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Nematoelasticity of hybrid molecular-colloidal liquid crystals
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Colloidal rods immersed in a thermotropic liquid-crystalline solvent are at the basis of so-called hybrid liquid
crystals, which are characterized by tunable nematic fluidity with symmetries ranging from conventional uniaxial
nematic or antinematic to orthorhombic [Mundoor et al., Science 360, 768 (2018)]. We provide a theoretical
analysis of the elastic moduli of such systems by considering interactions between the individual rods with the
embedding solvent through surface-anchoring forces, as well as steric and electrostatic interactions between the
rods themselves. For uniaxial systems, the presence of colloidal rods generates a marked increase of the splay
elasticity, which we found to be in quantitative agreement with experimental measurements. For orthorhombic
hybrid liquid crystals, we provide estimates of all 12 elastic moduli and show that only a small subset of those
elastic constants play a relevant role in describing the nematoelastic properties. The complexity and possibilities
related to identifying the elastic moduli in experiments are briefly discussed.
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I. INTRODUCTION

Liquid crystalline (LC) phases are found in a large variety
of materials, including the classic examples of anisotropic
small molecules and colloidal particles like rods and disks
[1,2]. Thermotropic nematic LC phases formed by molec-
ular rods within a chemically homogeneous medium, each
about a nanometer in length, are the most widely known
because of their widespread use in displays and electro-optic
devices, where they are stable in a broad temperature range
in between crystalline and isotropic fluid phases. Lyotropic
nematic LCs formed by colloidal rodlike particles suspended
in a fluid host medium, like water, constitute another classic
example of such a nematic mesophase, although the physics
behind its formation is different from that of thermotropic
nematics [3]. Nematic colloids, where a thermotropic LC
is used to host colloidal particles being one or several or-
ders of magnitude larger than the molecules of the host
medium, have attracted a great deal of interest over the past
decades [4–25]. While spherical colloidal inclusions are the
most widely studied, particles with various geometrically and
topologically complex shapes immersed in a LC host have
been studied too [25–40], including colloidal objects like
gold nanorods [41–51], bacteria [52–54], carbon nanotubes
[55–61], and graphene sheets [61–63]. Although some col-
loidal inclusions were composed of monodomain magnetic
or electric dipoles [4,64–68], the majority of nematic colloids
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studied thus far involved dielectric particles or droplets. The
most notable examples relate to cases in which the orien-
tations of the anisotropic colloidal nanoparticles mimic the
director pattern of the molecular or surfactant-based nematic
host medium [25–40,56–63], though, even more interestingly,
in some cases so-called antinematic order of colloidal rods
in a nematic host medium was observed as well [47]. Com-
bining colloidal and LC systems not only resulted in new
physical properties, such as polarization-dependent surface
plasmon resonance properties in dispersions of gold nanorods
within LCs [43], it also led to the recent discovery of new
soft condensed-matter phases formed by molecular-colloidal
composite systems. Introduced as LCs that combine lyotropic
and thermotropic phase behavior, hybrid molecular-colloidal
LCs have been studied in recent years as an experimental
platform for the creation of low-symmetry orientationally or-
dered fluid organizations [69], including orthorhombic [70] or
monoclinic nematic LCs [71], and triclinic colloidal crystals
[72].

Due to the LC character of the solvent, surface anchoring
forces introduce an orientational coupling between the order-
ing of solvent molecules and the colloidal surfaces such that
the molecular director tends to favorably align either normal
to the colloidal surface (homeotropic anchoring) or tangen-
tial to it (planar anchoring) [4,73]. The surface anchoring
properties can be tuned by controlling the properties of the
colloidal surfaces [74] as well as by the temperature of the LC
solvent. A key attribute of the hybrid LCs is that the surface
anchoring energy per particle (relative to its thermal energy)
is strong enough for the colloids to experience considerable
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FIG. 1. Structure and composition of a hybrid molecular-rod
system: (a) Transmission electron micrograph of colloidal nanorods
after acid treatment. (b), (d) Up-conversion-based luminescence con-
focal microscopy images of the nanorods in a uniaxial nematic LC
in a homeotropic (b) and planar (d) cell. (c) Schematic overview
and corresponding luminescence confocal microscopy image (d) of
the nanorods in a uniaxial nematic LC. (e) Schematic overview and
corresponding luminescence confocal microscopy image (f) of the
nanorods forming an orthorhombic biaxial nematic LC in a planar
cell.

realigning torques with respect to the solvent director, but
at the same time weak enough to avoid bulk disclinations
or other topological defects around the colloidal surfaces
[12]. These defects possess a well-defined topology and are
routinely encountered for relatively large nematic colloidal
inclusions with strong surface anchoring. They give rise to
strong interparticle forces [5] leading to dynamically arrested
composites [15,75–78]. In contrast, because of weaker elastic
distortions and additional electrostatic stabilization, structure
formation in hybrid LCs is fully reversible, and a rich array
of phase transitions can be explored across a wide range
of parameters (colloid concentration, temperature, etc.) with-
out risking the system being trapped in a nonequilibrium,
metastable state.

For the case of slender rigid rod-shaped colloids (Fig. 1),
one can show that homeotropic surface anchoring enforces
the rods to align with their main orientation perpendicular to
the molecular director. At low rod concentration, a uniaxial

FIG. 2. Visualization of the principal director fluctuations, spec-
ified by Eq. (1), of a uniaxial nematic liquid crystal with principal
director n in a laboratory frame spanned by the orthonormal tripod
{m, l, n}.

hybrid LC is then created in which the rods adopt antinematic
orientational order [Figs. 1(c) and 1(d)].

When the concentration of immersed rods is sufficiently
large, rod correlations create a biaxial nematic fluid with
orthorhombic (D2h) point symmetry [Figs. 1(e) and 1(f)].
The creation of such a well-controlled orthorhombic nematic
phase provides a strong impetus to revisit its nematoelastic
properties, which is key to understanding the director-field
topology that such a low-symmetry nematic generates when
exposed to various types of confining boundaries [1]. Various
theoretical routes to consider elasticity of biaxial nematics
have been developed [79–85] that build upon the Oseen-Frank
theory for uniaxial nematics [86,87]. The principal outcome is
that describing the elastic properties of a biaxial nematic fluid
in the absence of chirality requires 12 elastic constants instead
of the three bulk moduli, related to splay, twist, and bend
fluctuations (see Fig. 2) for conventional uniaxial nematics.
The 12 elastic moduli can, at least formally, be connected to
several microscopic features of the constituents, for instance
the biaxial symmetry of the particle, which may be of steric
origin or emerge from some long-ranged anisotropic disper-
sive forces [88].

The theoretical predictions are, however, difficult to
validate without the availability of a well-characterized exper-
imental biaxial nematic system where such interactions can
be modeled with reasonable accuracy and ease. Our hybrid
LC meets those criteria given that the immersed rods in view
of their large aspect ratio, rigidity, and known surface charge
properties closely follow an Onsager-type behavior [3,70]
while the coupling between the surface anchoring energy and
rod orientation can be well understood from a simple mean-
field description [69]. A theoretical description based on these
two ingredients allows for a quantitative prediction of the
phase behavior over a wide range of rod concentrations and
temperatures [70].

In this paper, we wish to apply the same modeling strat-
egy to describe the coarse-grained bulk nematoelasticity of
hybrid LCs from a particle-based theoretical viewpoint. The
discussion broadly falls into two parts. We begin in Secs. II
and III by considering the case of uniaxial hybrid LCs where
the usual splay, bend, and twist modes are affected by the
presence of antinematically oriented colloidal rods. In this
study, we focus on rod-based hybrid LCs that operate in the
regime where the colloidal inclusions, in view of their vanish-
ing thickness, low concentration, and weak surface anchoring,
do not incur strong elastic distortions of the molecular
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director field. The latter therefore remains largely intact. The
principal impact of the inclusions on the elastic properties of
the host LC then stems from the surface-anchoring energy
of a single rod, which is enhanced in the presence of weak
distortions of the molecular director [89]. Our theoretical
predictions are tested against experimental measurements of
the splay modulus for low-concentration uniaxial hybrid LCs.
We find that our model provides a quantitative prediction of
the increase of the splay modulus with the concentration of
immersed rods. We note that our study reported here is a first
step in exploring the elastic properties of hybrid molecular-
colloidal LCs, which in future can be extended to the regimes
where particles induce topological defects with significant
molecular alignment perturbations around the colloidal par-
ticles, both within nematic colloidal dispersions and in cases
when smectic, columnar, and crystalline colloidal organiza-
tions arise (for the first two, see examples in our recent studies
of colloidal disk dispersions in molecular nematic hosts of
calamitic mesogens [71]).

The second part of this article (Sec. IV) concerns the elastic
moduli of the orthorhombic hybrid LC. We demonstrate that
the 12 moduli can be effectively classified by considering
only their leading-order contributions, be they driven by the
elasticity of the LC solvent, by surface anchoring [89], or
by repulsive interactions between the colloidal rods [90,91].
From our scaling analysis it transpires that there is only
a small subset of dominant elastic moduli that can all be
connected to the known elastic moduli of the nematic host,
supplemented with weak corrections due to rod-rod corre-
lations. This approach enables us to fully specify the bulk
elastic anisotropy of an experimentally realizable biaxial ne-
matic system that holds great potential for exploring colloidal
or granular objects with reconfigurable topology [92] and
their self-assembly in orthorhombic nematic media. We finish
our manuscript by discussing a number of technical compli-
cations associated with measuring the orthorhombic elastic
constants in hybrid colloidal-molecular systems (Sec. V), and
we propose a roadmap stipulating the various experimental
conditions that would need to be realized in order to probe all
elastic deformations that feature in the continuum elasticity
theory for biaxial nematics (see the Appendix).

Curiously, we find that the role of thin rodlike colloidal
dopants on the elasticity of the ensuing hybrid molecular-
colloidal LCs can be parallelled to that of chiral molecular
additives in the case of chiral nematic LCs formulated by
adding chiral additives to a nonchiral molecular host. For
small chiral dopant concentrations, some of the Frank elastic
constants of the chiral nematics are often taken to be approx-
imately the same as for the nonchiral nematic host, albeit
the chiral additive strongly alters the structure of the nematic
medium at sufficiently high concentrations. In a similar way,
small amounts of colloidal additives in the form of very
thin rods, organized antinematically, only modestly alter the
director fluctuations of the uniaxial nematic LC, while at suf-
ficiently high colloidal rod number densities an orthorhombic
biaxial nematic emerges which represents a distinctly differ-
ent LC symmetry characterized by a different set of elastic
deformation modes. We emphasize that our study is only the
first step in the direction of probing the delicate behavior of
molecular-colloidal hybrid LCs. Future modeling efforts need

to accommodate a wider range of combined effects due to the
perturbation of molecular order imparted by the colloidal rods,
the anisotropic and long-range nature of the electrostatic inter-
actions, along with the formation (under certain conditions)
of various smectic and columnar organizations of colloidal
inclusions, and so on.

II. UNIAXIAL HYBRID LIQUID CRYSTALS

Let us first focus on hybrid LCs in which both components
retain their uniaxial orientational symmetry. As mentioned
previously, in view of the vanishing rod cross-section, the
molecular director is only weakly distorted at a short distance
from the rod surface. At large length scales, corresponding
to a typical range of elastic deformations, the orientation or-
der of the molecules is not affected by the presence of the
colloids. This can be easily rationalized from the fact that
the typical rod cross-section (D ≈ 25 nm) is much smaller
than the surface anchoring extrapolation length (or Kleman–
de Gennes length) [93], defined as K/w0 ∼ 600 nm, taking
typical values for the elastic constant of 5CB K = 6 pN
[69,94] and surface anchoring coefficient w0 = 10−5 J/m2

[17]. Because of the large energetic cost of bulk defects and
the weakly homeotropic surface anchoring conditions at the
colloidal boundary, the molecular director only marginally
deviates from the uniform bulk state. These deviations are
moreover strongly localized close to the tip of the rods such
that elastic interactions between rods do not register at low
to moderate rod concentrations where the particles remain
relatively far apart. Furthermore, the correlations induced by
weak perturbations of molecular order at particle surfaces are
overpowered by the strongly anisotropic electrostatic repul-
sion between the colloidal rods [70].

We start with defining a molecular director n within a
Cartesian laboratory frame {m, l, n} such that R = mm +
ll + nn denotes the position within the frame. In a nematic
system, the molecular alignment is assumed to be uniform so
that n does not depend on R. Furthermore, the nematic sym-
metry is uniaxial, which means that there is no preferential
alignment in the ml-plane perpendicular to n. Elastic fluctu-
ations, however, render the director field locally nonuniform
with respect to R. Let us consider the three basic deformation
modes sketched in Fig. 2. The distortions are unidirectional
and depict a splay, twist, and bend distortion of the director
along the m axis. In this study, we employ a microscopic
density functional approach to computing the elastic constants
along the lines of Refs. [90,91,95], in which case it is expe-
dient to express the spatial variation of n(R) in terms of the
following linear patterns [96]:

n(R) = n + ε

⎧⎨
⎩

mm (splay),
lm (twist)
nm (bend).

(1)

For later reference, we introduce the following shorthand no-
tation:

n(R) = n + δnm
i (i = m, l, n), (2)

so that δnm
m denotes a splay and δnm

l a twist fluctuation of n
along the direction of m, etc. The distortion wave number ε is
constrained to be small, ε � a−1, for all patterns such that the
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spatial variation of n(R) is infinitesimally weak on the scale of
the microscopic lengthscale a representing the typical molec-
ular size or interaction range. Inserting the parametrizations
into the Frank distortion free energy for uniaxial nematics
[87,94],

Fel

V
= K1

2
(∇ · n)2 + K2

2
(n · ∇ × n)2 + K3

2
(n × ∇ × n)2,

(3)

one easily infers that each pattern in Eq. (1) generates a nonva-
nishing contribution of order O(ε2) only for the corresponding
deformation mode with associated elastic constant K1 (splay),
K2 (twist), and K3 (bend). Since the nematic system is of
uniaxial symmetry, we could have defined a similar set of
fluctuations along the l-direction of the laboratory frame. In-
terchanging the indices l and m gives

n(R) = n + ε

⎧⎨
⎩

ll (splay),
ml (twist),
nl (bend),

(4)

written compactly as n(R) = n + δnl
i with (i = l, m, n).

Clearly, this transformation does not change the deformation
free energy Fel and would generate the same elastic moduli
if these were computed on the basis of particle-based density
functional theories [89–91,96]. The degeneracy obviously no
longer holds for the orthorhombic nematic, as we will discuss
in more detail in Sec. IV. In this study, the focus is on bulk
elasticity, and we will not consider surface effects such as
saddle-splay and splay-bend fluctuations, which only play a
role if the liquid crystal is in contact with a curved surface
(see, e.g., Ref. [97] for a recent discussion).

We begin by considering a uniaxial hybrid nematic fluid
composed of rods embedded in a uniaxial molecular LC
[Figs. 1(c) and 1(d)]. At low particle concentration, rod-rod
interactions are too insignificant to generate nematic order of
the colloidal component alone, and the rods are arranged in
an antinematic fashion pointing perpendicular to n [Fig. 1(c)].
Since the hybrid system retains its uniaxial symmetry, only
the molecular director matters, and its three basic deforma-
tion modes (splay, bend, and twist) are depicted in Fig. 2.
Elastic restoring forces are transmitted through the molecu-
lar component as well as through interactions between the
rod inclusions. A straightforward and transparent way to ad-
dress the elastic properties of the hybrid system is to assume
a simple superposition of component-specific contributions:
one relating to the pure molecular component 5CB (denoted
by “0”), a second term accounting for the effect of surface
anchoring (“s”), and a third contribution arising from steric
and electrostatic rod correlations (“r”):

Ki ∼ K (0)
i + K (s)

i + K (r)
i , i = 1, 2, 3. (5)

At low concentration of rod inclusions, we expect the surface-
anchoring of the molecular LC at the rod surface to play a
dominant role, with K (r)

i � K (s)
i . We now proceed to analyz-

ing each of these contributions in more detail.

A. Elasticity generated by surface anchoring

Following Ref. [89], we consider the Rapini-Papoular
surface anchoring free energy [98] for an ensemble of N

cylindrical rods with a length L, diameter D in a volume V ,
and number concentration ρ = N/V immersed in a molecular
LC solvent with constant temperature T :

Fs

V
= −1

2
w0ρ

∫
du

∮
dS (n · v0(S ))2 fU (u · n), (6)

where w0 > 0 denotes the surface anchoring coefficient, S is
the cylindrical rod surface, and v0(φ) = cos φu⊥1 + sin φu⊥2

is a parametrization for the easy axis normal to the rod sur-
face in terms of an orthonormal rod frame {u, u⊥1, u⊥2}. The
vectors and angular variables are indicated in Figs. 3(a) and
3(b). The integral over the rod surface (neglecting end effects
for D � L) can be written as

∫
dS = (D/2)

∫ 2π

0 dφ
∫ L

0 dt . At
fixed polar angle θe and degenerate azimuthal angle 0 < ϕ �
2π , the rod orientation probability reads fU (u) = 1

2π
δ(θ − θe)

and the surface anchoring energy per particle reads

Us = −π

4
DLw0 sin2 θe, (7)

which demonstrates that homeotropic anchoring forces the
rods to align perpendicular to the molecular director (θe =
π/2). The corresponding orientational probability of each rod
is given by a Boltzmann factor:

fU (θ ) ∝ exp [−σP2(cos θ )] (8)

in terms of the antinematic field strength σ , which, at least in
the experimental system at hand, strongly exceeds the thermal
energy kBT (with kB Boltzmann’s constant):

σ = πLDw0

6kBT
� 1. (9)

The fact that surface anchoring generates a very strong re-
aligning potential [see Figs. 1(c) and 1(d)] justifies the use of
a simpler Gaussian distribution describing small fluctuations
of the meridional angle ψ = π/2 − θ ,

fU (ψ ) ∼
√

3σ

(2π )3
exp

(
−3

2
σψ2

)
, (10)

which is normalized on the unit sphere via
limσ→∞

∫ ∞
−∞ dψ

∫ 2π

0 dϕ fU (ψ ) = 1.
The surface anchoring free energy is easily generalized

to the case of (weakly) nonuniform molecular director fields
represented by the linear fluctuations δnm

i in Eq. (2). These
are illustrated in Fig. 3(c). We expand Eq. (6) up to O(ε2)
and write down the free-energy cost associated with infinitely
weak long-wavelength molecular director deformations. The
associated elastic contributions originating from surface an-
choring are then expressed as

K (s)
i = δFs

1
2ε2V

= −1

2
w0ρD

∫
du

∫ 2π

0
dφ

∫ L

0
dt[t (u · ei )]

2

× [[m · v0(φ)]2 − [n · v0(φ)]2] fU (u · n) (11)

with e1 = m, e2 = l, and e3 = n as per the different modes.
The integrals are easily solved with the aid of the Gaussian
distribution by applying standard asymptotic expansion [99].
The resulting scaling expressions for the elastic modes take a
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FIG. 3. (a) Principal angles describing the orientation u of a single rod with respect to the molecular director n. (b) Each rod experiences
homeotropic surface anchoring across its cylindrical backbone where the molecular director is favored to align along the easy axis v0 given
by a vector parametrizing the circular rod cross-section in terms of the angle φ. (c) Illustration of the splay, twist, and bend distortions of the
molecular director in the presence of a rod-shaped inclusion.

simple form:

K (s)
1 ∼ 1

4
w0

L2

D
φr,

K (s)
2 ∼ 1

3
K (s)

1 , (12)

K (s)
3 ∼ 1

9
w0

L2

D
φr

1

σ
,

where φr = (π/4)LD2ρ denotes the rod volume fraction
within the hybrid LC. We conclude that surface-anchoring
between the rod inclusions and the molecular host primarily
enhances the splay elasticity and, to a lesser extent, the twist
mode. The bend elasticity, on the other hand, seems hardly
affected by the presence of the rod inclusions provided that
the antinematic order is strong (σ � 1).

B. Elasticity generated by rod correlations

The elastic moduli associated with repulsive interactions
between antinematically organized rods have been analyzed
in detail by one of us in Ref. [89]. The results are as follows:

K (r)
1 ∼ kBT

Deff

1

π3
(φr�eff )2(ln W + C1),

K (r)
2 = 1

3
K (r)

1 , (13)

K (r)
3 ∼ kBT

Deff

4

3π3
(φr�eff )2 ln W + C3

W
,

with constants C1 = γE − 7/2 + ln 24 ≈ 0.255 and C3 =
γE − 23/6 + ln 24 ≈ −0.078, and γE ≈ 0.577 is Euler’s con-
stant. The degree of antinematic orientation of the rods is
expressed by an effective antinematic order parameter W =
σ − 5

4φr�effSr , where Sr denotes the conventional nematic
order parameter of the rods, which, in the case of strong
antinematic organization, should be very close to its extreme
value, Sr ≈ −1/2.

The elastic constants further depend on the rod geometry
through the effective aspect ratio �eff = (L/D)(Deff/D) � �

and rod diameter, which roughly account for the electric dou-
ble layers surrounding each rod. Following Odijk et al. [100],

we define

Deff = D

(
1 + ln A′ + γE + ln 2 + 1/2

κD

)
(14)

with A′ an electrostatic amplitude given by (within the Debye-
Hückel approximation)

A′ ≈ 8πv2�Be−κD

κ3D2K2
1 (κD/2)

, (15)

with v the effective line charge density defined as the num-
ber of elementary charges per unit rod length, κ the Debye
screening constant, �B the Bjerrum length, and K1 denotes a
modified Bessel function (not to be confused with the splay
elastic modulus). The values relevant to our experiment are as
follows: v ≈ 0.16 e/nm, which is sufficiently low to justify
the Debye-Hückel approximation, κ−1 ≈ 120 nm. This leads
to A′ ≈ 105 and an effective-to-bare rod diameter Deff/D ≈
28.

Similar to the surface anchoring contributions derived
previously, the rod correlations primarily impact the splay
modulus. This is in contrast to what is observed for con-
ventional nematic order of rods where bend elasticity usually
dominates [91]. We will encounter this scenario in Sec. III.

C. Experimental measurement of the splay modulus
of a uniaxial hybrid molecular-colloidal nematic

Experimental measurements of the splay elastic con-
stant K1 were performed in a hybrid molecular-colloidal
LC [70], consisting of high-aspect-ratio inorganic colloidal
nanorods dispersed in a nematic host (Fig. 1). The details
of the chemical synthesis, surface treatment, dispersion, as
well as characterizations of surface charging, screening by
counterions, and other aspects were identical to those de-
scribed elsewhere [70]. For our experiments, β-NaYF4:Yb/Er
nanorods [Fig. 1(a)] were synthesized by a hydrothermal syn-
thesis method [70,101]. The colloidal nanorods were treated
using hydrochloric acid (HCl) to remove ligands used dur-
ing synthesis and to control the length-to-diameter ratio
of the colloidal particles within L/D ∼ 40–110 via slow
etching of the solid nanocrystals. Hybrid nematics were pre-
pared by redispersing nanorods in a commercially available
pentylcyanobiphenyl (5CB, Frinton Labs, Inc.) nematic LC
via solvent exchange and elevated-temperature evaporation,
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FIG. 4. Measurements of the splay elastic constant K1 of a hybrid
LC: (a) Schematic diagram of a planar cell with patterned ITO
electrodes. (b), (c) A simplified schematic diagram of a hybrid LC
slab without applied voltage (b) and above the threshold voltage U ∗

(c) where the distorted molecular director n(r) is no longer spatially
uniform. The distortions are strongly exaggerated for illustrative
purposes; in reality they are very weak at voltages just above the
threshold value. (d) Capacitance and (e) transmittance of a hybrid
LC in a planar cell as a function of the applied voltage.

followed by cooling down the dispersion under vigorous stir-
ring. Nematic LC dispersions of nanorods were infiltrated
in between two glass substrates with patterned indium tin
oxide (ITO) electrodes [Fig. 4(a)] spaced by glass microfibers
setting the gap thickness to 20 μm, which was measured with
an interferometric method. To achieve unidirectional planar
boundary conditions for n, cell substrates were coated with
1 wt.% aqueous polyvinyl alcohol or polyimide PI2555 (HD
MicroSystem) and rubbed unidirectionally. We also used com-
mercial planar cells purchased from Instec, Inc. Within the
5CB dispersions, the bare nanorod surface imparts weakly
homeotropic boundary conditions for n [Figs. 1(b)–1(f)]. We
used small neodymium magnets (K&J Magnetics, Inc.) to
align nanorods as they orient perpendicular to the magnetic
field lines [70]. A magnetic field applied to a sample was
measured with a LakeShore 460 3-channel gaussmeter.

The splay elastic constant K1 of a hybrid LC can be de-
termined from measuring the threshold voltage U ∗ of the
Fréedericksz transition for n in a planar cell [Figs. 4(a)–4(c)]
upon the application of an electric field and using the relation
K1 = π−2ε0�ε(U ∗)2, where ε0 is the dielectric permittivity
in vacuum, and �ε = ε‖ − ε⊥ is the dielectric anisotropy of a
hybrid LC, with ε‖ and ε⊥ the respective dielectric constants
parallel and perpendicular to n [1].

The threshold voltages U ∗ were determined from the de-
pendence of either a capacitance or optical transmittance of
a planar hybrid LC cell on the applied voltage. The former
[Fig. 4(d)] was measured at 1.0 kHz using an impedance gain-
phase analyzer Schlumberger 1260, and the latter [Fig. 4(e)]

FIG. 5. Splay elastic modulus K1 of a hybrid LC depicted in
Fig. 1 as a function of the rod volume fraction φr (in %). The
triangles denote experimental measurements; the solid line repre-
sents the (fit-free) theoretical prediction according to Eq. (5), which
is dominated by surface-anchoring mediated splay elasticity K (s)

1

[cf. Eq. (12)]. The last three data points are located within the
uniaxial-orthorhombic nematic coexistence region.

was measured for a 632 nm laser beam passing through the
cell placed between two crossed polarizers with n oriented
at 45◦ to both polarizer and analyzer when an AC voltage
(1.0 kHz) of continuously increasing amplitude above U ∗ was
applied.

The results for a range of rod concentrations are shown
in Fig. 5. Taking the experimental values for K (0)

1 ∼ 6.15 pN
for pure 5CB, σ ∼ 188, rod length L ∼ 1600 nm, diameter
D ∼ 25 nm, dressed aspect ratio �eff ∼ 1536, and surface
anchoring coefficient w0 = 3.7×10−5 J m−2, we predict from
Eq. (12) that surface anchoring should enhance the splay
elasticity by about 0.94 pN, while the rod correlations give
a negligibly small contribution [0.002 pN, according to
Eq. (13)]. These predictions are corroborated by experimental
results; the linear increase with the rod volume fraction φr

observed in Fig. 5 suggests that the enhancement of the splay
elasticity is chiefly caused by surface-anchoring effects, with
rod-correlations playing only a marginal role.

III. UNIAXIAL HYBRID LIQUID CRYSTALS
WITH COALIGNED COMPONENTS

For completeness, we also wish to address the case when
surface anchoring forces the rods to coalign with the molec-
ular director so that m ‖ n, as, for example, described in
Ref. [28]. We may then repeat the analysis of Sec. II A by
imposing planar anchoring v0 = u, which forces the 5CB
molecules to align along the principal rod direction. The sur-
face anchoring energy per rod becomes

Us = −π

2
DLw0 cos2 θe, (16)

which is minimal at θe = 0 or θe = π indicating that the rods
are preferentially aligned along the molecular director n. The
orientational probability is given by a Boltzmann factor equiv-
alent to Eq. (8). For strong surface anchoring the probability
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approaches a simple Gaussian which reads

fU (θ ) ∼ σ

4π
exp

(
− σ

2
θ2

)
(17)

with amplitude

σ = πLDw0

kBT
� 1. (18)

As before, knowledge of the rod orientation probability en-
ables us to analyze the two main elastic contributions, the first
one mediated by surface anchoring forces and the second one
imparted by steric and electrostatic rod repulsion.

A. Elasticity generated by surface anchoring

The surface anchoring contribution can be readily esti-
mated from the expression in Eq. (11). Inserting the Gaussian
probability Eq. (17), we find in the limit of strongly aligned
rods,

K (s)
1 ∼ 4

3π
kBT

L

D2
φr, K (s)

2 ∼ K (s)
1 ,

K (s)
3 ∼ 4

3
w0

L2

D
φr . (19)

Clearly, since w0D2 � kBT and L � D, the bend modulus is
affected the most, while the splay and twist contributions are
identical and independent from the anchoring amplitude. If we
assume a planar anchoring strength of about w0 ∼ 10−5 J/m2

and a concentration of φr ≈ 0.1%, we obtain K (s)
3 ≈ 1 pN,

whereas the splay and twist moduli are at least about two
orders of magnitude smaller.

B. Elasticity generated by rod correlations

To gauge the elastic resistance generated by rod interac-
tions in a strongly ordered uniaxial nematic, we simply quote
the scaling results for the splay, twist, and bend elasticity of
infinitely thin rigid polyelectrolytes calculated by Vroege and
Odijk [91,102]:

K (r)
1 ∼ 7

8π
(φr�eff )

[
1 − 1

7
(1 + hY )−1

]
,

K (r)
2 ∼ 1

3
K (r)

1 , (20)

K (r)
3 ∼ 4

3π2
(φr�eff )3[1 + hY ]2.

Noting that a stable nematic phase requires φr�eff � 1, we
conclude that the bend modulus is much larger than the other
two. As previously, �eff � � denotes an effective aspect ratio
correcting for the electric double layer repulsion among the
rods. The effect of electrostatic twist, quantified by the param-
eter h ≡ (κDeff )−1, has been analyzed in detail in Ref. [102].
The twist effect relates to the fact that parallel rod configu-
rations are strongly disfavored (with respect to perpendicular
ones) because of the considerable overlap in electric double
layers they entail [100]. The factor Y depends on the rod
concentration and twist constant and follows from a transcen-
dental equation:

Y = ln[φr�eff (1 + hY )] − 1
2 ln π + 1

2γE − 3
2 , (21)

FIG. 6. Nematic director frame in an orthorhombic nematic fluid
with D2h point symmetry, spanned by a molecular director (n, black)
and colloidal director (m, yellow). A unidirectional splay fluctuation
δnm

1 along m generates bending of m (splay-bend correspondence),
which is absent for unidirectional splay along l. Similar distinctions
occur for the twist and bend fluctuations.

which is easily solved numerically or through the use of itera-
tive solutions proposed in Ref. [102]. In general, electrostatic
repulsion leads to an enhanced increase with φr primarily for
the bend modulus K (r)

3 [102]. To illustrate this, we consider
a sample of φr = 0.3% which, using the electrostatic param-
eters specified in Sec. II B, yields h = 0.18 and Y ≈ 5. The
splay and bend moduli, respectively, are then K (r)

1 ≈ 0.07 pN
and K (r)

3 ≈ 0.28 pN, which corresponds to a fairly large bend-
splay ratio K (r)

3 /K (r)
1 ≈ 40.

Combining this with the predictions from Eq. (19), we
conclude that creating a hybrid liquid crystal with coaligned
molecular and colloidal components provides an effective
means to tune the bend-splay elastic ratio of a LC material.

IV. ORTHORHOMBIC HYBRID LIQUID CRYSTALS

We now turn to the more complicated case of the biaxial
hybrid LC. This state becomes stable at higher rod concen-
tration where the rod correlations are strong enough to break
the uniaxial symmetry in favor of an orthorhombic one char-
acterized by mutually perpendicular molecular and colloidal
directors n ⊥ m [Figs. 1(e) and 1(f) and Fig. 6(a)]. Govers
and Vertogen [84] put forward a continuum theory for the
elasticity of an orthorhombic biaxial nematic fluid which,
in the absence of chiral interactions between the constituent
molecules, involves 12 independent elastic constants. The de-
formation free energy is formally given by [84,85]

Fel

V
= K1

2
(∇ · n)2 + K2

2
(n · ∇ × n)2 + K3

2
(n × ∇ × n)2

+ K4

2
(∇ · m)2+ K4

2
(m · ∇×m)2 + K6

2
(m×∇×m)2

+ K7

2
[n · (m × ∇ × m)]2 + K8

2
[m · (n × ∇ × n)]2

+ K9

2
(m · ∇ × l)2 + K10

2
(n · ∇ × l)2 + K11

2
(∇ × l)2

+ K12

2
(∇ · l)2. (22)

The uniaxial nematic elastic energy density, expressible in
terms of the standard splay, twist, and bend elastic constants,
K1, K2, and K3, respectively, can be recovered from the above
expression by eliminating any contribution that contains the
minor, colloidal director m.
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TABLE I. Classification of the 12 elastic moduli featuring in Eq. (22) of an orthorhombic hybrid rod-molecular system in terms of the
principal deformation modes of the individual components and the leading-order contribution from the molecular host (denoted by superscript
“0”), surface-anchoring (“s”), and rod-correlations (“r”). The values given in the last row are based on a hybrid LC with a rod volume fraction
of φr ∼ 0.1%.

elastic modulus: K1 K2 K3 K4 K5 K6

director-specific deformation: δnl
1 δnm

2 δnl
3 δml

1 δmn
2 δml

3

principal modulus: K (0)
1 K (0)

2 + K (s)
2 K (0)

3 K (r)
1 K (r)

2 K (r)
3

current experiment: K (0)
1 K (0)

2 K (0)
3 ∼0 ∼0 K (r)

3

estimated value (pN): 6.15 3 10 ∼0 ∼0 0.3

elastic modulus: K7 K8 K9 K10 K11 K12

director-specific deformation: δmn
3 δnm

3 δnl
1 δml

1 δnm
2 + δmn

2 δml
3 + δnl

3

principal modulus K (r)
3 + K (0)

1 K (0)
3 + K (r)

1 + K (s)
3 K (0)

1 K (r)
1 K (0)

2 + K (r)
2 + K (s)

2 K (r)
3 + K (0)

3

current experiment: K (r)
3 + K (0)

1 K (0)
3 K (0)

1 ∼0 K (0)
2 K (0)

3 + K (r)
3

estimated value (pN): 6.45 10 6.15 ∼0 3 10.3

A. Classification of the orthorhombic elastic moduli

An intuitive way to rationalize the existence of 12 curvature
elastic moduli for an orthorhombic nematic is to start from the
consideration that in a biaxial nematic, a unidirectional splay,
twist, or bend fluctuation each has two distinct directions
because the O(2) symmetry in the plane perpendicular to the
molecular director n is now broken. Let us recall from Eq. (2)
that δnm

1 corresponds to a splay deformation of n along the
m-direction, δml

3 corresponds to a unidirectional bend defor-
mation of m along the l direction, and so forth. We are now
in a situation in which director fluctuations δnm

i are no longer
energetically equivalent to δnl

i . This is illustrated in Figs. 6(b)
and 6(c) for the splay distortion. Based on this, we conjecture
the presence of six independent elastic constants associated
with deformations of n. Likewise, given that δmn

i �= δml
i we

must have six more independent moduli for the corresponding
director fluctuations of m, giving a total of 12. Plugging in
the parametrizations given by Eq. (1) into the continuum
expression Eq. (22), we may straightforwardly identify each
elastic modulus with a director-specific deformation δn, δm,
or a combination of the two. These are indicated in the second
row of Table I.

The next step is to connect these fluctuations to the prin-
cipal elastic moduli that we can attribute to being generated
either by pure 5CB, by rod correlations, or by surface an-
choring, as reflected by the superposition in Eq. (5). A few
remarks are in order. First we note that a splay-bend corre-
spondence naturally emerges in orthorhombic biaxial systems
since a splay deformation of one director induces a bend
fluctuation along the perpendicular director and vice versa.
This is illustrated in Fig. 6(b). Second, the surface-anchoring
mediated elastic moduli are only relevant when they involve
a deformation of n along m. The transversal ones along l can
safely be neglected as they probe ultraweak deviations of n on
the scale of the rod diameter. By the same reasoning, we will
also ignore the effect of surface-anchoring on the director cur-
vature of the colloids given that the curvature ε will be much
larger than the inverse rod length. Taking these considerations
into account, we can readily identify the principal moduli
associated with each Ki. Comparing the upper two rows, we
find that the last four moduli can be linked to (combinations

of) the previous ones, namely

K9 ∼ K1,

K10 ∼ K4,

K11 ∼ K2 + K5,

K12 ∼ K3 + K6, (23)

which implies that we only need to find scaling estimates for
K1–K8. The leading-order contributions of the first six moduli
may simply be associated with the moduli of the respective
pure components. These are indicated in the upper part of
Table I.

B. Elasticity generated by surface anchoring

We will now address the surface-anchoring contributions
for a strongly biaxial hybrid LC. The rod orientational proba-
bility is assumed to be strongly peaked along m ⊥ n. We write

fB(u) ∼ exp[−σP2(u · n) + β[(u · m)2 − (u · l)2]], (24)

where the biaxial order parameter is assumed large (β � 1),
in addition to σ � 1 as for the uniaxial system (where β = 0).
Let us parametrize u · m = cos ψ sin ϕ, u · l = cos ψ cos ϕ,
and u · n = sin ψ in terms of the meridional angle ψ and az-
imuthal angle ϕ with the molecular director n [see Fig. 3(a)].
Expanding the argument for ψ � 1, we obtain the following
asymptotic form:

fB(u) ∼
√

3σ

(2π )3I2
0 (β )

exp

[
−3

2
σψ2 + β cos 2ϕ

]
, (25)

with I0 a modified Bessel function. We reiterate that the
surface-anchoring mediated moduli are defined as in Eq. (11)
but with fU replaced by the biaxial distribution above:

K (s)
i = − 1

2
w0ρD

∫
du

∫ 2π

0
dφ

∫ L

0
dt[t (u · ei )]

2

× [[m · v0(φ)]2 − [n · v0(φ)]2] fB(u) (26)

with e1 = m, e2 = l, and e3 = n corresponding to splay, twist,
and bend, as before. In the limit of asymptotically strong rod
alignment along m, we evaluate the orientation average in the
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limit σ � 1 and β � 1. Up to leading order for small ψ , we
find only a nonzero contribution for the splay modulus:

K (s)
1 ∼ 2

3
w0

L2

D
φr,

K (s)
2 ∼ 0, (27)

K (s)
3 ∼ 0.

The fact that surface anchoring leads to a much stronger en-
hancement of the splay elasticity than for the uniaxial nematic
[cf. Eq. (12)] is not surprising because in the biaxial state
the rods are strongly directed along m where the impact of a
splayed n on the homeotropic surface anchoring is the largest
(Fig. 3). Although K (s)

1 can attain several pN’s in magnitude,
it does not feature in any of the elastic moduli listed in Table I.
The surface anchoring elasticity, therefore, does not affect the
nematoelasticity of our orthorhombic hybrid nematic system,
at least in the limiting case of strong rod alignment along m
to which we restrict ourselves here.

C. Elasticity generated by rod correlations

The formation of a stable orthorhombic nematic fluid re-
quires elevated rod concentration where the moduli associated
with nanorod correlations K (r)

j ( j = 1, 2, 3) are expected to
be much larger than those for the relatively dilute uniaxial
nematic. To estimate the extent to which rod interactions
dominate the elastic properties of the hybrid LC, we use the
scaling predictions shown previously in Eq. (20). We infer
that at the highest rod concentration probed in experiment,
φr = 0.142%, the bend elasticity generated by the charged
rods is much smaller than that of 5CB (K (0)

3 ≈ 10 pN), so
it seems justified to ignore all contributions in Eq. (22) that
involve splayed and twisted distortions of m.

D. Leading-order moduli for an orthorhombic hybrid nematic

Having demonstrated that both surface-anchoring terms are
much weaker than those due to rod-correlations, and noting
that the rod-generated splay and twist elastic moduli are neg-
ligible compared to the dominant bend modulus, we arrive at
the following leading-order estimates:

K7 ∼ K (0)
1 + K (r)

3 ,

K8 ∼ K (0)
3 . (28)

Applying the same approximations to all 12 constants featur-
ing in the continuum theory Eq. (22), we arrive at a much
more manageable set of moduli that only depend on the known
values for pure 5CB and the bend elastic constant of the
immersed rods K (r)

3 . We wish to underline that the estimates
only make sense for the current hybrid molecular-rod nematic
system, which consists of slender rods with particular combi-
nation of electrochemical properties regarding surface charge
and screening. For instance, the balance between surface an-
choring and intercolloidal forces is likely to be quite different
for short rods for which surface anchoring contributions play
a more prominent role. Also, the bend-splay elastic anisotropy
for conventional nematic order is expected to be different in
view of the intricate electrostatic interactions between finite-
aspect-ratio colloidal particles [103,104]. We reiterate that all

predictions presented here are subject to the condition that the
rods be strongly aligned along their director m.

Going back to the experimental system at hand and recall-
ing that the rod-driven bend modulus K (r)

3 ≈ 0.28 pN is still an
order of magnitude smaller than the smallest elastic modulus
of pure 5CB (K (0)

2 ≈ 3 pN), we may even contemplate a more
stringent reduction of the biaxial moduli by retaining only the
contributions from the molecular host. A minimal continuum
expression can be obtained by applying the commonly used
one-constant approximation K (0)

1 ≡ K (0)
2 ≡ K (0)

3 = K . Using
basic vector manipulations based on Lagrange’s identity
|a × b|2 = |a|2|b|2 − (a · b)2 and the triple vector identity
a · (b × c) = b · (c × a), we find the following (strongly)
simplified expression for the Frank elastic free energy for our
hybrid biaxial nematic:

Fel

V
≈ K

2
[(∇ · n)2 + (∇ · l)2 + |∇ × n|2 + |∇ × l|2

+ {m · [n × (∇ × m)]}2 + {m · [n × (∇ × n)]}2

+ [m · (∇ × l)]2]. (29)

We will not attempt to further simplify this expression. An
interesting feature of Eq. (29) is that even though the ex-
pression should be applicable only to hybrid LCs whose rod
correlations are pronounced enough to enforce strong align-
ment of the colloidal component along m, the relevant elastic
modulus is chiefly governed by elastic forces generated by
the molecular LC alone. This is consistent with the main
conclusion of the density-functional study of Ref. [83] where
the elastic fluctuations of the minor director (in this case m)
were found to play a minor role.

V. DISCUSSION

The interrelation between the orthorhombic elastic moduli
as borne out from our scaling theory, although based on solid
theoretical arguments, remains largely speculative and the
predictions evidently call for further experimental validation.
However, using the conventional method of electromagnetic-
field induced director distortions (Fréedricksz transition), as
we did for the uniaxial case in Sec. II C, poses a number
of technical complications that are specific to these low-
symmetry orthorhombic hybrid LCs. The most important ones
are the following:

(i) Identifying all 12 elastic moduli that feature in Eq. (22)
requires a considerable variety of different LC cells with
specific boundary conditions for each component as well as
external field directions. A tentative strategy to extract the
orthorhombic elastic moduli from specific LC setups is dis-
cussed in the Appendix.

(ii) Both molecular and colloidal directors may be distorted
at similar external field strengths, which makes it hard to
disentangle specific director deformation of one component
while keeping the other one unaffected. This is illustrated
in Fig. 7 for the case of an electric-field generated splay
distortion within the molecular director field n (correspond-
ing to K1 in Table I). In this particular case, simultaneous
distortions of the colloidal director m can be suppressed by
applying a weak additional magnetic field where the neg-
ative magnetic anisotropy of the colloidal rods forces the
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FIG. 7. Schematic overview of an electric-field-induced Fréed-
ericksz transition within an orthorhombic biaxial nematic LC in a
planar cell. (a) Without applied voltage (U = 0). (b) If the voltage
applied across the slab exceeds the threshold value U ∗, a splay de-
formation of the molecular director n is induced while simultaneous
realignment of the colloidal rod director m is prevented by applying
a weak auxiliary magnetic field B.

rods to align perpendicular to B. We note that without such
an auxiliary external magnetic field, both directors tend to
respond simultaneously to the applied electric field with the
colloidal director responding at even lower voltages than the
molecular LC, making it difficult to measure the elastic con-
stants associated with deformations of the molecular director
alone.

(iii) The measurements require full control of the anchor-
ing conditions for both molecular and colloidal directors.
While strong planar or homeotropic anchoring at the cell
walls is relatively straightforward to achieve for the molecular
LC director using standard techniques used for conventional
thermotropic LCs, controlling the anchoring of colloidal rods
within such hybrid systems is far from trivial. The methods
to impose strong tangential or homeotropic anchoring on the
colloidal director needed for such experiments still have to
be developed (so far only weak surface anchoring boundary
conditions for the colloidal director have been demonstrated).

(iv) In an orthorhombic hybrid LC, the nematic order of
both components measured with reference to their respective
principal directors is biaxial [70]. Consequently, the dielectric
(and diamagnetic) tensor of each component alone becomes
biaxial too, now featuring three different principal values of
dielectric (and diamagnetic) constants. For example, the mag-
netic energy density of a system with orthorhombic symmetry
subject to an applied magnetic field H formally reads [85]

Fm

V
= −μ0

2
[χnl (H · n)2 + χml (H · m)2 + χlH

2],

where μ0 denotes the vacuum permeability, and χnl=χn−χl

and χml = χm − χl are the two relevant diamagnetic suscepti-
bility anisotropies with respect to the orthorhombic director
tripod [Fig. 6(a)]. Analogously, in the case of an applied
electric field E the electric energy density reads

Fe

V
= −ε0

2
[εnl (E · n)2 + εml (E · m)2 + εlE

2],

with ε0 the vacuum permittivity and εi j = εi − ε j the dielec-
tric permittivity anisotropy. The experimental determination
of the respective dielectric and diamagnetic anisotropies, from
which the response of the molecular and colloidal directors
to the external electric or magnetic fields can be assessed,
adds another level of complexity to measuring the elastic
properties of orthorhombic hybrid LCs. In the Appendix we
show that, as a first approximation, the diamagnetic energy
density of an orthorhombic system can be written in terms of a
superposition of two uniaxial nematic materials with mutually
perpendicular principal alignment axes. Even in a uniaxial
hybrid LC, the dielectric response of the molecular LC is
affected by the presence of the colloidal rods, although this
effect can be straightforwardly accounted for through direct
measurements, as was done in this study (Sec. II C).

It is clear that these technical complications impede a
straightforward extension of the measurements outlined in
Sec. II C toward the orthorhombic case, at least when us-
ing techniques based on measurements of the realignment
thresholds commonly utilized for uniaxial nematics. Alterna-
tive methods to address the nematoelastic response of liquid
crystals include, for instance, those based on light scattering
[1,105,106] where thermal fluctuations of the nematic director
are probed directly, without the need to apply an external
field. In this case, however, a theoretical framework needs to
be developed to establish delicate relationships between light
scattering observables under various polarization and geomet-
ric alignment conditions and the different elastic constants of
interest.

VI. CONCLUSIONS

Inspired by recent experimental studies of strongly
anisotropic colloidal rods immersed in thermotropic 5CB, we
have presented a theoretical analysis of the nematic elas-
tic moduli of such hybrid LCs, starting from considerations
of surface anchoring and correlations at the level of the
individual rods. Two classes of nematic symmetries are con-
sidered: uniaxial systems in which the rods are organized
(anti)nematically within the molecular LC, and a biaxial
system in which rod-rod interactions are strong enough to sta-
bilize orthorhombic order characterized by each component
aligning along mutually perpendicular directors.

We find that in the uniaxial state, the elasticity of the
molecular LC is enhanced primarily by surface anchoring
effects with the splay modulus increasing linearly with the
concentration of rods, while the twist and bend moduli remain
virtually unaffected by the presence of the rods. The enhanced
splay mode as predicted by theory is corroborated by exper-
imental results, both demonstrating that K1 of pure 5CB can
be increased by about 20% for rod volume fractions as low as
0.1%.
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Having gained confidence in the model, we proceed to a
theoretical analysis of the elastic moduli for the orthorhombic
hybrid LC. We classify the 12 elastic constants that feature in
the generalized Oseen-Frank expression for biaxial nematics
[84] in terms of principal contributions which may stem from
the LC solvent alone, from surface anchoring between the
rod surface and the solvent, or from steric and electrostatics-
driven interactions between the immersed rods. This enables
us to identify and classify the principal elastic moduli in our
hybrid LC in terms of the known bulk moduli of the LC
solvent, while the surface-anchoring and correlation-mediated
contributions are predicted by theory. Explicit values for
these principal moduli are given that fully specify the elastic
anisotropy of our hybrid molecular-colloidal LC. A compact
expression for the corresponding elastic energy then follows
from a simple one-constant approximation in which the mod-
uli pertaining to the LC solvent are assumed equal. Despite its
simplified form, the proposed elastic energy of our hybrid bi-
axial nematic LC remains highly nontrivial and is expected to
generate complex director topologies that are fundamentally
different from their uniaxial counterparts. We briefly discuss
the experimental difficulties that arise when attempting to
measure the elastic constants of an orthorhombic nematic
material using threshold field strengths for director switching
based on conventional LC cells, and we provide a possible
roadmap toward systematically extracting all relevant moduli
using Fréedericksz transitions [1].

The results of this work might inspire further experimental
and modeling studies exploring the complex nematoelas-
tic properties of hybrid molecular-colloidal LCs as a new
breed of orthorhombic materials combining fluidity with low-
symmetry orientational order [70]. Although it is assumed
that the elastic interactions between the colloidal particles due
to the molecular nematic host medium do not play a role
in the system considered in this work (because the colloids
experience only weak surface anchoring conditions, have a
vanishing cross-section, and their concentration remains rela-
tively low), their importance could be systematically explored
in an effort to generate a much wider array of hybrid LCs
that combine low-symmetry orientational order with (partial)
long-range positional order, including columnar and smectic
structures. Examples of those were found recently in disper-
sions of colloidal disks within a nematic of molecular rods
[71]. Interestingly, the perturbations of molecular order and
defects created around the colloidal inclusions depend on the
symmetry group of the embedding LC and that of the colloidal
inclusion [71] which may be harnessed to generate hybrid LC
“solids” characterized by orthorhombic or monoclinic orien-
tational order along with symmetry groups that are normally
only encountered in solids [72]. In the cases of colloidal smec-
tic, columnar, and crystalline phases, it will be interesting to
explore the relations between the solidlike elasticity of these
systems with (partial) positional order and that of the nematic
host medium. The case of strong elastic distortions incurred
by the colloidal inclusions clearly also prompts a reevaluation
of all elastic constants of nematic molecular-colloidal fluids
with uninhibited fluidity by going beyond the perturbation-
free regime considered here. We will explore this in future
studies.

FIG. 8. Sketch of possible LC cells that would need to be realized
to measure all 12 elastic moduli for a biaxial hybrid molecular-
colloidal LC. In all cases, strong anchoring is assumed of the
molecular director (n) and the colloidal one (m). For each director,
the anchoring is fixed along a single set of opposing walls with the
same anchoring type [homeotropic (h) or planar (p)]. Combining
the different anchoring scenarios and the three orthogonal magnetic
field directions, one obtains a large range of different configurations
denoted by Ix, Iy, Iz, IIx , and so forth.
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APPENDIX: ROADMAP TO MEASURING THE
ORTHORHOMBIC ELASTIC MODULI USING

FRÉEDERICKSZ TRANSITIONS

In Sec. II C we discussed measurements of the splay mod-
ulus of a uniaxial hybrid LC from locating the corresponding
Fréedericksz transition. Here, we explore the full range of
transitions that could potentially be realized by varying the
anchoring conditions for each component as well as the di-
rection of the magnetic field. In Fig. 8 we have sketched a
number of different LC cells one could envisage for a hybrid
molecular-colloidal LC. As for conventional uniaxial systems
[1], the Fréedericksz transition associated with each particular
setup enables us to probe a particular elastic modulus (or a
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combination of several moduli) of the orthorhombic material
that we will explore below.

We start from the magnetization M of a single uniaxial
rod (of either molecular or colloidal origin) with orientation
n characterized by a parallel diamagnetic susceptibility (χ‖)
and a perpendicular one (χ⊥) with respect to the principal rod
axis in response to an applied magnetic field H [107]:

M = μ0[χ‖(n ⊗ n · H) + χ⊥(I − n ⊗ n) · H] (A1)

with ⊗ denoting a dyadic product and μ0 the vacuum perme-
ability. The magnetic energy per rod is given by

F rod
m = − 1

2 (H · M) = − 1
2μ−1

0 [�χ (B · n)2 + χ⊥B2] (A2)

in terms of the magnetic induction B = μ0(H + M) ≈ μ0H
for weak magnetic susceptibility. The last term is immaterial
for the present analysis, while �χ = χ‖ − χ⊥ denotes the
susceptibility anisotropy of the rod. For our hybrid LC, we
express the magnetic energy in terms of a superposition of
the molecular and colloidal components both assumed to be
uniaxially aligned along their respective directors. For nota-
tional convenience, we set the vacuum permeability μ0 to
unity without loss of generality. The magnetic energy of the
orthorhombic hybrid system then reads

Fm ∼ −1

2

∫
dV [�χ (0)(B · n)2 + �χ (r)(B · m)2] (A3)

so that

Fm

V
∼ −1

2
φ0�χ (0)(B · n)2 − 1

2
φr�χ (r)(B · m)2, (A4)

with φ0/r the volume fraction of each component (where
generally φ0 � φr) and �χ (0/r) the respective diamagnetic
susceptibility anisotropies which may differ in amplitude and
even sign. The director field distorted by the magnetic field
can be parametrized in terms of two independent angles θ

and ϕ denoting spatially varying coupled distortions of the
molecular and rod directors. For setup Ix, we write

n = ( sin θ (z), 0, cos θ (z)),

m = ( cos ϕ(x), 0, sin ϕ(x)), (A5)

B = B(1, 0, 0).

All other cases can be parametrized likewise.
Inserting all the parametrizations back into the Oseen-

Frank elastic [Eq. (22)] and magnetic free energy [Eq. (A4)],
we obtain expressions for the total free-energy change per unit
volume. The rest of the analysis proceeds in a way similar
to that of the conventional (uniaxial) Fréedericksz transition.
A formal minimization of the free energy with respect to θ

and ϕ yields a set of coupled Euler-Lagrange equations that
can be linearized for small angular fluctuations. Keeping only
the linear order terms, we obtain two decoupled second-order
differential equations. For instance, for the particular cell ge-
ometry Ix these read

B2φ0�χ (0)θ (x) = −(K3 + K8)θ ′′(x),

B2φr�χ (r)ϕ(x) = (K6 + K7)ϕ′′(x). (A6)

Substituting θ (x) = θ0eiqx and ϕ(x) = ϕ0eikx enables us to de-
rive expressions for the threshold amplitude B∗. The boundary

conditions require that q, k = π/d in terms of the wall-to-wall
distance d . Keeping only the real contributions for B∗, we
obtain

Ix : B∗ = q

√
K3 + K8

φ0�χ (0)
,

Iy : B∗ = k

√
K6 + K12

φr�χ (r)
,

Iz : B∗ = k

√
K6 + K7

φr�χ (r)
, (A7)

and similarly for cell geometry II:

IIx : B∗ = k

√
K4

φr�χ (r)
,

IIy : B∗ = q

√
K3 + K8

φ0�χ (0)
,

IIz : B∗ =
⎧⎨
⎩

q
√

K3+K12
φ0�χ (0) ,

k
√

K5+K11
φr�χ (r) .

(A8)

The threshold magnetic fields for all other setups are then as
follows:

IIIx : B∗ = q

√
K1

φ0�χ (0)
,

IIIy : B∗ = k

√
K6 + K7

φr�χ (r)
,

IIIz : B∗ =
⎧⎨
⎩

q
√

K2+K11
φn�χ (n) ,

k
√

K6+K12
φr�χ (r) ,

(A9)

IVx : B∗ =
⎧⎨
⎩

q
√

K1+K9+K11
φ0�χ (0) ,

k
√

K4+K10+K11
φr�χ (rm) ,

IVy : B∗ = q

√
K2

φ0�χ (0)
,

IVz : B∗ = k

√
K5

φr�χ (r)
, (A10)

Vx : B∗ = k

√
K5

φr�χ (r)
,

Vy : B∗ = q

√
K3 + K8

φ0�χ (0)
,

Vz : B∗ =

⎧⎪⎨
⎪⎩

q
√

K3+K12
φ0�χ (0) ,

k
√

K4+K10+K11
φr�χ (r) ,

(A11)
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VIx : B∗ = q

√
K2

φ0�χ (0)
,

VIy : B∗ = k

√
K6 + K7

φr�χ (r)
,

VIz : B∗ =
⎧⎨
⎩

q
√

K1+K9+K11
φ0�χ (0) ,

k
√

K5+K6+K12
φr�χ (r) ,

(A12)

and

VIIx : B∗ = q

√
K1

φ0�χ (0)
,

VIIy : B∗ =
⎧⎨
⎩

q
√

K2+K11
φ0�χ (0) ,

k
√

K11
φr�χ (r) ,

VIIz : B∗ = k

√
K4

φr�χ (r)
. (A13)

Wherever two expressions are given, only the one giving the
lowest threshold magnetic field B∗ will be of physical sig-
nificance. From the setups described thus far, we are able to
identify the following six moduli:

IIIx → K1,

IVy → K2,

IIx → K4,

IVz → K5,

IIIz → K11,

IVx or VIz → K9. (A14)

Furthermore, if one could design a setup in which the Fréed-
ericksz transition of m precedes that of n, one could extract

K10 via

Vz or IVx → K10. (A15)

The last five modes can be obtained as follows. First, upon
close inspection of Eq. (22) one deduces that K7 and K8 repre-
sent a bend deformation of m specifically along the direction
n and a bend deformation of n along m, respectively. The
corresponding bend moduli for the uniaxial systems K6 and
K3 are, as required by symmetry, invariant with respect to
the direction along which a bend deformation is applied. The
following four moduli can thus be determined from (there are
several possible setups)

IIy → K3 = K8,

IIIy → K6 = K7, (A16)

which finally leaves us with K12 (here also several setups are
possible)

IIz → K12, (A17)

with which all 12 elastic moduli have been identified. We wish
to underline that the schematic outlined above is by no means
unique, and that other possibly more experimentally viable
strategies may be conceivable based on different combinations
of cell geometry and anchoring conditions, as well as both
electric and magnetic field application, and even combinations
of the two. At the same time, the most significant challenge for
experimentally measuring the complete set of elastic constants
of hybrid nematic LCs based on realignment thresholds relates
to the need to define strong homeotropic and planar anchoring
for the colloidal director, for which suitable methodologies
still need to be developed. A different approach could in-
volve elastic constant measurements based on light scattering
for different polarization and director orientation geometries,
which is also worth considering.
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