocity of the toron.
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Fig. 2 | Properties of spin–orbit solitons. a,b, Optical micrographs of light scattered from a spin–orbit soliton with a beam power of 35 mW (a) and <1 mW 
(b). Scale bars, 100 μm. c, The transverse rescaled intensity profiles along the lines L0–3 in a,b as a function of y/σi, with σi the input FWHM. Symbols (lines) 
correspond to experimental (simulated) data. d, The FWHM values of the beams in a,b as a function of z. e, A polarised optical micrograph (POM) image 
of the optical soliton (top) and schematic representation of the associated simulated optical axis field of periodicity Λ in the yz and xy planes (bottom) 
with exaggerated reorientation angles and a stretched-out z direction. The orientations of polariser (P) and analyser (A) are indicated with a white cross. 
Scale bar, 100 μm. f, Cross-sections of the simulated optical axis pattern associated with a spin–orbit soliton in a 20-μm-thick sample. Since the optical 
axis field has a unit-norm and is only weakly deformed, we show only its y and z components. Scale bars, 5 μm.
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The force FL is directly proportional to the opposite of the aver-
aged deflection of light’s momentum Δp (see Fig. 1d) and is there-
fore analogous to the optical force of laser tweezers. However, we 
emphasize that in our system the deflection of light’s momentum 
is not due to discontinuities of material composition or density (for 
example, a laser acting on a particle) but instead is solely due to 
continuous changes of the optical axis. As such, the general proper-
ties of light’s deflection in our system, and of the force field FL, are 
fully governed by the topology of torons. The dynamics of torons 
are further enriched by the force FNL, which is related to the interac-
tion between the optical axis patterns nTS and nEM mediated by the 
orientational elasticity of the LC (see Fig. 1e). It has a highly nonlo-
cal nature because the optically induced pattern nEM extends farther 
than the optical fields if the laser-beam waist is smaller than the 
thickness h of the sample—a condition that is satisfied in our exper-
iments. It is calculated as minus the gradient of the elastic interac-
tion energy (see Methods and Supplementary Section 3C), which 
is nonzero when the two patterns of optical axis overlap as in the 
bottom of Fig. 1e. The interplay between the force fields FL and FNL 
leads to extended control over the toron’s dynamics illustrated for 
both optical solitons, with one of them showing tractor-beam-like 
features and multiple toron localization points (the pink ‘toron tar-
gets’ of Fig. 1c) periodically decorating the optical soliton along its 
propagation. Below we use interchangeably nα or δnα ≡ nα − n0 (with 
α = TS or EM) to characterize the optical axis fields of topological 
and optical solitons.

Interaction between spin–orbit solitons and torons. We consider 
a spin–orbit soliton that propagates along the z axis (see Fig. 1c) in 
a 60-μm-thick sample. In Fig. 2a,b, we show experimental micro-
graphs of light scattered out of the plane of the sample from the 
optical soliton, with an input beam power of ~35 mW and ≤1 mW, 
respectively. Since optical losses due to light scattering37 slightly 
complicate the analysis of Fig. 2a,b, we evaluate self-focusing effects 
by plotting in Fig. 2c the rescaled intensity of the transverse profiles 
along the dashed lines L0–3 as a function of y/σi, with σi the input 
full-width at half-maximum (FWHM). This plot clearly shows that 
the visible spread of the transverse profile L0 (the diffracting beam 
at weak power in Fig. 2c) can be compensated by nonlinear optical 
effects (profiles L1–3 associated with the self-focused beam of Fig. 
2a). This observation is confirmed by examining Fig. 2d, which 
plots the FWHM as a function of the propagation distance z for the 
self-focused and diffracting beams of Fig. 2a,b.

The origin of the self-focusing lies in the optically induced reori-
entation in the optical axis field of the sample. Figure 2e presents a 
polarized optical micrograph (POM) of the sample with the laser 
light filtered out. Therein, a bright colour corresponds to a nonzero 

|δnEM| associated with a beam-induced reorientation of the optical 
axis. Our simulations predict a periodic reorientation of the opti-
cal axis (Fig. 2f) due to the fast beatings between the orthogonal 
extraordinary and ordinary optical modes, mediated by nonlinear 
spin–orbit interactions. A cylindrical-glyph-based representation 
of the optical axis field is also shown with exaggerated reorienta-
tion angles and a stretched-out z direction in the bottom half of Fig. 
2e. The periodicity of this optical axis pattern is not visible in the 
POM because the periodicity length Λ ≈ 2.2 μm is smaller than the 
resolution of our microscope. The molecular reorientation mainly 
happens in the xy plane, with a 35 times weaker reorientation along 
z due to chirality. This resembles the pure xy reorientation of achiral 
media25–27,38,39, as expected since here the cholesteric pitch is much 
bigger than the beam waist.

We numerically calculated the optical force fields that a spin–
orbit soliton exerts on a toron, and estimated that FNL was always at 
least a thousand times weaker than FL, which means we can model 
the optomechanical interactions solely from the redistribution 
of light’s momentum. This finding is expected since the periodic-
ity length Λ associated with δnEM is much smaller than the typical 
diameter of a toron in our sample (comparable to the sample thick-
ness 60 μm). Indeed, the optical axis pattern nEM averaged over the 
diameter of the toron is almost identical to the far-field optical axis 
n0 and should therefore not lead to a substantial mechanical action 
when overlapping with the optical axis pattern nTS.

In Fig. 3b, we present a series of POM snapshots of a toron at 
different elapsed times. For convenient tracking, the microscope 
settings were adjusted to fully saturate the POM contrast inside 
the toron (see Fig. 3a for unsaturated images). The toron is pushed 
along a spin–orbit soliton perfectly aligned with its centre, due to 
the associated lensing effect40 which transfers momentum from the 
light beam to the toron, as schematically shown in the bottom half 
of Fig. 3b. Alternatively, when the optical soliton is incident on the 
outer edge of the toron, the optical force FL pushes the toron side-
ways, away from the beam, as seen in Fig. 3c, which shows three 
experimental toron trajectories with different starting points on top 
of the POM image associated with the spin–orbit soliton. Each tra-
jectory was captured independently in the same sample by optically 
creating, using a short laser pulse (see Supplementary Section 1A), 
the toron near a given starting point and destroying or moving away 
the toron at the end of the acquisition. We therefore emphasize that 
only a single toron was present at a given time inside the acquisi-
tion window. The insets of this figure show how the momentum of 
light is deflected for each particular starting point (black arrows), 
which allows the theoretical prediction of the general directions of 
the optical force (red arrows) in very good qualitative agreement 
with the experiment. In Supplementary Fig. 4, we present a direct  
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quantitative comparison between the experimental and simulated 
force profiles. The typical order of magnitude of the force rescaled 
by the beam power is 1 pN mW−1 in experiments and simulations 
and depends on the sample thickness, birefringence and beam 
waist. We also note that the force field includes no equilibrium 
points because we focused on a simple regime where the toron’s size 
is much bigger than the beating length Λ, which is a situation with 
no elastic interactions and is therefore analogous to a colloidal par-
ticle being pushed around by an unfocused laser. In the next section, 
we show that more complex behaviour arises when the toron’s size is 
smaller than the typical lengths associated with bouncing solitons.

Interaction between bouncing solitons and torons. In Fig. 4, we 
summarize our main observations concerning the properties of 
bouncing optical solitons in a 17-μm-thick sample. Similar to spin–
orbit solitons, the optically induced reorientation of the optical axis 
(bright red signal in Fig. 4f) enables the self-focusing of the laser 

beam (Fig. 4a–d). However, a few important differences exist. First, 
and as already noted above and in Fig. 1c, the laser beam is not 
propagating along the z direction but is bouncing between the con-
fining plates of the sample. In our simulations and experiments, the 
angle θ between the beam wavevector and the plane of the sample 
can either be imposed at the coupling interface or induced by scat-
tering defects at the entrance. This angle is experimentally measured 
using a tomography experiment (see Methods and Fig. 4e), and here 
θ ≈ 15°. Second, although the optically induced reorientation of the 
optical axis associated with both spin–orbit and bouncing solitons 
is periodic, the periodicity length Λ of the latter is much bigger than 
that of the former and can be estimated as Λ ≡ 2h/ tan θ ≈ 128 μm 
(Fig. 4f,g). Last, the chirality of the host medium has a much deeper 
influence on bouncing solitons than on the spin–orbit solitons of 
the previous section, since it induces a fully three-dimensional 
reorientation of the optical axis (Fig. 4g) and, overall, boosts the 
reorientation angle of the optical axis for a given beam power29.
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∣
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∣
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∣

∣F̃
∣

∣. d, Direct comparison between experimentally observed toron trajectories (in 
red) and the force field lines of the calculated total optical force F. e, Direct comparison between experimentally observed toron trajectories and force field 
lines of the calculated total optical force F using the experimental POM image of the bouncing soliton in Fig. 4f as the background. Similar to Fig. 2, the 
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The sample thickness was 17 μm in experiments and 10 μm in simulations due to computational limitations, but a comparison can still be made due to the 
approximate scale invariance of the force field. Scale bars, 10 μm. Black dots in a–d represent the equilibrium points of the force fields.

Since the periodicity length Λ ≈ 128 μm is now wider than the 
diameter of the torons (~30–40 μm), we can expect a non-negligible 
contribution of the force field FNL to the total optical force when the 

optical axis patterns of the bouncing soliton and the torons over-
lap. Figure 5a,b confirms this expectation, by presenting the general 
shape of the numerically calculated optical force fields FNL and FL 
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(see Supplementary Section 3) as well as their rescaled intensities 
F̃α

≡ Fα/P (with P the beam power and α ∈ {L,NL}). The typical 
order of magnitude of both 

∣

∣F̃L
∣

∣ and 
∣

∣F̃NL
∣

∣ is 1 pN mW−1, but both 
force fields are associated with complex spatial variations and mul-
tiple equilibrium points positioned periodically on each side of the 
beam. By summing FL and FNL, one obtains the total force F exerted 
on the toron plotted in Fig. 5c. The periodicity of this force field is 
directly related to the periodic pattern defining the bouncing soli-
ton, and can be tuned by adjusting either the beam insertion angle θ 
or the sample thickness h. Furthermore, one can easily show, assum-
ing perfect self-focusing and a fixed value for θ, that this force field 
is scale-invariant if all lengths (sample thickness, toron diameter 
and beam waist) are scaled by the same factor and the light’s wave-
length is much smaller than other lengths.

Using this scale invariance, Fig. 5d shows a direct comparison 
between the experimental realization of toron trajectories and the 
numerically calculated optical force field F. Similar to the previous 
section, each trajectory was measured independently with a single 
toron during a given duration inside the observation window. The 
trajectories follow the general field lines of the force fields, with 
some deviations due to thermal noise. This comparison therefore 
validates the overdamped Langevin model that we introduced 
above. Most interestingly, experiments and modelling reveal a wide 
range of trajectory shapes, including characteristic hook-like tra-
jectories when the toron is translated towards one of the equilib-
rium points of the force field. This means that the optical force can 
go against the natural flow of light (left to right in all figures)—a 
phenomenon reminiscent of so-called tractor beams41, albeit here 
resulting in periodic arrays of spatially localized topological soli-
tons on both sides of the optical soliton. This phenomenon can be 
interpreted in terms of nontrivial three-dimensional deflections of 
optical momentum and opto-elastic interactions arising from the 
complex optical patterns associated with the optical and topological 
solitons. In Supplementary Section 3, we describe the mechanisms 
yielding the force field of Fig. 5d and the drastic changes that can be 
induced by varying the material constants of the LC.

Discussion and conclusions
Our findings show how solitons embedded in different fields—
molecular orientation and electromagnetic—can exhibit complex 
optomechanical interactions. We focused on the regime where the 
dynamics of topological solitons are largely predetermined by the 
direction of propagation and the type of optical soliton. However, 
this regime is just one of many possibilities. As another illustrative 
example, Supplementary Section 4 describes an interaction of opti-
cal solitons with surface-pinned torons and cholesteric fingers. The 
optical solitons in this case can be redirected by the topological soli-
tons, as well as channelled out of the LC samples. Additional new 
possibilities can emerge from controlling the elasticity-mediated 
inter-solitonic interactions between torons themselves42. Although 
we have so far explored the most basic situation of torons embed-
ded in a uniform far-field background and interacting with each 
other repulsively through elasticity-mediated forces, such inter-
actions can be controlled by applying electric fields, and even 
out-of-equilibrium dynamics can emerge42 when the amplitude of 
the applied voltage is modulated. Combining optical-topological 
inter-solitonic interactions with these additional means of control 
could create a new paradigm of multi-stimuli-reconfigurable soli-
tonic matter, although this falls outside the scope of this work.

A large range of physical behaviours can be anticipated between 
the two extremes at which the behaviour is dominated by either opti-
cal or topological solitons. For example, crystalline lattices of torons 
can have combinations of surface-pinned and mobile torons, with 
the latter objects acting as passive particle-like objects undergoing 
Brownian motion when no external forces are applied. Such topo-
logical solitons can typically be ‘activated’ by applying periodically 

oscillating fields and patterns of light, both when moving individu-
ally and as periodic crystal-like arrays42–44. These dynamics could 
then be enriched and guided by the interactions with optical solitons 
studied here. On the other hand, our quasi-two-dimensional study 
of interacting optical and topological solitons could be extended 
to higher dimensions, such as with spatio-temporal solitons called 
‘light bullets’45 and with topological solitons like ‘heliknotons’ that 
are capable of forming three-dimensional crystalline arrays46.

We anticipate that the experimental developments described 
above could go hand-in-hand with the introduction of a general 
topological optomechanical framework, enabling the determination 
of the mechanical interactions of chiral topological structures with 
general shaped beams of light. The theoretical model that we have 
introduced here is the first step towards this general framework, but 
the ultimate goal would be to account for all degrees of freedom 
of the structure being transported, which would enable the study 
of topological interactions between very generic patterns of opti-
cal and material fields. These multifield interactions could therefore 
nourish a very general line of research exploring the consequence 
of topology on multiple coupled fields of various natures (see, for 
example, the microfluidic system of ref. 47 or the charged topological 
colloids of ref. 48).

We foresee several applications based on the optomechanical 
interactions described here. For example, multiple optical solitons 
generating periodic equilibrium positions could be used to assist 
the self-assembly of colloidal metamaterials49. Furthermore, the 
soliton-assisted manipulation of torons could find use in reconfig-
uring, in real-time, the various applications based on topological 
solitons40,50, such as all-optical logical gates, circuits and memory. 
We emphasize that most of these photonics applications rely pri-
marily on static configurations of LC order providing a given opti-
cal function (diffraction phase grating, beam deflector and so on), 
with dynamical rearrangement of the LC structures only needed 
for the device setup and/or reconfiguration. However, should the 
need arise, the dynamics of our system could be optimized with 
micrometre-thick samples (associated with a smaller dissipation 
coefficient γ), higher beam powers and an optical-soliton-induced 
director deformation of around unity, thus decreasing the typical 
timescales by up to a factor of 100.
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Methods
Preparation of LC samples with topological solitons. Each experimental 
cell consists of an LC layer sandwiched between two glass plates treated for 
perpendicular boundary conditions (homeotropic anchoring)51,52. To define 
the thickness between the glass plates, we placed ultraviolet (UV) curable 
dot-like glue droplets (NOA-65, Norland Optical) near the corners of the cell 
volume, containing silica spacer spheres with a diameter of 16.9 μm or 60 μm 
(ThermoFisher). Before curing, we confirmed that the top and bottom plate edges 
along a single side were flush with each other to minimize LC director distortion 
near the point of entrance of the beam. For the 60-μm-thick cells, a treated 
coverslip was added on the optical-insertion interface so that the optical axis field 
of the LC stays uniform and normal to the sample plate. By the application of a 
weak UV illumination source, the UV glue was cured until hard in 30 min.

The cells were filled with a cholesteric LC via capillary force. In most 
experiments, the LC was a mixture of a nematic LC (E7, Shijiazhuang Chengzhi 
Yonghua Display Materials) with a chiral dopant (cholesteryl pelargonate, 
SigmaAldrich). The only exception was the three-photon-fluorescence 
(3PF) imaging experiment, where we prepared and used a mixture that 
photo-polymerized into an LC gel to preserve optically induced perturbations 
around an optical soliton29,53. The main output of this experiment was the 
three-photon-absorption-based fluorescence signal I3PF, whose deviation from zero 
corresponds to the core of the optical soliton due to partial photo-polymerization 
induced by the laser before full photo-polymerization via UV light. The signal 
I3PF therefore corresponds to a direct trace of the local intensity of the laser in our 
experiments, which enabled us to reconstruct the path of the beam in the sample 
and observe the associated bouncing pattern of Fig. 4e. Note that, in general, such 
bouncing patterns are not due to the chirality of the medium—similar patterns 
have been observed in achiral samples with various boundary conditions54–56—but 
are due either to a boundary-induced modulation of the photonics potential 
(as in the previously cited paper) or to total internal reflection at the confining 
boundaries (as in this paper).

In all experiments, we adjusted the cholesteric pitch so that the cell had a 
thickness-to-pitch (d/p) ratio of approximately 0.8–1.0. These particular cell 
specifications enabled a uniform optical axis background to be obtained normal 
to the sample plates with selectively generated topological solitons. The torons 
were generated on demand at desired spatial locations within the LC cell with the 
point-wise application of scanned infrared continuous-wave laser tweezers to the 
LC sample32,33. As described in refs. 35,40, an in-sample optical power of 30–160 mW 
was sufficient to temporarily reorient the cholesteric LC director and locally 
transition from the far-field LC orientation to an energetically favourable toron 
state. The experimental setup associated with our laser tweezers is described in 
more detail in Supplementary Section 1A.

Observations and analysis of inter-solitonic interactions. The types of 
interaction behaviour were captured between spin–orbit and unpinned topological 
solitons as well as between bouncing optical solitons and both pinned and 
unpinned topological solitons. In the pinned case, the boundary conditions of the 
glass plates confining the chiral LC were perturbed using laser tweezers such that 
the topological solitons energetically favoured pinning to the substrate. A pinned 
topological soliton is therefore fixed in place and can only deflect light. Conversely, 
unpinned topological solitons are able to freely diffuse throughout the sample 
plane and can be transported along the field lines of the optical forces described 
in the main text. For this work, different types of LC sample cell were prepared 
for pinned and unpinned topological solitons, where both types of soliton could 
be optically generated at different laser powers and erased by applying electric 
fields. The main text focuses on the fascinating dynamical trajectories of unpinned 
torons, whereas the additional types of interaction behaviour of optical solitons 
with pinned topological solitons are described in Supplementary Section 4.

In-sample-plane optical coupling with monochromatic Gaussian beams 
and through-sample-plane visualization of the topological solitons and their 
optomechanical behaviour were carried out using a custom-built experimental 
setup described in Supplementary Fig. 1. This laser setup enabled us to adjust 
the incident beam’s power, waist, linear polarization and tilt angle, and to couple 
it through the side of the sample as shown in Fig. 1c,d. In all experiments, the 
wavelength of the laser light was 532 nm and the power of the incident beam was 
varied between 1 and 80 mW. We emphasize that the temperature can be considered 
as constant since the thermal absorption is negligible in our system at these beam 
powers. Observations of the interactions between topological and optical solitons 
were carried out using an Olympus IX-73 optical microscope. Scattered light 
from the laser beam associated with the optical soliton was captured by shutting 
off the white-light source of the microscope and keeping only the microscope 
objective between the sample and the camera. These observations correspond to the 
green-coloured images of Figs. 2 and 4. Conversely, the optical axis field patterns 
associated with the topological and optical solitons were characterized by filtering 
out the light scattered from the laser using a red bandpass filter and capturing 
transmission-mode optical micrographs of the sample under crossed polarizers. 
These observations correspond to the red-coloured images of Figs. 2–5.

To automatically deduce the motion trajectory of a toron from an 
experimentally obtained temporal stack of microscope images, we implemented 

a custom-tracking algorithm using Python. This algorithm works with three 
steps for each image of the stack: first, the original image is binarized with an 
appropriate threshold; then, the convex hull of this thresholded image is calculated; 
finally, the vertices of the convex hull are fitted with a circle, whose centre 
constitutes the output of the algorithm for a given stack index. All calculations were 
made using the NumPy and SciPy libraries57,58. The advantage of this approach in 
comparison with state-of-the-art particle trackers for soft matter is that it is very 
robust with respect to the toron appearance in the microscope, which varies due 
to the polarized illumination and complex pattern of the optical axis. Although 
one can partially circumvent this problem by acquiring very saturated images, as 
in Fig. 3b, this approach is not ideal due to variations of intensity when the toron 
is moving. Using a convex hull enabled us to solve this problem and yielded a 
visually unbiased estimation of the centre, even when the observed toron was not a 
perfectly uniform and bright disc.

In Supplementary Section 1A, we give the experimental details and schematics 
of the utilized optical setups, especially concerning the laser generation of 
topological and optical solitons and their quantitative characterization using 
various optical techniques. Although the experimental results are presented for 
one wavelength, 532 nm, for consistency, there are no fundamental limitations 
on exploring and technologically utilizing such phenomena at other visible or 
near-infrared wavelengths, say at the telecommunication wavelength, as long as the 
medium is transparent at the corresponding wavelength of light.

Modelling of optical forces. Since the force FL has been defined as the local 
contribution to the optical force due to the deflection of light’s momentum, it can 
be readily obtained by integrating the flux of Maxwell’s stress tensor σEM through a 
surface S enclosing the toron59:

FL ≡

∫

S
σ
EM

· dS (2)

We calculated this force based on either an exact calculation of Maxwell’s stress 
tensor or a simplified version of this tensor in the limit of geometrical optics.

In the first method, an accurate wide-angle beam-propagation simulation is 
performed to model the transformation of the laser beam near the toron, based 
on a novel numerical scheme60. Then, the stress tensor field of Maxwell is directly 
calculated from the numerically simulated optical fields E, D, B and H, using its 
general expression61. Finally, the flux integral of σEM through the computational 
mesh is calculated to obtain the force FL for a given position of the toron with 
respect to the laser beam.

In the second method, the expression of Maxwell’s stress tensor is first 
simplified in the geometrical optical limit. On the basis of the ray-tracing 
formalism and energy-conservation laws62, we then demonstrated (see 
Supplementary Section 3B) that

FL = −

∫

Σ

j(u, v)Δp(u, v)
c dudv, (3)

where c is the speed of light, Σ is an eikonal surface of the incident light rays 
parameterized by the transverse coordinates u and v, Δp is the deflection of the 
renormalized wavevector p = k/k0 (with k the wavevector and k0 the wavevector in 
empty space) before and after crossing the toron, and j ≡ q [S · p] is the density of 
energy flux along eikonals (with q the geometrical spreading and S the Poynting 
vector). We numerically calculate this integral directly from the ray-tracing method 
described in ref. 62. This second method is approximate, but fast and accurate; it was 
deployed for all the calculations, whereas the first method was used to validate it 
(see Supplementary Section 3B).

We remark that the momentum deflection Δp is primarily due to the 
modulation of the beam walkoff inside topological solitons. Using the 
beam-propagation approach, this modulation is directly taken into account 
with the so-called ‘walkoff operator’60, whose importance was first recognized 
(with different notations) by Assanto and collaborators12. Using the ray-tracing 
approach, this modulation is directly embedded in the variation of the underlying 
Hamiltonian62. In both cases, only the extraordinary polarization of the beam is 
sensitive to this modulation, which is why bouncing solitons can preserve their 
solitonic nature after interaction (single extraordinary mode) whereas spin–
orbit solitons cannot (mixed extraordinary and ordinary modes), as detailed in 
Supplementary Section 3B.

The force FNL is the nonlocal contribution to the optical force mediated by 
the orientational elasticity of the LC medium. Its calculation relies on the elastic 
interaction energy G of the liquid crystal volume Ω between the optical axis 
patterns nTS and nEM that are respectively associated with the toron and the optical 
soliton:

G =

∫

Ω

∑
α,β=y,z

nEMα Lαβ nTSβ dV, (4)

where L is a self-adjoint matrix differential operator that characterizes the 
orientational elasticity of the medium (see Supplementary Section 3C). We 
note that G becomes nonzero once the localized patterns δnTS and δnEM overlap 
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(Fig. 1e). We numerically calculate this interaction energy using the simulated 
optical axis patterns nTS and nEM for different shifts R of the toron with respect the 
optical soliton, and then deduce the nonlocal optical force field as FNL = −∇RG. 
Simulations of the internal structure of topological and optical solitons were 
carried out using the numerical methods described elsewhere29,60 and detailed in 
Supplementary Section 2.

Data availability
All data and postprocessing scripts are available from the Zenodo repository 
(https://doi.org/10.5281/zenodo.6394431). Polarized optical microscopy 
simulations were performed using the open-source software Nemaktis (https://
github.com/warthan07/Nemaktis and https://doi.org/10.5281/zenodo.4695959).
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