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M A T E R I A L S  S C I E N C E

Anisotropic electrostatic screening of charged colloids 
in nematic solvents
Jeffrey C. Everts1,2*, Bohdan Senyuk3*, Haridas Mundoor3, Miha Ravnik1,4†, Ivan I. Smalyukh3,5,6†

The physical behavior of anisotropic charged colloids is determined by their material dielectric anisotropy, affecting 
colloidal self-assembly, biological function, and even out-of-equilibrium behavior. However, little is known about 
anisotropic electrostatic screening, which underlies all electrostatic effective interactions in such soft or biological 
materials. In this work, we demonstrate anisotropic electrostatic screening for charged colloidal particles in a nematic 
electrolyte. We show that material anisotropy behaves markedly different from particle anisotropy. The electro-
static potential and pair interactions decay with an anisotropic Debye screening length, contrasting the constant 
screening length for isotropic electrolytes. Charged dumpling-shaped near-spherical colloidal particles in a nematic 
medium are used as an experimental model system to explore the effects of anisotropic screening, demonstrating 
competing anisotropic elastic and electrostatic effective pair interactions for colloidal surface charges tunable from 
neutral to high, yielding particle-separated metastable states. Generally, our work contributes to the understanding 
of electrostatic screening in nematic anisotropic media.

INTRODUCTION
Highly charged biopolymers like DNA and filamentous actin are just 
two of many examples of biological relevance of electrostatic inter-
actions that are screened by counterions under physiological condi-
tions. In soft condensed matter, similar effects allow for exploiting 
electrostatic interactions between particles in defining colloidal self-
organized superstructures that they can form and, even more im-
portantly, enabling the very existence of metastable colloidal systems. 
These structures range from regular—linear, two-dimensional (2D), 
and 3D crystalline—structures to amorphous structures and have 
broad relevance, including in photonics, optics, paint, and food 
industry. Screened electrostatic interactions have been studied quite 
extensively in systems where the solvent is isotropic. Findings include 
colloid stabilization by charge (1, 2), the description of short-range 
liquid order in scattering experiments (3), measurements and calcu-
lations of pair interactions between two charged-screened particles (4–7), 
ion transport (8), the influence of external fields (9–11), and predicting 
phase behavior, such as demixing (12, 13) and crystallization (14, 15). 
Furthermore, there are many theoretical studies on many-body effects 
(16–18), charge regulation (19–21), charge renormalization (22), charge 
fluctuations (23), and nonadditive effects of dispersion interactions 
(24, 25). Despite these extensive studies for particles dispersed in isotropic 
electrolytes, the understanding of electrostatic screening in ion-doped 
nematic media seems to be lacking. Anisotropic electrostatic screening 
can potentially provide the means for controlling and engineering 
self-assembly of colloidal particles in nematic solvents, where a key 
advantage as compared with isotropic solvents may arise in defining 

highly anisotropic interactions and self-assembled structures. An 
important relevance of anisotropic electrostatic screening is also in 
active matter systems, as affecting major mechanisms including lo-
comotion and energy harvesting (26). Here, we address the issue of 
electrostatic screening in nematic media and show that it is impor
tant by exploring an experimental model system in media with ori-
entational elasticity.

For isotropic solvents and sufficiently dilute electrolytes, the 
electrostatic potential around a freely dispersed arbitrarily shaped 
charged particle asymptotically scales as (27–29)

                   ​(r ) ∼ A(, ; ​​D​ I ​ ) ​ 
exp (− r / ​​D​ I ​)

 ─ r  ​,	 (r  →  ∞ )​     (1)

with r as the radial distance,  as the azimuthal angle,  as the polar 
angle, and ​​​D​ I ​​ as the constant (isotropic) Debye screening length. 
The anisotropy function ​A(, ; ​​D​ I ​)​ captures the shape effects of the 
particle on (r) and is independent of  and  for spherical particles 
at any value of ​​​D​ I ​​. In general, A becomes more strongly dependent on 
(, ) when ​​​D​ I ​​ is small, whereas ​A(, ; ​​D​ I ​ ) →  1​ for ​​​D​ I ​  →  ∞​, mean-
ing that (r) ∼ 1/r for any particle. In other words, anisotropies stem-
ming from the particle shape are present even asymptotically far 
from the particle, contrasting the unscreened case that behaves as a 
point charge for r → ∞. Furthermore, note that dilute isotropic elec-
trolytes are characterized by a single value of ​​​D​ I ​​ independent of the 
particle orientation.

In contrast, the host material anisotropy in screened electrostat-
ic interactions is a novel open challenge, centered at the question of 
how electrostatic screening is changed when the medium is character-
ized by a dielectric tensor rather than a dielectric constant. Spatially 
dependent dielectric anisotropies occur sometimes in isotropic liquids, 
for example, near solid-water interfaces (30, 31), but is usually con-
fined in only a small region of space. A more general example of 
controllable anisotropic materials are liquid crystals (LCs), where the 
anisotropy is described by one dielectric coefficient along the primary 
dielectric tensor axis, also called the director n ≡ − n, and a second 
dielectric coefficient in the perpendicular direction. For a hypothet-
ical, everywhere radial director around a colloidal sphere, only the 
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dielectric tensor components projected in the radial direction con-
tribute, and hence, the Bjerrum length and, consequently, the Debye 
screening length are renormalized with a constant, and one can just 
use Eq. 1 with A being constant. However, a completely different 
situation arises when the director configuration around the particle 
does not have the same symmetry as the particle itself. The simplest 
nontrivial example would be a constant director field along the z axis 
surrounding a spherical particle, and in this case, the screening will 
become direction dependent, as we shall see here. Furthermore, as 
it is the more usual case in anisotropic nematic media with dispersed 
particles (32–36), the director field is usually spatially dependent and 
varies in space because of various geometries, surface effects, and 
external fields, leading to rich and diverse elasticity-mediated aniso-
tropic interparticle interactions. Multipole expansions have been used to 
describe elasticity-mediated colloidal interactions in LCs, drawing 
parallels to electrostatic interactions (37–39). In general, elasticity-
mediated interactions in LCs are accompanied by screened electro-
static and dispersive (London–van der Waals) (40) interactions; 
however, the previous studies of such colloidal systems with LC 
hosts were done for highly anisotropic rod- and disc-shaped parti-
cles, so that the role of the anisotropy of colloidal particles and that 
of the LC medium were not separated because of the particle’s shape 
anisotropy and so far explored while probing phase behavior and 
self-assembly of colloidal superstructures (41, 42).

Here, we explore anisotropic colloidal interactions in electrostati-
cally screened near-spherical charged colloids to develop a general-
ized understanding of electrostatic interactions in colloids, subjected 
to and determined by the material dielectric anisotropy. Experimen-
tally and theoretically, we use so-called charged dumpling particles 
(with almost spherical shape) as a charged colloidal model system 
because they can become appreciably charged in a simple LC such 
as 5CB (4-cyano-4′-pentylbiphenyl), with a weak-enough elastic 

interaction that allows competition with the electrostatic forces. We 
calculate the effective pair interaction under the assumption that 
elastic, dispersive, and electrostatic interactions are additive, just like 
in the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory of charged-
screened spheres. Furthermore, the electrostatic part is treated within 
linear screening theory in combination with a far-field multipole 
expansion approach, on the same level that typically elastic colloidal 
interactions are treated. Last, we compare the theoretically calculated 
interactions with experiments, finding good qualitative agreement.

RESULTS
Charged colloidal dumpling particles dispersed in a nematic 
electrolyte as model system
As our charged colloidal model system, we use particles (Fig. 1A) of 
“dumpling-like” shape. Their rough shape and overall dimensions 
are close to those of a sphere with a diameter 2a = 1 m. The hydro-
thermal synthesis and surface treatment of these particles allow us 
to control the colloidal charge in a rather broad range of values without 
issues (typical for other particles in nematic solvents) of nonuniformity 
of charging. These colloidal dumplings were dispersed in 5CB at low 
concentration (<1000 parts per million) to obtain well-separated 
colloidal particles. In Fig. 1 (B to E), we show microscopy images of 
a single colloidal dumpling obtained in different imaging modes. 
The colloidal dumplings have homeotropic anchoring on their sur-
faces, and the symmetry of resulting director n(r) distortions around 
particles (Fig. 1F) is of the “quadrupolar” type, with an encircling 
half-integer disclination loop (“Saturn ring”) (43, 44). The in-plane 
diffusion of the colloidal dumplings due to Brownian motion (fig. S8, 
A and B, and movie S1) is anisotropic with respect to the LC far-field 
director n0 with diffusion coefficients D∥/D⊥=1.49 to 1.54 (fig. S8C 
and movie S1), and this is close to theoretical predictions for spheres, 

A

F G H

B C D E

Fig. 1. Charged dumpling colloidal particles in a nematic LC as model system for anisotropic charged colloids. (A) Scanning electron microscopy image of dumpling 
colloidal particles. (B to D) Polarizing and (E) bright-field microscopy textures of dumpling particles with homeotropic anchoring in a planar nematic cell between crossed 
(B and C) and parallel (D) polarizers P and A, with (C) and without (B) a phase retardation plate Z′. (F) Schematic diagram of the director field n(r) (green lines) around a 
dumpling particle treated for a homeotropic anchoring: A red circle around a particle indicates a singular defect loop Saturn ring, and n0 is a far-field director. (G) Electrical 
effective charge of dumplings determined using electrophoresis. (H) Repulsive electrostatic pair potential E between dumpling colloids in an isotropic phase of a 
nematic LC with ​​​D​ I ​ ≈​ 925 to 959 nm.
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D∥/D⊥ = 1.72 (45). We have prepared and used charged and uncharged 
particles in our experiments, where the effective charge was con-
trolled in a broad range. The number of elementary charges e on the 
particles surface Z = 0 to 350 was determined using their electro-
phoretic motion between two in-plane electrodes placed perpendic-
ular to n0 in a planar nematic cell (the uncharged particles did not 
move in response to applying an electric field). Dumpling charged 
particles were moving along n0 toward a negative electrode when a 
DC electric field was applied between the electrodes. The velocity of 
the particles depends on their charge (Fig. 1G) and the strength of 
the electric field. The displacement of particles was tracked using 
video microscopy, which allows us to estimate the effective charge Ze, 
from the balance of the Stokes viscous drag force and the electric 
force (40–42). To probe only the electrostatic pair interactions be-
tween charged colloidal dumplings, we measured their pair interac-
tions in the isotropic phase of 5CB, where the contribution due to 
LC elastic forces is eliminated. When brought nearby with the help 
of optical tweezers, colloidal dumplings repel from each other with 
a potential E of tens of kBT. The effective charge number Z and 
Debye screening length can also be extracted from experimental pair 
interactions (Fig. 1H) using the DLVO equation (1, 2)

	​​  ​​ E​​(d) ─ ​k​ B​​ T  ​  = ​ Z​​ 2​ ​​ B​​ ​​[​​ ​ 
exp (a / ​​D​ I ​) ─ 
1 + a / ​​D​ I ​

 ​​ ]​​​​ 
2

​ ​ 
exp (− d / ​​D​ I ​) ─ d  ​​	 (2)

with kBT being the thermal energy, B the Bjerrum length, a the 
particle radius, ​​​D​ I ​​ the (isotropic) Debye screening length, and d the 
center-to-center distance between particles. The effective charge 
numbers obtained by electrophoretic measurements (Fig. 1G) were 
in good agreement with values obtained from the electrostatic inter-
action potential (Fig. 1H). The Debye screening lengths obtained from 
fitting the interaction potentials were within the range of ​​​D​ I ​​ = 300 
to 1000 nm measured for 5CB samples in our experiments using 
impedance spectroscopy.

Because of the effective elastic nature of the anisotropic LC host, 
also uncharged colloidal particles interact via anisotropic elastic inter-
actions (44), which, for our dumpling particles, are of quadrupolar 
symmetry (fig. S9) with elastic interaction potential LC(d, ) given by

	​​ ​ LC​​(d,  ) = ​ 16 ─ 9 ​ K ​c​​ 2​ ​ 9 − 90 ​cos​​ 2​  + 105 ​cos​​ 4​   ────────────── 
​d​​ 5​

  ​​	 (3)

Note that the potential falls off as ∝1/d5 and depends on the angle 
 between the uniform far-field n0 and d, which makes it strongly 
anisotropic, with the attraction direction at ≈40° to 50° (fig. S9, A 
and B). We can extract the elastic pair potential (fig. S9D) from the 
time-dependent separation between two attracting particles (fig. S9C), 
and on the basis of the elasticity measurements (using the single 
elastic constant K = 8 · 10−12 N), we find, for our system, the elastic 
quadrupole moment c = 0.1 to 0.2 m3.

Electrostatic potential of single charged colloidal sphere 
in an anisotropic dielectric
Electrostatic interactions between charged particles are conditioned 
by the profile of the electrostatic potential surrounding the particles. 
This quantity exhibits anisotropic screening, as it is directly deter-
mined by the anisotropy of the host medium. We calculate this 
anisotropic electrostatic potential in the mean-field approach by 

using the Poisson-Boltzmann (PB) equation for the electrostatic po-
tential in the nematic host with fixed director field n(r) surrounding 
the particle (see the Supplementary Materials)

	​​ ∂​ i​​ [ ​ϵ​ ij​​(r ) ​∂​ j​​ (r ) ] / ​ϵ ̄ ​  = ​ ​​ 2​ sinh [(r ) ] ,  (r  >  a)​	 (4)

where kBT(r)/e is the electrostatic potential, ​​ϵ ̄ ​​ is the rotationally 
averaged dielectric constant of the nematic medium, and ​​​​ −1​  = ​  ​D​ I ​​ 
is the isotropic Debye screening length used as a “reference” decay 
length. Furthermore, we used the Einstein summation convention. 
Note that in the above, we assume that the dumpling particles can be 
approximated as spheres and have constant-charge boundary condi-
tions with homogeneously distributed charge Ze and that n0 
surrounding the particle has cylindrical symmetry. The host 
material anisotropy is given by the dielectric tensor as ϵij(r) = ϵ⊥ij + 
ϵni(r)nj(r), with ϵ = ϵ∥ − ϵ⊥ as the dielectric anisotropy difference 
between dielectric tensor components projected parallel to the 
director ϵ∥ and perpendicular to the director ϵ⊥. We take, in accor-
dance with our experiments, that ions cannot penetrate the particle 
with dielectric constant ϵp = 2; hence, inside the particle, one has to 
solve the Laplace equation

	​​ ∇​​ 2​ (r ) = 0,  (r  <  a)​	 (5)

The anisotropic electrostatic potential (Eqs. 2 and 3) is numeri-
cally calculated using COMSOL Multiphysics software exploiting the 
cylindrical symmetry, as shown in Fig. 2. We provide results for two 
material anisotropic regimes, one with uniform director field n = ez 
and second—the realistic one for our experiments—a director field 
with elastic quadrupole distortions n = [ez + (2cz/r5)e]/∣ez + 
(2cz/r5)e∣ (as shown in Fig. 1F). The quadrupole is derived from 
a multipolar expansion for the Saturn ring configuration (44).

For the uniform director field (Fig. 2A) and a Debye screening 
length larger than the particle size, the diffuse screening cloud has 
a prolate spheroidal–like shape with the long axis coinciding with the 
z axis, whereas upon considering the full quadrupolar distortion, we 
see that the electric potential profile (i.e., the double layer) gets dis-
torted close to the region of the Saturn ring defect (Fig. 2B) but again 
evolves to the prolate spheroid shape further away from the particle. 
Furthermore, it turns out that the spheroidal double layer has an 
aspect ratio for the major to minor axis equal to ​​√ 

_
 ​ϵ​ ∥​​ / ​ϵ​ ⊥​​ ​​. Figure 2C 

shows the electrostatic potential along selected directions from the 
particle at constant angle  with respect to the z axis, which can be 
compared to the isotropic electrostatic potential, showing a similar 
magnitude. In Fig. 2 (D to F), the electrostatic potential for the 
regime of Debye screening length smaller than the particle size is shown 
for a uniform director (Fig. 2D) and quadrupolar director (Fig. 2E); the 
electrostatic potential along constant  is shown in Fig. 2F. At these 
short Debye lengths, the electrostatic potential inside the particle 
becomes strongly inhomogeneous, and although the ions are closer 
to the particle, the electrostatic potential is still strongly anisotropic.

Figure 3 shows that the electrostatic potential of a spherical par-
ticle with a prolate spheroidal double layer in a nematic electrolyte 
behaves differently from a charged spheroidal particle with aspect 
ratio ​​√ 

_
 ​ϵ​ ∥​​ / ​ϵ​ ⊥​​ ​​ in an isotropic electrolyte. Whereas the diffuse screen 

cloud seems to follow the shape of the spheroidal particle sufficiently 
close to the particle (Fig. 3, A and B), a graph on log-linear scale 
along a selection of cuts through the particle reveals that only the 
“amplitude” is anisotropic for sufficiently small ​​​D​ I ​​. However, for all 
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bulk ion concentrations, the screening length is independent of the 
angle. We already alluded this well-known result in Eq. 1. In con-
trast, the sphere in a nematic shows—with and without topological 
defects—that there is an angle-dependent screening length (Fig. 3, 
E and F). Such an anisotropy occurs whenever the director on the 
particle surface (in this example, spherical) has a different symmetry 
than the far-field director field (cylindrical).

Analytical expressions for the electrostatic potential
To determine the anisotropic electrostatic potential, we first derive 
an analytical expression by mapping the charged particle to an ion-
penetrable spherical shell with radius R and surface charge density 
eS, followed by a multipole expansion. The approach is more 
extensively explained in Materials and Methods, the Supplementary 
Materials, and (46).

The calculated electric potential is

	​​ (r ) = ​ 
 ​​​ 2​ Z ​​B​ I ​

 ─ 
​√ 
_

 ​ϵ​⊥​ 2 ​ ​ϵ​ ∥​​ / ​​ϵ ̄ ​​​ 
3
​ ​
 ​​
[

​​ ​G​ m​​(r ) + ​ ​(a)​​ 2​ ─ 6 ​ ​ G​ q​​(r ) + ​ ​(a)​​ 4​ ─ 120 ​ ​ G​ h​​(r ) + … ​
]

​​​​	 (6)

as expressed with multipolar basis functions Gi(r) (i = m, q, h, . . ) 
(see the Supplementary Materials for their expressions). The higher-
order multipoles become more important at higher salt concentra-
tions (smaller ​​​D​ I ​​), and the parameters  and  also depend on ​a / ​​D​ I ​​. 
The salt-dependent parameters  = S/ > 1 and  = R/a < 1 can be 
determined using a fit to the numerically obtained surface potential. 
By fitting only the surface potential, it is found that the integral ex-
pression that is obtained before performing the multipole expan-

sion, is practically numerically exact for r > a in a wide range of salt 
concentrations (see the Supplementary Materials).

As is usual for multipole expansions, Eq. 6 fails at short distances, 
but at large-enough r = ∣r∣, it captures the proper angle dependence, 
given that enough multipoles are taken into account (see the Sup-
plementary Materials). For example, up until hexadecapolar order, 
Eq. 6 is numerically exact up until ​a / ​​D​ I ​  ∼  2​ (<5% deviation), while 
at higher salt concentrations, truncation at the hexadecapolar order 
turns out to be not sufficient. As an example, for ​a / ​​D​ I ​  ∼  5​, we see, 
even asymptotically far from the particle, that the deviation is 10 to 60%, 
depending on the angle with the director (see the Supplementary 
Materials). Last, Z is the actual charge number for ∣(r)∣ ≪ 1, but for high 
electrostatic potentials, Z should be interpreted as a renormalized charge 
density, similar to what is known in “isotropic” charged colloids (22, 47).

From Eq. 6, we derive the asymptotic scaling

	​ (r ) ∼  ZA( ) ​ 
exp [− r / ​​ D​​( ) ]

  ─ r / ​​ B​​()  ​,  (r  →  ∞ )​	 (7)

with the anisotropy function for uniform director fields

	 ​​A​(​​θ​)​​ =  α ​γ​​ 2​​{​​1 + ​ 
​​(​​γκa​)​​​​ 2​

 ─ 6 ​ ​​ ϵ ̄ ​​​ 3​​(​​ ​ ​cos​​  2​ θ ─ ​ϵ​ ∥​​ ​  +  ​ ​sin​​ 2​ θ ─ ​ϵ​ ⊥​​ ​​ )​​​(​​ ​ ​cos​​ 2​ θ ─ 
​ϵ​∥​ 2 ​

 ​  + ​ ​sin​​ 2​ θ ─ 
​ϵ​⊥​ 2 ​

 ​​ )​​ +  O​[​​ ​​(​​κa​)​​​​ 4​​]​​​}​​​​
			 

(8)

angle-dependent Bjerrum length

	​​  ​λ​ B​​(θ) ─ 
​λ​B​ I ​

 ​   = ​   ​ϵ ̄ ​ ───────────  
​√ 

_______________
  ​ϵ​ ⊥​​(​ϵ​ ∥​​ − Δϵ ​cos​​ 2​ θ) ​
 ​​	 (9)

A B

C

D E

F

Fig. 2. Anisotropic electrostatic potential kBT()/re for charged spherical colloidal particle in anisotropic dielectric host. (A and B) Potential for large (isotropic) 
Debye screening length and (C and D) short Debye screening length, with uniform director host c = 0 (along the z direction) and with quadrupolar director material 
anisotropy (c ≠ 0). (E and F) Electrostatic potential along selected directions from the particle center, at constant angle  with respect to the z axis. Full lines correspond 
to uniform, and dashed lines to quadrupolar material anisotropy c = 0.2 m3. The gray line is the isotropic electrostatic potential line. For numerical parameters, we take 
particle radius a = 0.5 m with constant charge Z = 50 in a nematic electrolyte with dielectric properties ϵ⊥ = 6, ϵ∥ = 19, and ​​ϵ  ̄​  =  10​.
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and angle-dependent Debye screening length

	​​  ​λ​ D​​(θ) ─ 
​λ​D​ I ​

 ​   = ​ √ 
______________

  ​ 
​ϵ​ ⊥​​ ​ϵ​ ∥​​
 ─  

​ϵ ̄ ​(​ϵ​ ∥​​ − Δϵ ​cos​​ 2​ θ)
 ​ ​​	 (10)

with, for ϵ > 0 (ϵ < 0), a maximum (minimum) at ​​√ 
_

 ​ϵ​ ∥​​ / ​ϵ ̄ ​ ​​ and a 
minimum (maximum) at ​​√ 

_
 ​ϵ​ ⊥​​ / ​ϵ  ̄​ ​​. Note that ​​​ D​​( ) / ​​D​ I ​  ≠ ​ √ 

_
 ​​B​ I ​ / ​​ B​​() ​​, 

as one would maybe naively think based on ​​​D​ I ​  = ​ (8 ​​B​ I ​ ​​ s​​)​​ −1/2​​. We 
plotted Eq. 10 in Fig. 2G for ϵ > 0, and from this, the shape of the 
double layer can be understood. Had we taken ϵ < 0, the double 
layer would have had an oblate spheroidal shape.

Equation 7 reveals why electrostatic screening in an anisotropic 
medium is markedly different from screening of anisotropic particles 
in an isotropic medium. For r → ∞, the particle anisotropy can be fully 
accounted for with the anisotropy function A() (see Eq. 1), whereas 
anisotropic media are described not only by an anisotropy function 
(even for spheres with nonvanishing volume) but also by an angle-
dependent Debye and Bjerrum length (see Eqs. 9 and 10, respectively). 
The anisotropic screening length is highlighted in Fig. 3 (E and F) 
and is the relevant decay length even in the presence of defects. 
Furthermore, Fig. 3 (E and F) shows, in accordance with Eq. 7, that 
the anisotropy function is only relevant for a sufficiently large a, 
giving rise to larger amplitude differences of the electrostatic poten-
tial for varying  and at fixed r. Furthermore, Fig. 3F suggests that 
defects alter the form of A(), but not that of D(), which is deter-
mined only by the symmetry of the far-field director. Therefore, we 
hypothesize that defects asymptotically behave as if they change the 
particle anisotropy but not the medium anisotropy.

Last, while assuming that the strength and nature of surface bound-
ary conditions on particle surfaces do not change with adding ions, 
we evaluate the salt-dependent renormalization parameters  and  
for some values of ​a / ​​D​ I ​​ (more information in the Supplementary Ma-
terials). For ​a / ​​D​ I ​  =  0.5​, we find  = 1 and  = 1.06; for ​a / ​​D​ I ​  =  1​, 
we find  = 0.99 and  = 1.2; and for ​a / ​​D​ I ​  =  2​, we find  = 0.988 
and  = 1.43. With these quantities, we can use Eq. 6 in the relevant 
experimental parameter regime, and the same parameters enter the 
expression for the effective far-field pair potential (see below).

Anisotropic electrostatic and elastic pair interactions
Charged colloidal dumplings interact in the nematic LC (Fig. 4A and 
movie S2), both via anisotropic electrostatic and elastic interactions, 
each with a different anisotropic profile. Generally, the electrostatic 
interaction is repulsive, whereas the nematic elastic interaction has 
regions (directions) of attraction and regions of repulsion. If the 
charge of the particles is high enough (∼300e), then the electrostatic 
repulsion can counterbalance the elastic attraction at any angle and 
the two colloidal particles stay separated from each other without 
getting into the full contact (Fig. 4) at any . The orientation of the 
separation vector between particles is primarily ≈55° (Fig. 4B) relative 
to n0. We note that for this histogram, we mapped the angles to the 
first quadrant because of the quadrupolar symmetry of the system. 
Histograms of center-to-center distance between particles (Fig. 4C) 
show that, for fixed angles  ≈ 0∘ and 90∘ where we used laser tweezers 
to release the particle pair along these angles, the separation is d ≈ 6 
and 5 m, respectively, which is consistent with the anisotropy of 
the calculated electrostatic repulsion force and overall colloidal inter-
actions in this system (Fig. 4E). This difference in the steady-state 

A

B

C

E

F

G

D

Fig. 3. Electrostatic potential of a charged prolate spheroid in an isotropic electrolyte compared with a charged sphere in a nematic electrolyte. (A and B) Electro-
static potential for large and small Debye screening length, respectively, around a prolate spheroidal particle in an isotropic electrolyte with minor radius a = 0.5 m and 
major radius ​​√ 

_
 19 / 6 ​ a​. In (C) and (D), we plot the potential along selected directions from the particle center at constant angle  with respect to the z axis on log-linear 

scale. In (E) and (F), we replot Fig. 2 (C and F) on log-linear scale highlighting the angle-dependent screening length found in a nematic electrolyte as opposed to an isotropic 
electrolyte (C and B), described by a constant Debye length. (G) Anisotropic Debye screening length D() as calculated from Eq. 10 relative to the isotropic screening 
length ​​​D​ I ​​ in different directions.
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d depends on the position of the two particles relative to n0, which 
can result from the anisotropy in the charge distribution around 
colloidal dumplings (Fig. 2). Histograms of the angle  and an over-
laid polar plot of separations between two freely moving particles 
(Fig. 4, B and D) show that there is a preferred orientation for a 
separation d at ≈55° (again mapping all the data to the first quad-
rant), which indicate an equilibrium distance and orientation of 
a particle pair resulting from a competition of anisotropic elastic 
attraction and anisotropic electrostatic repulsion (Fig. 4, D to G), as 
we shall explore theoretically below. On the other hand, if the electric 
charge at the dumpling surface is sufficiently small (∼150e), then 
the elastic attraction is dominant and two colloidal particles attract 
and get to the full surface-to-surface contact as elastic quadrupoles 
(fig. S10), similar to colloidal dumplings without charge (fig. S9 
and movie S3).

The effective pair interaction between anisotropic charged 
colloids is determined theoretically by splitting—in the spirit of the 
DLVO theory—the total interaction potential (d, ), as the sum of 
screened electrostatic E(d, ), van der Waals vdW(d), and, because 
we are in a nematic host, the nematic elastic interactions LC(d, )

	​ (d,  ) = ​​ E​​(d,  ) +  ​​ vdW​​(d ) +  ​​ LC​​(d, )​	 (11)

The van der Waals interaction can be derived using Hamaker–
de Boer theory

	​​ ​​ vdW​​(d ) = − ​ ​A​ H​​ ─ 3 ​​ [​​ ​  ​a​​ 2​ ─ 
​d​​ 2​ − 4 ​a​​ 2​

 ​ + ​ ​a​​ 2​ ─ 
​d​​ 2​

 ​ + ​ 1 ─ 2 ​ ln ​(​​1 − ​ 4 ​a​​ 2​ ─ 
​d​​ 2​

 ​​ )​​​]​​​​	 (12)

which fails at center-to-center distances close to contact (d ≈ 2a), 
where the (quantum-mechanical) Born repulsion becomes important, 
and for large d, where relativistic effects become important. For this 
interaction, the anisotropy enters only the Hamaker constant, but 
not in the coordinate-dependent part of the expression, assuming 
the nonrelativistic limit (48). Last, the elastic interaction LC(d, ) is 
given by the quadrupolar far-field expression Eq. 3.

We determine the effective anisotropic screened electrostatic in-
teraction E(d, ) from the asymptotic expression of the electrostatic 
potential (Eq. 6) within the linear superposition approximation (LSA; 
for full derivation, see the Supplementary Materials). The anisotropic 
screened electrostatic interaction reads

	​​
​​​Φ​ E​​​(​​d, θ​)​​ _ ​k​ B​​ T  ​  = ​ ​α​​ 2​ ​γ​​ 4​ ​Z​​ 2​ ​λ​B​ I ​ _ 

​√ 
_

 ​ϵ​⊥​ 2 ​ ​ϵ​ ∥​​ / ​​ϵ ̄ ​​​ 3​ ​
 ​​[​​ ​G​ m​​​(​​d, θ​)​​ + ​​​(​​γa​)​​​​ 2​ _ 3 ​ ​ G​ q​​​(​​d, θ​)​​​

​   
+ ​​ 2 _ 45​ ​​(​​γa​)​​​​ 4​ ​G​ h​​​(​​d, θ​)​​ + … ​]​​​

 ​​	  (13)

now treated on the same level of (multipolar) approximation as the 
elastic interactions, where Gm, q, h(d, ), , and  are the same as the 
ones derived for the single-particle case (see Eq. 6). Note also that in 

0 10 20 30 40 50 60 70 80 90
0

500

1000

1500

C
ou

nt
s

 (o)

B

4.5 5.0 5.5 6.0 6.5 7.0
0.0

0.2

0.4

0.6

0.8

1.0

d ( m)

C

R
el

at
iv

e 
fr

eq
ue

nc
y

D

 (
m

)

20°10°0°

30°
40°

50°

60°

70°

80°

90°

−1 10

1

3.2

5.5

7.8

10

Total effective interaction  
potential (d, )
(in units of kBT)

d

E F G

Electrostatic interaction 
 potential E(d, )
(in units of kBT)

Elastic interaction  
potential LC(d, )  
(in units of kBT)

Van der Waals interaction 
potential vdW(d, )  

(in units of kBT)

d
 (

m
)

d
 (

m
)

d
 (

m
)

d

n0

5 m

A

Fig. 4. Pair interactions of charged dumpling particles in a nematic LC. (A) Bright-field micrograph of two interacting colloidal dumplings. (B) Histogram showing the 
preferred angle  between the center-to-center separation vector and the far-field director for a pair of two highly charged particles. (C) Histograms showing preferred 
separations between two highly charged particles (∼300e per particle) when their separation vector is at  ≈ 0∘ (blue) and  ≈ 90∘ (red). (D) Analytically calculated total 
effective potential as the sum of contributions from (E) anisotropic electrostatic interactions, (F) anisotropic elastic interactions, and (G) van der Waals dispersion interac-
tions. The interaction potentials are calculated for particle radius a = 0.5 m, particle charge number Z = 750, elastic quadrupole moment c = 0.1 m3, Hamaker constant 
AH = 1 kBT, and nematic electrolyte with isotropic Debye screening length ​​​D​ I ​  =  0.5 m​. Black crosses in (D) show the overlaid angular dependent separations between 
two interacting charged particles: Particles do not come in direct contact at any angle. Note that experimental preferred angles and separations are consistent with the 
calculated competing electrostatic and elastic potentials, with the minimum of the total effective interaction potential at ∼55°.
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the limit of low salt concentration, only the monopole term is relevant, 
and the above equation reduces to the anisotropic Yukawa form

	​​  ​​ E​​(d, ) ─ ​k​ B​​ T  ​  ≈ ​ ​​ 2​ ​​​ 4​ ​Z​​ 2​ ​​ B​​( ) ​ 
exp [− d / ​​ D​​( ) ]

  ─ d  ​​	 (14)

which is reminiscent of the well-known standard isotropic DLVO 
potential (Eq. 2).

In Fig. 4D, we show the total analytically calculated interaction 
potential for parameters, in qualitative range of our experiments. 
The position of a local minimum of several kBTs is found at  ∼ 55∘, 
which is in good qualitative agreement with experiments (Fig. 4B). 
The position of the theoretically calculated local minimum is also in 
good agreement with the overlaid experimentally determined orien-
tations of the separation vector (Fig. 4D), where a pair of interacting 
particles reside primarily also at ≈55°. In Fig. 4E, we show the con-
tributions of the anisotropic electrostatic effective interaction, which 
also shows a good agreement with the experiment (Fig. 4C); in 
Fig. 4F, the elastic interaction; and in Fig. 4G, the van der Waals 
interaction. The van der Waals interaction is of shortest range and 
does not contribute substantially to the total interaction potential, 
whereas elastic and screened electrostatic potentials clearly compete, 

and it is their detailed balance that determines the overall inter-
particle potential. Last, note that if we had used the isotropic DLVO 
potential (Eq. 2) to calculate the total potential (and using same ma-
terial parameters), the predicted local minimum would shift to an 
angle  ∼ 49∘, which underlines the clear role of the electrostatic 
anisotropy.

The total interaction potential (Eq. 11) exhibits a range of possible 
qualitatively different interparticle interaction regimes, as we show 
in Fig. 5, which depend on the particle charge Z and the host electro-
lyte screening length ​​​D​ I ​​ (salt concentration). Notably, we calculate 
the total regimes for a smaller elastic interaction c = 0.02 m3 than 
in our experiments (c ∼ 0.2 m3), which makes the anisotropic elec-
trostatic DLVO-type interaction of more similar magnitude as the 
nematic elasticity at the reported particle charges, which are lower 
than the one chosen in Fig. 4D. We want to stress, however, that the 
electrostatics is based on a far-field multipole expansion in combi-
nation with the LSA; hence, our theory underestimates the repulsion 
when the double layers of the particles overlap at sufficiently low 
salinity and low particle separations (fig. S5), as is also common in 
isotropic DLVO theory (5), not to mention because of the currently 
unknown nonadditive effects between elasticity and electrostatics, 
or close-approach elastic effects.

A

D

G

B
D

E

H

C

F

I

Fig. 5. Effect of particle charge and salt concentration on total interaction pair-potential of spherical charged colloidal particles with quadrupolar nematic 
dielectric anisotropy. (A to I) The total potential is calculated for particle radius a = 0.5 m and elastic quadrupole magnitude c = 0.02 m3 for varying particle charge Z and 
different screening lengths ​​​D​ I ​​. Note the difference in color scales for different screening lengths. Black dots in (E) show experimental results, i.e., relative particle separa-
tions, overlying the theoretically calculated interaction potential in the relevant material parameter regime (Z = 150, ​​​D​ I ​  =  0.5 m​). Note that particles do not come in 
direct contact at any angle.
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In Fig. 5 (A to C), we show the situation when the screening 
length is larger than the particle size. For low-enough charges, a global 
minimum located at approximately 49∘ is separated from a shallow 
local minimum with depth ∼0.001kBT. Both local and global minimum 
disappear when the particle charge is increased (Fig. 5, B and C), 
and the interaction potential is repulsive for all distances and direc-
tions. For Debye lengths similar to the particle size, we see that higher 
charges are needed to overcome the attractive elastic interaction. At 
the same particle charge but smaller screening length (Fig. 5D), the 
electrostatic interaction is too weak to overcome the elastic interac-
tion, resulting in a purely attractive direction in the interaction 
potential. Such a situation is reminiscent of what we also observed 
experimentally (but for slightly different exact parameters) in fig. S10, 
where a low charge results in particle coagulation. When increasing 
Z further, again a local minimum (Fig. 5E) that is deeper than the 
low-screening case emerges. This local minimum is in good agree-
ment with experimentally determined angular dependent separations 
between interacting particles overlaid over the calculated data, even 
though we choose a smaller value for the elastic quadrupole than 
was experimentally measured (fig. S9); therefore, a lower particle 
charge is needed to generate the metastable local minimum. The 
depth of this minimum becomes smaller when Z increases even 
further (Fig. 5F). The trend that deeper attractive minima can be 
attained for larger salt concentrations, but that higher charges are 
needed, is something that we also see for double layers smaller than 
the particle size (Fig. 5, G to I). When comparing Fig. 5 with Fig. 4, 
we see that increasing the strength of elastic interaction at the ex-
pense of higher Z also gives rise to deeper attractive minima.

DISCUSSION
Summarizing, we introduced a screened electrostatic colloidal model 
system that can become appreciably charged in a nematic LC, with 
particles of almost spherical shape. Theoretically, we discussed that 
dielectric anisotropy of the colloidal host, given in nematic fluids by 
the director field, gives rise to anisotropic screening of the electro-
static potential when there is a mismatch between the nematic and 
particle symmetry, and, in turn, also to the electrostatic effective pair 
interaction. In our system of nematic colloids, the screened electro-
static interaction is inherently combined with effective nematic elastic 
interactions, which leads to different interaction regimes where 
particles are (i) repelled for all distances and angles, (ii) are subjected 
to a weak local minimum of <1kBT such that they can still move be-
cause of thermal fluctuations (Fig. 4, B and D), and (iii) are domi-
nated by the elastic interactions with distinct attractive and repulsive 
directions (fig. S10). In our experiments with charged colloidal 
dumplings, we have observed regime (ii) at Ze ∼ 300e and regime 
(iii) at Ze ∼ 150e, whereas to access for regime (i), we would need to 
achieve even higher particle charges and/or more deionized samples. 
However, we note that regime (i) was achieved in experiments with 
highly shape-anisotropic particles in (41), where the small diameter 
of rod-like colloidal particles allowed for fully overpowering elastic 
interactions by the electrostatic ones. Our model is consistent with 
the notion that controlling particle dimensions provides the means 
of shifting the balance between the elastic and electrostatic forces at 
given colloidal surface charge and ionic conditions.

We have shown, within an experimentally accessible parameter 
range, that even effectively spherical particles exhibit anisotro-
pic electrostatic interactions in LCs. Experimental results indicate 

that both elastic and electrostatic interactions of charged particles 
in nematic LCs are relatively long ranged and anisotropic with re-
spect to the director, so that the colloidal behavior depends on their 
interplay. While charging could be controlled from neutral to 
hundreds of elementary effective charges per single particle, we could 
show that the interparticle forces could be dominated by elasticity 
or by electrostatics in the two limiting regimes, with both elastic and 
electrostatic interactions being highly anisotropic. While we focused 
on thermotropic nematics with accessible range of host medium’s 
Debye screening lengths in the range of 300 to 1000 nm and on 
colloidal particles with the accessible range of surface charges (0 to 
350)e, our findings do indicate a plethora of colloidal behaviors aris-
ing from the interplay of electrostatic and elastic interactions with 
salient anisotropic features, consistent with theoretical modeling.

This study can be, in the future, extended further by exploiting 
the elasticity and electrostatics interplay for lyotropic water-based 
LC colloidal systems, where Debye screening lengths can be much 
shorter, on the order of several nanometers, as well as highly deion-
ized LCs that potentially could allow for accessing the range of Debye 
screening lengths from several nanometers to 10 m. As shown in 
Fig. 5, tuning the screening length can change the relative position 
of a local minimum in the effective pair potential. Moreover, we note 
that lyotropic systems might have additional features that our theory 
does not explore yet, being often a five-component mixture (an iso-
tropic solvent such as water, LC particles, cations, anions, and the 
larger colloidal particles), compared with the thermotropic four-
component suspension in this paper (LC, cations, anions, and col-
loidal particles). Note that lyotropic systems can also have a dielectric 
anisotropy that couples the director with electrostatics (49), just as 
in the thermotropic systems under consideration here. Furthermore, 
when the LC lyotropic particles are smaller colloidal (nano)particles, 
we envisage tuning of the dielectric, elastic, and possibly flexoelectric 
properties of the nematic host medium by changing the particle 
functionality. Tuning of elastic properties by charged nanoparticles 
as a function of particle charge and salt concentration has already 
been explored theoretically (50). Moreover, lyotropic systems can be 
made active, giving rise to possibly new unexplored hydrodynamic-
electrokinetic active processes, which may be interesting also in a 
biological setting.

From the point of view of particle designs, these studies could be 
extended to patchy particles with different densities or even signs of 
charges, potentially allowing for different electrostatic multipoles, 
whereas our study showed that homogeneously charged spheres 
only give rise to even anisotropic Yukawa multipoles. Furthermore, 
while highly anisotropic disc- and rod-shaped particles have already 
been studied (40–42), there is a considerable range of possibilities in 
defining colloidal behavior also by the particle shape and surface 
treatment for different boundary conditions for the LC director at 
colloidal surfaces.

As further main theoretical results, we derived asymptotic theo-
retical expressions for the electrostatic potential and the resulting 
pair interaction for homogeneous director configurations, which 
highlights an anisotropy not only in the screening length but also in 
the prefactor, where the latter also occurs for anisotropic particles 
in isotropic solvents. Both anisotropies together predict that local 
minima in the total pair potential are shifted (Fig. 4, B and D) in 
terms of the equilibrium angle compared with an isotropic electrostatic 
interaction, in line with our experimental observations. Last, one ob-
vious extension to the theory is to numerically investigate the effect 
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of close distances between particles and relaxing the requirement of 
additivity in the pair potential by coupling the full Landau–de Gennes 
theory in terms of the tensor order parameter with electrostatics. 
We will explore this in future work.

More generally, our work contributes to the generalization and 
extension of the DLVO interactions to ubiquitous anisotropic soft 
matter systems, such as complex fluids and anisotropic colloids. 
While nematic colloids formed by a thermotropic LC host and near-
spherical colloidal inclusions provide validation of our theoretical 
findings, the concepts introduced here can be applied in biological 
contexts of highly structured biological cell interior and membranes, 
active matter systems with the additional forms of anisotropy stem-
ming from activity, lyotropic LCs with varying degrees of orienta-
tional and partial positional ordering, ionic fluids, and so on. While 
the experiments and model focused on even anisotropic Yukawa 
multipoles formed by like-charged spherical particles, future studies 
can extend our concepts to odd anisotropic Yukawa multipoles via 
a heterogeneous surface charge distribution or nonspherical particle 
shape on the electrostatic side of the spectrum, and to elastic mono-
poles through hexadecapoles and higher-order multipoles on the 
elastic side. It will be of interest to consider further the (nonadditive) 
effects of various topological defects on counterion distributions, 
the role of flexoelectricity and surface polarization, surface anchoring 
effects, charge regulation, flow (51), and how similar concepts work 
in LC mesophases with different point group symmetries and partial 
positional ordering. Specifically, one can expect to have the double 
layer–driven realignment of the nematic and even electrostatically 
controlled surface anchoring transitions as function of salt concen-
tration and interparticle distance in the regime where the dielectric 
torque is of similar magnitude as the elastic torque (42, 52–54). Fur-
thermore, flexoelectric topological defects can substantially alter 
charge distributions on the colloidal particles (55). These are just a 
few of the many examples of additional higher-order phenomena of 
which the effects on the effective interparticle potential are left for 
future studies. Overall, our findings will contribute to the soft matter 
toolkit for forming colloidal composite materials with pre-engineered 
structure and composition of the constituent building blocks and 
will also help further in understanding nonequilibrium phenomena 
in these systems (56).

MATERIALS AND METHODS
Synthesis and characterization of charged  
colloidal dumplings
The dumpling colloidal particles (Fig. 1A) were prepared using the 
hydrothermal synthesis method as reported earlier (57). The chem-
ical ingredients used for synthesis, ytterbium nitrate hexahydrate 
[Yb(NO3)3 6H2O], yttrium nitrate hexahydrate [Y(NO3)3 6H2O], 
erbium nitrate pentahydrate [Er(NO3)3 5H2O], and sodium fluoride 
(NaF) were all purchased from Sigma-Aldrich. Sodium hydroxide 
(NaOH) was purchased from Alfa Aesar. Octanoic acid (OA) was 
purchased from Acros Organics. In a typical synthesis, 130 mg of 
Y(NO3)3, 40 mg of Yb(NO3)3, and 10 mg of Er(NO3)3 were mixed 
with 10 ml of deionized water and 13.5 ml of ethanol. After forming 
a clear transparent solution, 0.35 g of NaOH and 1.83 g of OA were 
added into the above solution and stirred continuously at 50∘C for 
30 min. Then, 9 ml of 0.2 M NaF solution in deionized water was 
added dropwise to the above solution and stirred continuously for 
30 min at 50∘C. The mixture was transferred to a 40 ml Teflon-lined 

autoclave and kept in an oven at 200∘C for 7 hours. After the reac-
tion, the autoclave was allowed to cool down to room temperature 
naturally. The particles precipitated at the bottom of the reaction 
vessel were collected by centrifugation, washed with ethanol and 
deionized water in sequence, and, lastly, dispersed in 5 ml of cyclo-
hexane. The reaction yields OA functionalized dumpling-shaped 
particles with an average size of 1 m, as demonstrated by the scan-
ning electron micrograph of the particles deposited onto a silicon 
substrate (Fig. 1A). To induce positive surface charges, the particles 
were treated with an acidic solution. Briefly, 200 l of concentrated 
hydrochloric acid (HCl) was mixed with 5 ml of deionized water, 
and 2.5 ml of the particle solution in cyclohexane was added drop-
wise to the acid solution and stirred continuously for 12 hours. 
During this reaction, the OA molecules originally attached to the 
particle’s surface got detached, leaving the particle positively charged. 
The uncapped particles were collected by the centrifugation and 
subsequently dispersed in 2.5 ml of ethanol for further use. To pre-
pare the colloidal dispersions, particle solution was mixed with 5CB 
(Frinton Laboratories), followed by solvent evaporation at 70∘C for 
2 hours and cooling to nematic phase under vigorous mechanical 
agitation. The nematic dispersions were infiltrated to a glass cell by 
capillary action and sealed using a fast-setting epoxy. We used planar 
nematic cells with tangential boundary conditions for experimental 
observations and video tracking of anisotropic pair interactions of 
charged and uncharged particles in nematics. To promote unidirec-
tional tangential boundary conditions at the substrate interface, the 
inner surfaces of the glass substrates were coated with polyvinyl 
alcohol and then rubbed unidirectionally.

We used an experimental setup built around an inverted Olympus 
IX81 microscope and a 100× (numerical aperture 1.4) oil objective 
to perform bright-field and polarizing microscopy observations. 
Translational and rotational motion of colloidal particles was recorded 
with a charge-coupled device camera (Flea, Point Grey) at a rate of 
15 frames per second, and the exact x-y position (fig. S8 and movie S1) 
of the dumpling particles as a function of time was then determined 
from captured sequences of images using motion tracking plugins 
of ImageJ software. Optical manipulation of dumpling particles was 
realized with a holographic optical trapping system operating at a 
wavelength of 1064 nm and integrated with our optical microscopy 
system. To measure the Debye screening length of the 5CB samples, 
we used impedance spectroscopy with the Schlumberger SI 1260 
impedance analyzer.

Calculation of electrostatic potential
To calculate the electrostatic potential in an anisotropic dielectric 
medium, we start from Gauss’ law, which is given inside a spherical 
particle with radius a due to the absence of free charges by

	​ ∇ · D(r ) = 0,  (r  <  a)​	 (15)

with D(r) = ϵ0ϵpE(r) as the displacement field expressed in terms of 
the vacuum permittivity ϵ0, particle dielectric constant ϵp, and electric-
field E(r). Outside the particle, in the nematic, we have ions with 
number densities ±(r), and hence, the Gauss law reads (in SI units)

	​ ∇ · D(r ) = e [ ​​ +​​(r ) − ​​ −​​(r ) ] ,  (r  >  a)​	 (16)

where now, Di(r) = ϵ0ϵijEj(r), with ϵij(r) as the components of the 
(symmetric) dielectric tensor. We can express the electric field in 
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terms of the electrostatic potential kBT(r)/e, and using the result 
that within the mean-field approximation the ion densities are 
Boltzmann distributed, we find Eqs. 4 and 5 of the main text, solved 
numerically with COMSOL Multiphysics under the assumption of 
a constant charge density e. In the Supplementary Materials, we 
derive Eqs. 4 and 5 also from a free-energy approach.

For ∣(r)∣ ≪ 1 and a constant dielectric tensor, Eq. 4 simplifies to

	​​ ∇​​ 2​ (r ) = 0,  (r  <  a)​	 (17)

and

	​ [(​ϵ​ ij​​ / ​ϵ ̄ ​ ) ​∂​ i​​ ​∂​ j​​ − ​​​ 2​ ] (r ) = 0,  (r  >  a)​	 (18)

to be matched by the constant-charge boundary condition

	​​ ​   ​​ i​​ [ ​ϵ​ ij​​ ​∂​ j​​ (r ) ​∣ ​​​ r=​a​​ +​​​ − ​ϵ​ p​​ ​∂​ i​​ (r ) ∣​ r=​a​​ −​​​ ] / ​ϵ ̄ ​  =  4 ​​B​ I ​ ​	 (19)

with ​​​   ​​ i​​​ being an outward-pointing unit normal vector. To obtain 
analytical solutions is, however, difficult because of the different 
symmetry inside the particle compared with outside the particle, 
which prevents us to find a closed-form expression for (r) while 
satisfying the constant-charge Neumann boundary condition. We 
can, however, find a very accurate analytical approximation used in 
the main text, for which we will sketch the approach here and leave 
the details of the calculations for the Supplementary Materials.

The most important step in finding an analytical solution is to 
observe that an approximate solution can be found by solving the 
auxiliary problem of an ion-penetrable charged shell with surface 
charge density eS and radius R

	​ [(​ϵ​ ij​​ / ​ϵ  ̄​ ) ​∂​ i​​ ​∂​ j​​ − ​​​ 2​ ] φ(r ) = − 4 ​​B​ I ​ ​​ S​​ (r − R)​	 (20)

where S and R need to be fitted to the numerically obtained electro-
static potential. Then, it turns out that

	​ (r ) ​∣ ​​​ r≥a​​  ≈  φ(r ) ∣​ r≥a​​​	 (21)

In general, and especially at high salt concentrations, R ≠ a and 
S ≠ , except in the limit where  → 0. The advantage of the auxiliary 
problem is that the solution has a closed-form expression with only a 
double integral left to be evaluated, in terms of the analytically known 
anisotropic Debye-Hückel (DH) Green’s function G(r, r′), defined by

	​ [(​ϵ​ ij​​ / ​ϵ ̄ ​ ) ​∂​ i​​ ​∂​ j​​ − ​​​ 2​ ] G(r − ​r ′ ​ ) = − 4(r − ​r ′ ​)​	 (22)

Hence, we only have to determine the parameters  = R/a and 
 = S/ based on a two-parameter fit of the numerically obtained 
surface potential to get the electrostatic potential everywhere outside 
of the particle. The resulting integral expression of φ(r) turns out to 
be almost indistinguishable from the real (r) (see the Supplemen-
tary Materials for comparative figures). Evaluating a double inte-
gral is computationally less expensive than solving the (linearized) 
PB equation, but the real value of the integral representation comes 
when calculating pair interactions (see next subsection).

Moreover, the integral expression gives analytical insight. It is 
now possible to perform a multipole expansion because we have an 
integral representation of the electrostatic potential outside the par-
ticle, as a convolution of a singular charge distribution with the 

anisotropic DH Green’s function. Performing this expansion, the 
remaining double integrals can be evaluated to find that the decay 
length is given by Eq. 10. As is common with multipole expansions, 
they fail at short distances from the particle, as can be seen from the 
comparative figures supplied in the Supplementary Materials, but still 
capture the correct angle dependence for sufficiently large distances.

Calculation of the screened electrostatic pair  
interaction potential
Within linear screening theory ∣(r)∣ ≪ 1, ion entropy terms do 
not contribute to the effective pair potential, and hence, the electro-
static part of the pair potential is given by

	​​  ​Φ​ E​​ ─ ​k​ B​​ T ​  = ​  1 ─ 2 ​∫ drq(r ) ϕ(r ) − 2 ​ ​U​​ self​ ─ ​k​ B​​ T ​​	 (23)

with q(r) = i = 1,2(∣r − Ri∣− a), with R1 and R2 as the center-of-
mass position of particles 1 and 2, respectively, and Uself is the self 
energy of a single particle. Now, (r) is the dimensionless electro-
static potential of the two-body problem. Using the LSA, which 
entails that the two-body electrostatic potential is given by the sum of 
the single-particle electrostatic potentials of the two particles, gives 
the DLVO expression (Eq. 2) if one uses the stress-tensor method 
(46). However, applying the LSA directly to Eq. 23 gives the wrong 
result because it inappropriately accounts for ion exclusion from the 
hard core of one particle caused by the double layer of the other 
particle, which is a curious peculiarity of the free-energy route to 
pair interactions in the theory of charged colloids (28).

Using the spherical shell renormalization method, on the other 
hand, we find that the effective pair potential can be approximated as

	​​​  ​Φ​ E​​ ─ ​k​ B​​ T ​ ≈ ∫dr ​q​ S​​(r ) ​φ​ 2S​​(r ) − 2 ​ 
​U​S​ self​

 ─ ​k​ B​​ T ​​​	 (24)

Here, qS(r) = i = 1,2S(∣ r − Ri∣− R) is the charge distribution 
of two ion-impenetrable charged shells, with the same center-of-
mass positions as the spherical particles. Note that singular-charge 
distributions have an infinite self-energy ​​U​S​ self​​ that we have to sub-
tract in Eq. 24 by using an appropriate regularization procedure. 
For example, one way is by giving the shells a finite thickness and 
taking the thickness in the final step of the calculation to zero. It can 
straightforwardly be shown that the two-shell electrostatic potential 
is simply φ2S(r) = i = 1,2φ(r − Ri). Therefore, the real benefit of this 
method is that Eq. 24 is determined by the same  and  that are 
determined from the single-particle problem. This method resembles 
how the electrostatic part of the DLVO expression can be obtained 
by solving the auxiliary problem of a spherical shell or a point charge, 
accounting properly for ion-hard core exclusions, although still using 
the free energy route. The point/shell charge value together with the 
ions contained within r < a equals the charge on the particle [see, for 
a more detailed discussion, the appendix in (28) for the shell calcu-
lation and (46) for the point-charge method]. Unfortunately, a similar 
method to determine S does not apply here since (r) is inhomo-
geneous for r < a when the particle is dispersed in an anisotropic 
dielectric medium, which therefore requires a numerical fit. How-
ever, using the shell method does give the correct expression within 
LSA via a free-energy route.

Furthermore, the DLVO theory is just the first-order term in a 
complicated series expansion, where the higher-order terms become 
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more important in the case of high salt concentrations and strong 
double-layer overlap beyond the LSA (2). We can therefore expect 
that Eq. 24 becomes progressively more inaccurate at high salt con-
centrations and strong double layer overlaps (5). Comparing with 
numerical calculations, we show in the Supplementary Materials that 
this is indeed the case.

To evaluate Eq. 24, one has to perform four integrals numerically, 
which is computationally less expensive than solving the (three-
dimensional) PB equation, followed by a stress tensor or free-energy 
integration. To progress further, one can perform again a multipole 
expansion, but this time of the pair potential from the shell method 
to obtain an analytically tractable expression that gives more insight 
in the physics of the effective pair interaction in anisotropic media. 
See the main text Eq. 13 and the Supplementary Materials for the 
derivation of the multipole expansion, as well as comparison with 
numerical calculations of the full nonlinear theory (but at low charges). 
Second, we choose to use the multipolar expansion in the main text 
because we want to treat the screened electrostatic interaction on 
the same footing as the elastic interaction, which is given on the 
level of a multipolar expansion as well.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/5/eabd0662/DC1

REFERENCES AND NOTES
	 1.	 B. Derjaguin, L. Landau, Theory of the stability of strongly charged lyophobic sols 

and of the adhesion of strongly charged particles in solutions of electrolytes.  
Acta Physicochim. URSS 14, 633–662 (1941).

	 2.	 E. J. W. Verwey, J. T. G. Overbeek, In Theory of the Stability of Lyophobic Colloids (Elsevier, 1948).
	 3.	 F. Vérétout, M. Delaye, A. Tardieu, Molecular basis of eye lens transparency: Osmotic 

pressure and x-ray analysis of crystallin solutions. J. Mol. Biol. 205, 713–728 (1989).
	 4.	 W. A. Ducker, T. J. Senden, R. M. Pashley, Direct measurement of colloidal forces using 

an atomic force microscope. Nature 353, 239–241 (1991).
	 5.	 S. L. Carnie, D. Y. C. Chan, Interaction free energy between identical spherical colloidal 

particles: The linearized Poisson-Boltzmann theory. J. Colloid Interface Sci. 155, 297–312 
(1993).

	 6.	 J. C. Crocker, D. G. Grier, Microscopic measurement of the pair interaction potential 
of charge-stabilized colloid. Phys. Rev. Lett. 73, 352–355 (1994).

	 7.	 T. Cao, G. Trefalt, M. Borkovec, Aggregation of colloidal particles in the presence 
of hydrophobic anions: Importance of attractive non-dlvo forces. Langmuir 34, 
14368–14377 (2018).

	 8.	 M. Zhang, K. Guan, Y. Ji, G. Liu, W. Jin, N. Xu, Controllable ion transport by surface-
charged graphene oxide membrane. Nat. Commun. 10, 1253 (2019).

	 9.	 J. Dzubiella, G. P. Hoffmann, H. Löwen, Lane formation in colloidal mixtures driven by 
an external field. Phys. Rev. E 65, 021402 (2002).

	 10.	 A.-P. Hynninen, M. Dijkstra, Phase diagram of dipolar hard and soft spheres: Manipulation 
of colloidal crystal structures by an external field. Phys. Rev. Lett. 94, 138303 (2005).

	 11.	 A. Zaccone, H. Wu, D. Gentili, M. Morbidelli, Theory of activated-rate processes under shear 
with application to shear-induced aggregation of colloids. Phys. Rev. E 80, 051404 (2009).

	 12.	 P. Hopkins, A. J. Archer, R. Evans, Pair-correlation functions and phase separation 
in a two-component point Yukawa fluid. J. Chem. Phys. 124, 054503 (2006).

	 13.	 K. Yoshizawa, N. Wakabayashi, M. Yonese, J. Yamanaka, C. P. Royall, Phase separation 
in binary colloids with charge asymmetry. Soft Matter 8, 11732–11736 (2012).

	 14.	 M. E. Leunissen, C. G. Christova, A.-P. Hynninen, C. P. Royall, A. I. Campbell, A. Imhof, 
M. Dijkstra, R. van Roij, A. van Blaaderen, Ionic colloidal crystals of oppositely charged 
particles. Nature 437, 235–240 (2005).

	 15.	 Y. Li, M. Girard, M. Shen, J. A. Millan, M. Olvera de la Cruz, Strong attractions 
and repulsions mediated by monovalent salts. Proc. Natl. Acad. Sci. U.S.A. 114, 
11838–11843 (2017).

	 16.	 R. van Roij, J.-P. Hansen, Van der Waals–like instability in suspensions of mutually 
repelling charged colloids. Phys. Rev. Lett. 79, 3082–3085 (1997).

	 17.	 E. Trizac, Y. Levin, Renormalized jellium model for charge-stabilized colloidal 
suspensions. Phys. Rev. E 69, 031403 (2004).

	 18.	 J. C. Everts, M. N. van der Linden, A. van Blaaderen, R. van Roij, Alternating strings 
and clusters in suspensions of charged colloids. Soft Matter 12, 6610–6620 (2016).

	 19.	 B. W. Ninham, V. A. Parsegian, Electrostatic potential between surfaces bearing ionizable 
groups in ionic equilibrium with physiologic saline solution. J. Theor. Biol. 31, 405–428 
(1971).

	 20.	 I. Popa, P. Sinha, M. Finessi, P. Maroni, G. Papastavrou, M. Borkovec, Importance of charge 
regulation in attractive double-layer forces between dissimilar surfaces. Phys. Rev. Lett. 
104, 228301 (2010).

	 21.	 A. P. dos Santos, Y. Levin, Like-charge attraction between metal nanoparticles in a 1 : 1 
electrolyte solution. Phys. Rev. Lett. 122, 248005 (2019).

	 22.	 S. Alexander, P. M. Chaikin, P. Grant, G. J. Morales, P. Pincus, D. Hone, Charge 
renormalization, osmotic pressure, and bulk modulus of colloidal crystals: Theory. 
J. Chem. Phys. 80, 5776–5781 (1984).

	 23.	 A. Naji, M. Kanduč, J. Forsman, R. Podgornik, Perspective: Coulomb fluids–weak coupling, 
strong coupling, in between and beyond. J. Chem. Phys. 139, 150901 (2013).

	 24.	 M. Boström, D. R. M. Williams, B. W. Ninham, Specific ion effects: Why DLVO theory fails 
for biology and colloid systems. Phys. Rev. Lett. 87, 168103 (2001).

	 25.	 C. A. Silvera Batista, R. G. Larson, N. A. Kotov, Nonadditivity of nanoparticle interactions. 
Science 350, 1242477 (2015).

	 26.	 G. Gompper, R. G. Winkler, T. Speck, A. Solon, C. Nardini, F. Peruani, H. Löwen, 
R. Golestanian, U. B. Kaupp, L. Alvarez, T. Kiørboe, E. Lauga, W. C. K. Poon, A. De Simone, 
S. Muiños-Landin, A. Fischer, N. A. Söker, F. Cichos, R. Kapral, P. Gaspard, M. Ripoll, 
F. Sagues, A. Doostmohammadi, J. M. Yeomans, I. S. Aranson, C. Bechinger, H. Stark, 
C. K. Hemelrijk, F. J. Nedelec, T. Sarkar, T. Aryaksama, M. Lacroix, G. Duclos, V. Yashunsky, 
P. Silberzan, M. Arroyo, S. Kale, The 2020 motile active matter roadmap. J. Phys. Condens. 
Matter 32, 193001 (2020).

	 27.	 D. G. Rowan, J.-P. Hansen, E. Trizac, Screened electrostatic interactions between clay 
platelets. Mol. Phys. 98, 1369–1378 (2000).

	 28.	 E. Trizac, L. Bocquet, R. Agra, J.-J. Weis, M. Aubouy, Effective interactions and phase 
behaviour for a model clay suspension in an electrolyte. J. Phys. Condens. Matter. 14, 
9339–9352 (2002).

	 29.	 C. Álvarez, G. Téllez, Screening of charged spheroidal colloidal particles. J. Chem. Phys. 
133, 144908 (2010).

	 30.	 D. J. Bonthuis, S. Gekle, R. R. Netz, Dielectric profile of interfacial water and its effect 
on double-layer capacitance. Phys. Rev. Lett. 107, 166102 (2011).

	 31.	 P. Loche, C. Ayaz, A. Wolde-Kidan, A. Schlaich, R. R. Netz, Universal and nonuniversal 
aspects of electrostatics in aqueous nanoconfinement. J. Phys. Chem. B 124, 4365–4371 
(2020).

	 32.	 P. Poulin, H. Stark, T. C. Lubensky, D. A. Weitz, Novel colloidal interactions in anisotropic 
fluids. Science 275, 1770–1773 (1997).

	 33.	 I. Muševič, M. Škarabot, U. Tkalec, M. Ravnik, S. Žumer, Two-dimensional nematic 
colloidal crystals self-assembled by topological defects. Science 313, 954–958 (2006).

	 34.	 C. P. Lapointe, T. G. Mason, I. I. Smalyukh, Shape-controlled colloidal interactions 
in nematic liquid crystals. Science 326, 1083–1086 (2009).

	 35.	 M. Cavallaro Jr., M. A. Gharbi, D. A. Beller, S. Čopar, Z. Shi, T. Baumgart, S. Yang, 
R. D. Kamien, K. J. Stebe, Exploiting imperfections in the bulk to direct assembly of surface 
colloids. Proc. Natl. Acad. Sci. U.S.A. 110, 18804–18808 (2013).

	 36.	 Y. Yuan, I. I. Smalyukh, Topological nanocolloids with facile electric switching 
of plasmonic properties. Opt. Lett. 40, 5630–5633 (2015).

	 37.	 T. C. Lubensky, D. Pettey, N. Currier, H. Stark, Topological defects and interactions 
in nematic emulsions. Phys. Rev. E 57, 610–625 (1998).

	 38.	 B. I. Lev, S. B. Chernyshuk, P. M. Tomchuk, H. Yokoyama, Symmetry breaking 
and interaction of colloidal particles in nematic liquid crystals. Phys. Rev. E 65, 021709 
(2002).

	 39.	 Y. Yuan, M. Tasinkevych, I. I. Smalyukh, Colloidal interactions and unusual crystallization 
versus de-mixing of elastic multipoles formed by gold mesoflowers. Nat. Commun. 11, 
188 (2020).

	 40.	 H. Mundoor, B. Senyuk, I. I. Smalyukh, Triclinic nematic colloidal crystals from competing 
elastic and electrostatic interactions. Science 352, 69–73 (2016).

	 41.	 H. Mundoor, S. Park, B. Senyuk, H. H. Wensink, I. I. Smalyukh, Hybrid molecular-colloidal 
liquid crystals. Science 360, 768–771 (2018).

	 42.	 H. Mundoor, B. Senyuk, M. Almansouri, S. Park, B. Fleury, I. I. Smalyukh, Electrostatically 
controlled surface boundary conditions in nematic liquid crystals and colloids. Sci. Adv. 5, 
eaax4257 (2019).

	 43.	 Y. Gu, N. L. Abbott, Observation of saturn-ring defects around solid microspheres 
in nematic liquid crystals. Phys. Rev. Lett. 85, 4719–4722 (2000).

	 44.	 H. Stark, Physics of colloidal dispersions in nematic liquid crystals. Phys. Rep. 351, 
387–474 (2001).

	 45.	 H. Stark, D. Ventzki, Stokes drag of spherical particles in a nematic environment at low 
Ericksen numbers. Phys. Rev. E 64, 031711 (2001).

	 46.	 J. C. Everts, Screened coulomb interactions of general macroions with nonzero particle 
volume. Phys. Rev. Res. 2, 033144 (2020).

	 47.	 E. Trizac, L. Bocquet, M. Aubouy, H. H. von Grünberg, Alexander’s prescription for colloidal 
charge renormalization. Langmuir 19, 4027–4033 (2003).

 on F
ebruary 10, 2021

http://advances.sciencem
ag.org/

D
ow

nloaded from
 

http://advances.sciencemag.org/cgi/content/full/7/5/eabd0662/DC1
http://advances.sciencemag.org/cgi/content/full/7/5/eabd0662/DC1
http://advances.sciencemag.org/


Everts et al., Sci. Adv. 2021; 7 : eabd0662     27 January 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

12 of 12

	 48.	 A. Šarlah, S. Žumer, Van der Waals interaction mediated by an optically uniaxial layer. 
Phys. Rev. E 64, 051606 (2001).

	 49.	 A. S. Sonin, Lyotropic nematics. Sovi. Phys. Uspekhi 30, 875–896 (1987).
	 50.	 T. Drwenski, S. Dussi, M. Hermes, M. Dijkstra, R. van Roij, Phase diagrams of charged 

colloidal rods: Can a uniaxial charge distribution break chiral symmetry? J. Chem. Phys. 
144, 094901 (2016).

	 51.	 K. A. Takeuchi, M. Sano, Universal fluctuations of growing interfaces: Evidence 
in turbulent liquid crystals. Phys. Rev. Lett. 104, 230601 (2010).

	 52.	 R. R. Shah, N. L. Abbott, Coupling of the orientations of liquid crystals to electrical double 
layers formed by the dissociation of surface-immobilized salts. J. Phys. Chem. B 105, 
4936–4950 (2001).

	 53.	 K. Tojo, A. Furukawa, T. Araki, A. Onuki, Defect structures in nematic liquid crystals around 
charged particles. Eur. Phys. J. E 30, 55–64 (2009).

	 54.	 J. C. Everts, M. Ravnik, Charge-, salt- and flexoelectricity-driven anchoring effects 
in nematics. Liq. Cryst. 10.1080/02678292.2020.1786176 , (2020).

	 55.	 M. Ravnik, J. C. Everts, Topological-defect-induced surface charge heterogeneities 
in nematic electrolytes. Phys. Rev. Lett. 125, 037801 (2020).

	 56.	 S. Paladugu, C. Conklin, J. Viñals, O. D. Lavrentovich, Nonlinear electrophoresis of colloids 
controlled by anisotropic conductivity and permittivity of liquid-crystalline electrolyte. 
Phys. Rev. Applied 7, 034033 (2017).

	 57.	 S. Wu, Y. Liu, J. Chang, S. Zhang, Ligand dynamic effect on phase and morphology control 
of hexagonal NaYF4. Cryst. Eng. Comm. 16, 4472–4477 (2014).

Acknowledgments: J.C.E. acknowledges fruitful discussions with S. Čopar and A. Šarlah. 
Funding: J.C.E. acknowledges financial support from the European Union’s Horizon 2020 
programme under the Marie Skłodowska-Curie grant agreement no. 795377 and from the 

Polish National Agency for Academic Exchange (NAWA) under the Ulam Programme grant 
no. PPN/ULM/2019/1/00257. M.R. acknowledges financial support from the Slovenian Research 
Agency ARRS under contracts P1-0099, J1-1697, and L1-8135. B.S., H.M., and I.I.S. acknowledge 
funding from the U.S. Department of Energy, Office of Basic Energy Sciences, Division of 
Materials Sciences and Engineering, under award ER46921, contract DE-SC0019293 with the 
University of Colorado Boulder. Last, the authors would like to thank the Isaac Newton 
Institute for Mathematical Sciences for support and hospitality during the program (The 
Mathematical Design of New Materials) when work on this paper was undertaken. I.I.S. also 
acknowledges the hospitality of the Kavli Institute for Theoretical Physics at the University of 
California, Santa Barbara, where he was working on this publication during his extended stay 
and where his research was supported, in part, by the U.S. NSF under grant no. NSF 
PHY-1748958. This work was supported by EPSRC grant number EP/R014604/1. Author 
contributions: J.C.E. performed the numerical and analytical theoretical calculations under 
the supervision of M.R. B.S. and H.M. performed experiments and analyzed experimental data 
under the supervision of I.I.S. All authors contributed to writing and discussing the manuscript. 
Competing interests: The authors declare that they have no competing interests. Data and 
materials availability: All data needed to evaluate the conclusions in the paper are present in 
the paper and/or the Supplementary Materials. Additional data related to this paper may be 
requested from the authors.

Submitted 2 June 2020
Accepted 9 December 2020
Published 27 January 2021
10.1126/sciadv.abd0662

Citation: J. C. Everts, B. Senyuk, H. Mundoor, M. Ravnik, I. I. Smalyukh, Anisotropic electrostatic 
screening of charged colloids in nematic solvents. Sci. Adv. 7, eabd0662 (2021).

 on F
ebruary 10, 2021

http://advances.sciencem
ag.org/

D
ow

nloaded from
 

http://advances.sciencemag.org/


Anisotropic electrostatic screening of charged colloids in nematic solvents
Jeffrey C. Everts, Bohdan Senyuk, Haridas Mundoor, Miha Ravnik and Ivan I. Smalyukh

DOI: 10.1126/sciadv.abd0662
 (5), eabd0662.7Sci Adv 

ARTICLE TOOLS http://advances.sciencemag.org/content/7/5/eabd0662

MATERIALS
SUPPLEMENTARY http://advances.sciencemag.org/content/suppl/2021/01/25/7.5.eabd0662.DC1

REFERENCES

http://advances.sciencemag.org/content/7/5/eabd0662#BIBL
This article cites 55 articles, 9 of which you can access for free

PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions

Terms of ServiceUse of this article is subject to the 

 is a registered trademark of AAAS.Science AdvancesYork Avenue NW, Washington, DC 20005. The title 
(ISSN 2375-2548) is published by the American Association for the Advancement of Science, 1200 NewScience Advances 

License 4.0 (CC BY-NC).
Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial 
Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of

 on F
ebruary 10, 2021

http://advances.sciencem
ag.org/

D
ow

nloaded from
 

http://advances.sciencemag.org/content/7/5/eabd0662
http://advances.sciencemag.org/content/suppl/2021/01/25/7.5.eabd0662.DC1
http://advances.sciencemag.org/content/7/5/eabd0662#BIBL
http://www.sciencemag.org/help/reprints-and-permissions
http://www.sciencemag.org/about/terms-service
http://advances.sciencemag.org/

