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Three-dimensional topological solitons attract a great deal of interest in fields ranging from particle
physics to cosmology, but remain experimentally elusive in solid-state magnets. Here we numerically
predict magnetic heliknotons, an embodiment of such nonzero-Hopf-index solitons localized in all spatial
dimensions while embedded in a helical or conical background of chiral magnets. We describe conditions
under which heliknotons emerge as metastable or ground-state localized nonsingular structures with
fascinating knots of magnetization field in widely studied materials. We demonstrate magnetic control of
three-dimensional spatial positions of such solitons, as well as show how they interact to form moleculelike
clusters and possibly even crystalline phases comprising three-dimensional lattices of such solitons with
both orientational and positional order. Finally, we discuss both fundamental importance and potential
technological utility of magnetic heliknotons.
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While one-dimensional topological solitons, like mag-
netic Néel and Bloch domain walls π1ðS1Þ ¼ ℤ, have been
studied for nearly a century [1–3], their higher-dimensional
analogs remain relatively elusive, consistent with the
Derrick-Hobart theorem [4] applied to systems where
solitons are unstable against rescaling perturbations.
Evading predictions of the theorem, diverse embodiments
of such high-dimensional solitons were found in nuclear
physics, superconductors, liquid crystals, magnets, optics,
and so on [5–20], with sources of stability ranging from
high-order-derivative terms in the Skyrme model [21,22]
and superconductors [23] to chiral terms in condensed
matter [3,14–16]. In solid-state noncentrosymmetric mag-
nets, the two-dimensional π2ðS2Þ ¼ Z solitons, often
called “baby skyrmions” to denote that they are lower-
dimensional analogs of Skyrme’s π3ðS3Þ ¼ Z nuclear
physics counterparts [3], are nowadays a major theme of
fundamental and spintronics-inspired applied research
[24,25]. However, the three-dimensional (3D) Hopf sol-
itons, π3ðS2Þ ¼ Z topological solitons localized in all three
spatial dimensions [5,6], remain experimentally elusive in
magnetic solids. Predictions of such solitons [8–10,26]
embedded within the ferromagnetic background remain to
be experimentally tested. On the other hand, individual and
3D crystalline lattices of Hopf solitons (called “helikno-
tons”) were recently demonstrated in a helical background
of cholesteric liquid crystals [17].
In this Letter, we predict heliknotons embedded in the

helical and conical backgrounds of bulk chiral magnets.
These heliknotons display Hopf-fibrationlike linking of

preimages in the magnetization field mðrÞ and singular
vortex lines forming links and knots in the nonpolar
immaterial helical wave vector field qðrÞ. We derive
structural phase diagrams with (meta)stability of helikno-
tons by comparing their free energy to those of topologi-
cally trivial helical and conical states. We probe how
stability of heliknotons is further controlled by experimen-
tally accessible applied magnetic fields and magnetocrystal-
line anisotropies, which can arise due to crystal symmetry,
mechanical stress, or lattice mismatches [27–29]. We show
that the position and orientation of magnetic heliknotons
can be effectively controlled in 3D and that emergent
magnetic field lines also form Hopf-fibrationlike structures.
Numerically simulated Lorentz transmission electron
microscopy (LTEM) images have characteristic features that
will guide experimental discovery of these topological
solitons. Finally, we study heliknoton interactions and
oligomeric self-organizations, suggesting the possibility of
3D crystalline phases.
We use the standard micromagnetic Hamiltonian of a

chiral magnet with the energy density w ¼ wi þ wZ þ wa,
where

wi ¼
�
J
2
ð∇mÞ2 þDm · ð∇ ×mÞ

�
; ð1Þ

wZ ¼ −μ0Msm ·H: ð2Þ

wi contains the Heisenberg exchange and Dzyaloshinskii-
Moriya interaction terms with corresponding constants J
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and D defining the helical wavelength λ ¼ 2πðJ=DÞ. wZ
is the Zeeman coupling term, where H is the applied field,
Ms is the saturation magnetization, and μ0 is the vacuum
permeability. The magnetocrystalline anisotropy term is
wa ¼ −Kuðm · k̂Þ2 for uniaxial anisotropy and wa ¼
−Kcðm4

x þm4
y þm4

zÞ for cubic anisotropy, where Ku and

k̂ are the uniaxial anisotropy strength and axis, andKc is the
cubic anisotropy strength. Tomake our findings applicable to
a broad range of materials (see Supplemental Material [30]),
we use dimensionless fields and anisotropy strengths H̃ ¼
H=HD and K̃uðcÞ ¼ KuðcÞ=μ0MsHD, where HD ¼ D2=
μ0MSJ is the critical field along the helical axis that fully
unwinds the helical state [30].

Adopting the field configuration of liquid-crystal heli-
knotons in Ref. [17] as the initial condition of mðrÞ,
we minimize free energy and find that the individual
3D-localized magnetic heliknotons in the bulk helical
background at no fields or anisotropies [Figs. 1(a)–1(d)]
as metastable states with energy E0 ¼ 8.58Jλ when taking
the helical background state as the reference. Preimages of
constant mðrÞ corresponding to S2 points are closed loops
interlinking once with other individual preimages. This
geometric analysis allows the assignment of the Hopf index
Q ¼ 1 to the heliknoton, which is consistent with the
numerically calculated Q up to numerical error [8,35].
The spatial extent of a heliknoton can be visualized by the
isosurface of a small deviation of qðrÞ from the uniform far
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(h) (i)
(j) (k) (l)

(f) (g)

(b) (c) (d)

FIG. 1. Magnetic heliknoton. (a) Helical (left) and conical fields (right). (b)–(d) Simulated cross sections of mðrÞ of a heliknoton in a
helical background. mðrÞ is shown with arrows colored according to orientations on S2 (bottom-left insets). (e) Preimages in mðrÞ of a
heliknoton colored according to their orientations shown as cones on S2 (bottom-right inset). The gray isosurface (bisected for clarity)
shows the region with small deviation of qðrÞ from the background q0. (f) Preimages of constant-polar-angle orientations as cones on S2

of heliknotons in a helical field (top, H̃ ¼ 0) and in a conical field (bottom, H̃ ¼ 0.15ẑ). (g) Constant-polar-angle surfaces at angles
shown on S2 of heliknotons in a helical field (left, H̃ ¼ 0) and in a conical field (right, H̃ ¼ 0.15ẑ). Schematics of the nesting of tori
surfaces are shown in the bottom-right insets. (h) Singular vortex lines in qðrÞ forming three mutually linked rings (schematic in bottom-
right inset). (i) Visualization of Bem in a magnetic heliknoton by the isosurfaces colored by magnitude and streamlines with cones. (j)–(l)
Simulated LTEM images of a heliknoton in (b)–(d) for different directions. Top-right insets in (k) and (l) show the images with the
characteristic contrast of a heliknoton reduced in thick samples.
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field q0 [Fig. 1(e)]. Preimages of S2 points of constant polar
but different azimuthal angles form deformed tori nested
around the preimages of north and south poles [Fig. 1(f)].
The two sets of nested tori are separated by the preimages
of points on the equator of S2, representing the region
occupied by the far field. In a heliknoton embedded in a
helical background, preimage tori corresponding to points
of the same latitude on either hemisphere of S2 intertrans-
form by a π rotation along q0 with respect to the geometric
center of the heliknoton. This symmetry is broken when a
magnetic field is applied along q0 and the helical background
transitions into the conical state with a cone angle θc ¼
cos−1H̃ [Fig. 1(a)]. As a result of such helical-to-conical
transition in the far field, two preimage tori of polar angles θ1
and θ2 (θ1 < θc < θ2 < π=2) transition from being both
coaxial with the north pole’s preimage to forming a non-
coaxial link of preimage tori, with the overall π3ðS2Þ top-
ology of mðrÞ [Fig. 1(g)]. Thus, heliknotons can exist in a
conical field background of varying cone angle, though we
could stabilize heliknotons only up to H̃ ≈ 0.2. Beyond this
field, thehigh-energy cost of regionswithmðrÞ antiparallel to
H overcomes the topological barrier, transforming theQ ¼ 1
heliknoton to the topologically trivial conical state through
nucleation and propagation of singular defects (Bloch
points) [35].
While heliknotons are fully nonsingular structures in

mðrÞ, nontrivial topology characterizes not only this
material field. Singular vortex lines in nonpolar qðrÞ form
three mutually linked loops, different from the trefoil-knot
vortices of liquid crystal heliknotons [17,30] [Fig. 1(h)].
We also calculate the emergent field ðBemÞi ≡ ℏεijkm ·
ð∂jm × ∂kmÞ=2, a fictitious field describing the interaction
between conduction electrons and the underlying spin
texture related to many spintronic implications [36]. Bem
correlates with the localized structure of mðrÞ and features
closed-loop streamlines, with each pair of loops linked
exactly once, once again resembling the Hopf fibration
[Fig. 1(i)]. The topology of Hopf fibrations in Bem stream-
lines in both magnetic heliknotons and hopfions (embedded
in a helical and uniform background, respectively) is a
salient feature of their π3ðS2Þ topology in mðrÞ [8]. To
facilitate experimental discovery of such magnetic heli-
knotons, we numerically simulate their LTEM images
using energy-minimizing mðrÞ [Figs. 1(j)–1(l)], which
significantly differ from those of other topological states
found so far [19]. Recent advances in 3D imaging of
mðrÞ could also assist in unambiguously showing their
existence [37].
When a magnetic field H is applied perpendicular to q0,

the helical state transforms from a harmonic modulation to
distorted helicoids [38,39]. The energy of a heliknoton
hosted within a distorted helicoidal background depends
on the relative orientation of H and the orientation of a
heliknoton defined by the magnetization mh at its geo-
metric center. At H̃ ¼ 0.05, heliknotons remain stationary

when H is either parallel or antiparallel to mh, while the
energy difference between the former and the latter case is
ΔE ¼ 0.13λJ, Eparallel ¼ Eantiparallel þ ΔE [Fig. 2(a)]. With
the heliknoton being a metastable excitation within the
helicoidal background, H parallel (antiparallel) to mh
expands (contracts) [Fig. 2(a)] the spatial extent of mðrÞ
distortions. A small variation of the angle between H and
mh drives the heliknoton away from the metastable mhkH
state, and the heliknoton undergoes a screwlike motion of
correlated rotation and displacement along q0 in a sense
consistent with the material chirality, eventually arriving at
the antiparallely-aligned state [Fig. 2(b)]. Figure 2(c) shows
the heliknoton’s energy difference versus orientation and
the correlated vertical displacement during this motion. At
fields as small as H̃ ¼ 0.05, heliknotons can be perturbed
out of metastability when the angle betweenH andmh is as
small as 0.01°. At larger fields, a larger angle between H
and mh is required to drive the screw motion due to the
adaptive deformation ofmðrÞ and corresponding pinning of
the heliknoton by H. For H⊥mh and rotating synchro-
nously with the screw motion of heliknotons, such rotating-
wave magnetic field can be used to control orientations and
positions of heliknotons (see Supplemental Material [30]).
We explore heliknoton stability at applied fields and

various magnetocrystalline anisotropies by comparing
free energy to that of topologically trivial helical (distorted
helicoidal) and conical states (Fig. 3). The fields are
collinear with mh and take positive values when parallel
to mh. We consider jH̃j ≤ 0.45, beyond which significant
stretching and distortion in the heliknotons take place.
Three cases are considered: uniaxial easy-plane anisotropy
with the hard-axis k̂kq0 [Ku < 0, Fig. 3(a)], uniaxial easy-
axis anisotropywith the easy-axis k̂⊥q0 and collinear withH
[Ku > 0, Fig. 3(b)], and cubic anisotropy [Fig. 3(c)].
For uniaxial anisotropies, heliknotons are always higher

(a) (c)

(b)

FIG. 2. Screw motions of heliknotons induced by external
magnetic fields. (a) Heliknotons, visualized by preimages of
poles, with orientations mh parallel (left) or antiparallel (right) to
the applied field being the metastable and stable state, respec-
tively. (b) Screw motion of a heliknoton at H̃ ¼ 0.05ŷ relaxing
from metastable parallel to stable antiparallel orientation. (c) The
energy, orientation, and vertical displacement of a heliknoton
relaxing from the metastable parallel configuration to the stable
antiparallel configuration upon a perturbing magnetic field; the
energy is normalized by ΔE ¼ Eparallel − Eantiparallel and refer-
enced by Eantiparallel.

PHYSICAL REVIEW LETTERS 125, 057201 (2020)

057201-3



energy than the topologically trivial structures but persist as
metastable states within a broad parameter range (colored
green in Fig. 3). Within metastability regions, these solitons
are often geometrically deformed by fields and anisotropies
(Fig. 4) [30]. Interestingly, this stretching preserves topology
andHopf index but sometimes alters the singular vortex lines
in the immaterial field qðrÞ (Fig. 4). The stretching occurs for
both positive and negativeH, though it is more prevalent for
antiparallel H and mh, providing a means for the geometric
control of heliknotons. In the cases of easy-plane and easy-
axis uniaxial anisotropies, the conical state with helical axis
colinear withH is the lowest energy state at higher fields and
the energy difference between heliknotons and conical states
increases with jH̃j, yielding the valleylike energy surfaces
along the field axis [Figs. 3(a) and 3(b)]. At stronger
anisotropy strengths, easy-plane anisotropy tends to restore
the helical state [Fig. 3(a)] and easy-axis anisotropy tends to
unwind the twisted structures [Fig. 3(b)], both tending to
destabilize heliknotons (gray areas in Fig. 3). The metasta-
bility range of heliknotons against strong uniaxial anisotro-
pies is extendedwith the applied field strength, particularly in
the case of positive fields (Hkmhkŷ). This is because regions
withmðrÞkH are anchored against the destabilizing uniaxial
anisotropies, and the expansion induced by positiveH helps
counteract the shrinking of heliknotons during destabiliza-
tion [Fig. 2(a)]. For cubic anisotropy withKc < 0 (hard axes
for h100i directions), heliknotons have energy even lower

than that of the conical and helical states in some parameter
region and are the globally stable state [colored purple in
Fig. 3(c)]. This is a result of delicate competition between
different free energy terms. At strong cubic anisotropy and
Kc > 0, heliknotons become unstable, but they are also
metastable within a broad range of parameters that corre-
spond to widely studied material systems like MnSi, FeGe,
Cu2OSeO3, etc., [18,27,40]. Interestingly, cubic anisotropy
has also been reported to be critical for observing a novel
solitonic state found at temperatures lower than that of the
conventional A phase of skyrmions [27,41]. Our findings
indicate that chiral magnetic materials with cubic anisotropy
and Kc < 0 are the best candidates for observing magnetic
hopfions of heliknoton type introduced here [Fig. 3(c)].
Heliknotons interact by sharing perturbations in the

helical or conical background around them and minimizing
the overall free energy of multisoliton configurations versus
their relative 3D positions and orientations. Figures 5(a)
and 5(b) show the positive (red) and negative (green)
perturbations relative to the helical background energy
density around an individual heliknoton in an isotropic
chiral magnetic at no fields. Starting with two-heliknoton
configurations with different orientations relative to the
separation vector, heliknotons display anisotropic attractive
interactions and can form three different dimer configura-
tions [Fig. 5(c)] [30]. The energy per heliknoton for all dimer
configurations is reduced as compared to that of an individual
heliknoton E0 as a result of sharing regions of high-energy
mðrÞ distortions. The energy differences between different
dimer configurations can be as small as ΔE23 ¼ 0.045Jλ
between dimer 2 and dimer 3, which, depending on material

(a)

(c)

(b)

FIG. 3. Heliknoton stability. (a)–(c) Energy surfaces and
stability diagrams of heliknotons in a chiral magnetic with
(a) uniaxial easy-plane anisotropy, (b) uniaxial easy-axis
anisotropy, and (c) cubic anisotropy. The energy is presented
as the difference between the heliknoton energy and that of the
minimum of helical and conical states. Colored regions indicate
stable (purple), metastable (green), and unstable (gray) helikno-
tons. Relative orientations of q0,H, and k̂ are shown in the insets.

(a)

(d) (e) (f)

(b) (c)

FIG. 4. Deformed heliknotons. (a)–(c) A heliknoton at
H̃ ¼ 0.4ŷ, shown using preimages of poles in S2 in (a) and
mðrÞ colored according to orientations on S2 in midplane cross
sections in (a) and (b), and singular vortex loops in qðrÞ in
(c) shown by colored tubes. (d)–(f) A heliknoton at H̃ ¼ 0.45ŷ
and easy-axis uniaxial anisotropy K̃u ¼ 0.16 along ŷ, shown by
preimages of poles in (d) and mðrÞ colored according to
orientations on S2 in midplane cross sections in (d) and (e)
and singular vortex lines in qðrÞ in (f).
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parameters, canbe large (ΔE23=kBT ≈ 10 andT ¼ 200Kfor
FeGe) or comparable (ΔE23=kBT ≈ 0.7 and T ¼ 25K for
MnSi) to thermal energy (see Supplemental Material [30]).
With the formation of tetramer and octamer configurations,
the free energy per heliknoton is further reduced. Within
the heliknoton oligomer, the isosurfaces of perturbation in
qðrÞ of individual heliknotons join into a single surface and
the overall Hopf index becomes the sum of that of the
solitonic constituents [Figs. 5(d) and 5(e)]. Thus, a heli-
knoton oligomer resembles a single high-charge heliknoton
molecule or, in a different analogy, a high-baryon-number
nucleus [42]. The complex configuration of the stabilized
octamer cannot be straightforwardly expected on the basis of
dimer or tetramer configurations, suggesting that the emer-
gent crystalline assemblies of heliknotons could be complex.
A systematic study of all possible symmetries and lattice
parameters, for different external fields and magnetocrystal-
line anisotropies, could potentially reveal the energy-mini-
mizing assembly of various heliknoton crystals and potential
solitonic condensedmatter phases, again drawing an analogy
to skyrmion crystals [5,6] and synthetic skyrmion crystals in
certain superfluids [43], though such exploration is beyond
the scope of this Letter.
To conclude, we have modeled metastable and stable

heliknotons in the helical and conical backgrounds of bulk
chiral magnetic materials. The demonstrated 3D localization
and magnetic spatial control of Hopf solitons within the
helical background, combined with the conventional control
of dynamical topological solitons by spin currents [24,26],
may provide a versatile set of tools and properties needed for

spintronics applications. Formation of clustered heliknoton
oligomers suggests the possibility of using high-charge
heliknotons as information carriers or as building blocks
of topological phases. Our findings call for the experimental
discoveries of magnetic heliknotons based on their unique
LTEM textures or using other imaging techniques.
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