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Malleability of metals is an example of how the dynamics of defects
like dislocations induced by external stresses alters material prop-
erties and enables technological applications. However, these
defects move merely to comply with the mechanical forces applied
on macroscopic scales, whereas the molecular and atomic building
blocks behave like rigid particles. Here, we demonstrate howmotions
of crystallites and the defects between them can arise within the soft
matter medium in an oscillating electric field applied to a chiral liquid
crystal with polycrystalline quasi-hexagonal arrangements of self-
assembled topological solitons called “torons.” Periodic oscillations of
electric field applied perpendicular to the plane of hexagonal lattices
prompt repetitive shear-like deformations of the solitons, which syn-
chronize the electrically powered self-shearing directions. The tempo-
ral evolution of deformations upon turning voltage on and off is not
invariant upon reversal of time, prompting lateral translations of the
crystallites of torons within quasi-hexagonal periodically deformed
lattices. We probe how these motions depend on voltage and fre-
quency of oscillating field applied in an experimental geometry re-
sembling that of liquid crystal displays. We study the interrelations
between synchronized deformations of the soft solitonic particles and
their arrays, and the ensuing dynamics and giant number fluctuations
mediated by motions of crystallites, five–seven defects pairs, and
grain boundaries in the orderly organizations of solitons. We discuss
how our findings may lead to technological and fundamental science
applications of dynamic self-assemblies of topologically protected but
highly deformable particle-like solitons.

liquid crystals | topological solitons | self-assembly | active matter |
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Soft matter systems often exhibit behaviors intermediate be-
tween that of crystals and fluids, with a broad range of

emergent phenomena arising from a plethora of competing in-
teractions that are typically weak and comparable in strength to
thermal fluctuations (1, 2). The building blocks of these systems
are often soft in the sense that their size can change dramatically
with tuning temperature, like in the case of specially designed
polymer particles (3), or particle dimensions can even be tuned
by electric fields, like in the case of topological solitons in liquid
crystals (LCs) (4, 5). Such colloidal and solitonic soft matter
systems have been widely used to model dynamic behavior in their
atomic and molecular counterparts, including crystallization and
melting (3–7), dynamics of defects within crystalline lattices (7–9),
formation of glasses and gels (6, 8–10), and so on. An open
remaining question is how and under what conditions the soft
nature of the building blocks of soft matter can lead to emergent
dynamic behavior that is inaccessible to solid-state systems. Here,
we describe such unexpected behavior in crystalline lattices of
topological solitons dubbed “torons” (11, 12) in chiral LCs under
conditions that resemble those in LC displays (1).
LC torons are energetically stable, spatially localized structures in

the ordering direction of LC’s rod-like molecules, which is described
by the so-called “director” field n(r) (11, 12). Topologically similar
structures were also found in noncentrosymmetric solid-state mag-
nets (13) and in their magnetic colloidal counterparts (14, 15). The

elementary torons studied here can be understood as the ele-
mentary two-dimensional (2D) π2ðS2=Z2Þ=Z skyrmions [low-
dimensional analogs of Skyrme solitons in nuclear physics (12,
16)] terminating at π2ðS2=Z2Þ=Z point defects [LC analogs of the
magnetic Bloch points (15, 16)] near the confining substrates (17).
Similar to the case of magnetic systems (18, 19), the point defects
that are elements of the same homotopy group serve as a means of
confining these 2D solitonic structures within a finite three-
dimensional (3D) volume, making skyrmion fragments of finite
length (19), which in our case is defined by the gap between solid
glass substrates confining the LC material. In this work, we study
how torons in chiral nematic LCs morph in response to an oscil-
lating external electric field E, as well as how they move within
periodically self-shearing crystalline lattices while prompting a
complex dynamic evolution of grain boundaries separating these
crystallites. A combination of polarizing video microscopy, optical
imaging, and numerical modeling through minimization of free
energy reveals 3D structures of n(r) and provides insights into the
physical origins of the observed active-matter phenomena. These
findings uncover the richness of behavior of topological solitons and
their responses to periodic external stimuli accompanied by motions
of periodically shearing assemblies of crystallites. The similarity of
realization conditions and voltage driving with those used in LC
displays (20) may lead to new technological applications relying on
emergent electro-optic behavior.

Results
At high packing densities, hexagonal arrays of torons resemble
the A phase of skyrmions in chiral magnetic systems (Fig. 1 and
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SI Appendix, Fig. S1) (21–23), although here the skyrmion within
each toron terminates on point defects near surfaces of a thin LC
film (Fig. 2) and can be observed with an optical microscope
(Fig. 1 B–D). No fields are needed for such crystallites of torons
to exist, but a voltage U ∼ 1 V periodically modulated electric
field applied orthogonally to the sample plane (Fig. 1 A and B)
leads to complex emergent behavior that quickly culminates in
translational motions of the crystallites along roughly the same
spontaneously chosen direction (Fig. 1 C and D and Movie S1).
When this motion develops, the torons move forward and
backward in antiparallel directions upon turning the square-wave
voltage on and off within each period, although the magnitudes
of the frequency-dependent back-and-forth translations within
each period T are different and result in a net motion (Fig. 1 D
and E). By sweeping the modulation frequency within f = 1/T = 1
to 1,000 Hz (Fig. 1F), we note that the coherent motions of
torons can be reversed, similar to the behavior of individual
solitons (17). Associated with morphing of n(r) within each toron
in a complex nonreciprocal way, the magnitudes of the lateral
translations in the antiparallel directions depend on f, so that the
relative forward (or backward) shifts of toron positions are larger
(or smaller) at frequencies <100 Hz (or >100 Hz), leading to the
reversal of motion directions at f ∼ 100 Hz while sweeping fre-
quency and keeping other parameters unchanged (Fig. 1 E and F).
This behavior is consistent with the characteristic 50- to 100-ms
response times of LCs to electric fields in this experimental geom-
etry (17). With macroscopic motions starting atU > 1.5 V (Fig. 1G),
the average velocity of toron motions increases with the voltage

amplitude U, although more complex structural transformations
take place at U > 2.5 V, which tend to destroy periodic lattices of
torons and are beyond the scope of our present study (24).
Computer-simulated structures of individual torons reveal the

π2ðS2Þ ðπ2ðS2=Z2ÞÞ topology of the vectorized (nonpolar) n(r)-
field, both in terms of the skyrmion tube orthogonal to the plane
of the LC sample and the point defects on which it terminates
near the substrates (Fig. 2). These computer simulations also
allow one to define preimages (regions of constant orientation of
the LC director) corresponding to the north and south poles of
the S2 order parameter space of vectorized n(r) and effectively
defining torons as particle-like objects (Fig. 3). The elementary
torons have the skyrmion number ±1 of the 2D topological
soliton, which matches the hedgehog charge of the ±1 point
defects at confining surfaces on which the skyrmion tube terminates
to match the topologically trivial perpendicular boundary condi-
tions. The signs of these topological invariants depend on the di-
rection of vectorization of the LC’s nonpolar n(r) and switch to
opposite upon the reversal of vectorization direction (12). Pre-
images of all points cross the toron’s midplane and also terminate
on both point defects that serve as the sources/sinks of the vector-
ized field lines (Fig. 2 A, D, and K). When such torons self-organize
into crystalline lattices, they remain as spatially localized topological
particles both at no fields (Fig. 2 B, E, G, H, and L) and when
external electric field is applied (Fig. 2 C, F, I, J, and M). Experi-
mental and computer-simulated polarizing optical micrographs
(Fig. 2G–J) show that voltage application morphs the initial roughly

30°y 30°

θ

A C DB

E

F

~

E

U = 2.5 VU = 0 V

Uon

Uoff
Uon

Uoff0.130

0.126

0.122
26 27 28

Time (s)

Time (s)
0 10 20 30 40 50

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

)
mμ(tne

mecalp sid
egarevA

0 10 30 50
-0.2

-0.1

0

Time (s)

0.06

0.04

0.02

U

T = 1/f

t

0

0 50 100 150 200 250 1,000
Frequency (Hz)

Av
er

ag
e 

ve
lo

ci
ty

 (μ
m

/s
)

Voltage (V)

G

Av
er

ag
e 

ve
lo

ci
ty

 (μ
m

/s
)

0.25

0.2

0.15

0.1

0.05

0
0 0.5 1 1.5 2 2.5

100 μm
U = 0 V U = 2.5 V

U = 2.5 V

Fig. 1. Generation and dynamics of crystals of torons. (A) Schematic of a sample with voltage application across the LC by using transparent electrodes on the
inner surfaces of the confining substrates. The direction of the periodically oscillating alternating electric field E is marked in red. (B–D) Close-packed crys-
tallites of torons are shown colored according to orientations (B) and in polarizing micrographs at no applied voltage (C) and at U = 2.5 V (D), where the black
arrows denote motion directions of each crystallite. The color scheme for visualizing the crystallite orientations is shown in the Inset between A and B. (E)
Average displacement of torons in each crystallite with time, where U = 2.5 V with carrier frequency of 1 kHz is turned on and then square-wave modulated at
1 Hz. The Top Inset shows the details of the back-and-forth displacements that emerge with voltage switching at instances marked with Uon and Uoff,
corresponding to turning voltage on and off, respectively. The Bottom Inset shows similar displacement at the 1-kHz carrier signal with no modulation (note
the much slower motion in an opposite direction). (F) Crystallite velocity dependence on the modulation frequency of E, with a schematic of the square-wave
voltage profile given in the Inset. (G) Velocity dependence of crystallite motions on voltage U, with Insets showing polarizing optical images of torons at U =
0 and U = 2.5 V. (Scale bar: 10 μm.) Crossed polarizer orientations are marked with white double arrows throughout.
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axisymmetric n(r) structure within each toron (Fig. 2 B and E),
making it asymmetric. This asymmetry is revealed in both in-plane
cross-sections (parallel to cell substrates) perpendicular to the
background far-field director n0 (Fig. 2 C and F) and in vertical

cross-sections containing n0 (Fig. 2M). AtU = 1.5 to 2.5 V, the point
defects near opposite confining surfaces shift asymmetrically and
the spontaneously chosen direction of tilting of n(r) correlates be-
tween different torons within the lattice (Fig. 2 C, F, and M).
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Fig. 2. Topology and electric reconfiguration of torons. The left column represents an individual toron at U = 0 V, the middle column represents a toron
within a crystallite at U = 0 V, and the right column represents a toron within a crystallite at U = 2.5 V. (A–F) Numerically simulated n(r) of an individual toron
(A and D) and torons within quasi-hexagonal crystallites at U = 0 V (B and E) and U = 2.5 V (C and F) shown as a director structure in the x–ymidplane as (A–C)
black rods and (D–F) vectorized n(r) colored according to points on S2 shown in the Bottom Inset of D. (G–J) Polarizing optical images of torons within a quasi-
hexagonal crystallite, obtained experimentally (G and I) and simulated numerically (H and J), respectively. The white double arrows denote the crossed
polarizer orientations. (Scale bar: 10 μm.) (K–M) Cross-sectional x–zmidplanes of vectorized n(r) colored according to the S2 scheme in D for a single toron (K)
and torons within a quasi-hexagonal crystallite at no applied field (L) and at applied U = 2.5 V (M). The red crosses in K and L denote the hyperbolic point
defects; similar point defects are not visible in M because voltage-powered asymmetric shearing of the toron pushed them out of this vertical cross-section.
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While this complex behavior of 3D toron structures within crystals
is difficult to capture by simply visualizing n(r) within cross-sectional
planes (Fig. 2), it can be followed and correlated between multiple
torons within crystallites by probing behavior of the singular point
defects and preimages of vectorized n(r) (Fig. 3). At no fields, the
preimages and point defects of torons within crystals look like
particles in orderly hexagonal assemblies (Fig. 3 B, C, G, L, andM)
of individual toron counterparts (Fig. 3 A, F, and K). However, the
singular points shift and preimages morph with applying U (Fig. 3
D, E, I, N, and O). This behavior is very consistent with the voltage-
induced evolution of polarizing optical micrographs obtained be-
tween parallel polarizers (Fig. 3 H and J), where this polarizing
microscopy setting is selected to visualize geometry and location
of the effective preimages of north and south poles of the order
parameter space as bright regions. Remarkably, both modeling and
experiments reveal that the torons within lattices are effec-
tively sheared (Fig. 3 L–O). This electrically powered self-shearing
of torons is accompanied by tilting of south-pole preimages
and corresponding lateral shifts of the singular point defects in
opposite directions in a plane orthogonal to the motion direction
(Fig. 3 L–O).
Since both the Reynolds and Ericksen numbers are low for our

system (1, 2), translational motion of crystallites of torons re-
quires that the evolution of n(r) and/or flows within the LC
medium are not invariant upon reversal of time within the

effective voltage on and off “strokes” of each T. To get insight
into how this happens, we have probed the temporal evolution of
textures using polarizing optical video microscopy (Fig. 4A and
Movie S2). The north-pole preimages, effectively defining torons
as quasiparticles, adopt shapes of deformed and partially inter-
merged hexagons which rotate synchronously with the voltage
modulation (Figs. 3 and 4). The period of this preimage rotation
is consistent with T, although there is a slight lagging in response
to instantaneous voltage changes caused by relatively slow re-
sponse of the complex 3D n(r) to periodically modulated U.
Importantly, as voltage is effectively turned on and off within
each T, the toron’s preimages rotate in different directions,
counterclockwise and clockwise, respectively (Fig. 4). The mag-
nitudes of angles of these opposite rotations are different too, so
that the director evolution that is manifested through such tex-
tural evolution is not invariant upon reversal of time (Fig. 4 B–
F). Consequently, each toron within the lattice also translates,
with opposite positional shifts upon turning voltage on and off
but with a net translation along the motion direction as a result
of voltage modulation within each T.
Probing the details of crystallite motions reveals fascinating be-

havior of torons and the defects within them as they exhibit complex
coherent dynamics (Fig. 5). The toron crystallites translate while
preserving their quasi-hexagonal order. Torons undergo thermal
fluctuations within the lattice while exhibiting a net translation in the
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Fig. 3. Dynamics of toron lattices. The first left-side column represents an individual toron at U = 0 V, the next two columns represent a toron within a
hexagonal crystallite at U = 0 V, and the last two columns represent a toron within a hexagonal crystallite at U = 2.5 V. (A–E) Computer simulations showing
blue surfaces separating particle-like marching torons from the uniform far-field director n0 exterior (roughly corresponding to north-pole preimages), south-
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their orientations and S2 in the Inset of C for vectorized n(r). The orange and yellow dashed circles mark the edges of the surface effectively confining the
toron’s interior and separating it from the background with alignment along n0. (F–J) The same 3D surfaces shown in the vertical y–z views (F, G, and I) and
experimental parallel-polarizer transmission-mode optical images (H and J). Polarizer orientations are marked with white double arrows. (K–O) South-pole
preimages (magenta) and point defects (orange and yellow, corresponding to top and bottom singular point defects, respectively) of an individual toron (K)
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upon voltage application are marked with the maroon and black arrows, respectively (D, I, and N). Axes of the common coordinate system are shown throughout.
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same spontaneously chosen direction (Fig. 5 A–D), with the lo-
cally meandering but long-term straight trajectories of toron
motions being statistically nondistinguishable (Fig. 5 B and C).
The net long-term linear displacement of torons, averaged over the
field of view, is proportional to the elapsed time when modulated

electric field is applied, but averages to zero at no fields (Fig.
5E). At the same time, the mean-square displacement (MSD) is
linear in time at no fields and scales quadratically with time at
applied fields that power motions of toron crystallites (Fig. 5F),
with the emergent motion taking place along a well-defined,
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spontaneously selected direction for all torons within a crystallite
(Fig. 5 A–F). Interestingly, the synchronized motions of torons
are accompanied not only by periodic nonreciprocal modulations
of toron field configurations, but also by correlated motions of
singular point defects within the torons (Figs. 3O and 5G), which
can be tracked with unpolarized transmission-mode video mi-
croscopy when the microscope’s focal plane is adjusted to coincide
with the sample’s plane containing these point singularities (Fig. 5
E, Insets, and SI Appendix, Fig. S2). The point defects in this im-
aging mode are visible as small dots because of the light scattering
on them due to the reduced scalar order parameter and the cor-
responding localized variations of the LC medium’s effective re-
fractive index. While the thermally driven lateral step displacements
of point defects at no fields are described by Gaussian-like distri-
butions and appear to be laterally aligned with the thermal
fluctuations in positions of torons overall, this behavior changes
dramatically upon applying modulated U (Fig. 5G). The lateral
distribution of the tracked point defect positions within the toron
become shifted with respect to the moving geometric center of
the electrically morphed (with a period of T) toron, as shown in
Fig. 5G. The distributions of defect positions measured along the
velocity vector v jjx is broader and with smaller displacement
with respect to toron’s geometric center compared to such a
distribution in the plane orthogonal to v (Fig. 5G). The skyrmion
tubes within torons appear to be (on average) somewhat com-
pressed in the direction of motion and stretched in a direction
orthogonal to it, with applied voltage and motion effectively
deforming the originally hexagonal lattice of “soft” reconfigurable-
particle–like torons (Fig. 5H). As the applied voltage increases,
the distribution of the toron stretching directions becomes more
and more narrow, peaking at 90° relative to v (Fig. 5H). This
anisotropic out-of-equilibrium electrostriction is accompanied by
morphing of toron lattices within T and motions of grain bound-
aries and five–seven disclination defects within the crystallites on
larger elapsed timescales >T.

The complex motions of the squishy toron particles and de-
fects within their lattices give origins to giant number fluctuations
(Fig. 6A). Using video microscopy, we analyze the mean <N> and
root-mean-square ΔN = <(N − <N>)2>1/2 of torons within dif-
ferent square-shaped sample areas containing defects within toron
lattices. Torons within the crystallites with grain boundaries exhibit
giant number fluctuations with ΔN α <N>α, where α = 0.762 is
obtained from fitting (Fig. 6A). This is consistent with fluctuations
in the local number density of torons probed by counting the in-
stantaneous numbers of torons within a selected square-shaped
sample area versus time (Fig. 6B), as well as with motions of
lattice defects in the deformed skyrmion lattices visualized using
the Voronoi construction (Fig. 6 C–E and SI Appendix, Fig. S3 and
Movie S3). While the directions of the motions of five–seven de-
fect pairs, both standalone and within percolating grain bound-
aries (Figs. 6 C–E and 7), do not exhibit strong correlations with
respect to v, the grain boundaries tend to shrink and the crystal-
lites anneal with time as motion progresses (Fig. 7 A–F), making
the positional correlations in the radial distribution function more
and more long-ranged (Fig. 7 B, Inset, and SI Appendix, Fig. S4).
To quantitatively examine how motion affects the orienta-

tional ordering, we have characterized the local bond orienta-
tional order parameter defined as ψ j = ð1=njÞ

Pnj
k=1e

imθjk (Methods),
where m = 6 for the hexatic order parameter. While ψ j often
approaches unity, the hexatic order parameter decreases on a

larger scale,Ψ6 =
���ð1=NÞPN

j=1ψ j

��� (Methods), due to the misalignment

of the quasi-hexagonal domains of torons (Fig. 7G), although
it tends to increase even within larger areas as motion pro-
gresses (Fig. 7 G–I). This evolution of orientational ordering is
consistent with slow annealing of the five–seven lattice defects
within the grain boundaries between the moving crystallites,
although this trend within our experiments never led to the
formation of single moving crystals. Within the same sample areas
(Fig. 7 J–L and SI Appendix, Fig. S5), the motion directions of
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Fig. 6. Number density and giant number fluctuations in squishy toron lattices. (A) A log-log plot of ΔN versus <N>; the black dashed line indicates a slope of
0.5 for reference. (B) An example of number density fluctuation revealed by counting the number of torons η during motion while passing a 2,000-μm2 sample
area. (C–E) Polarizing image of toron crystallites (C) with corresponding reconstructed Voronoi diagrams at times 0 s (D) and after 250 s of motion (E). The
Voronoi diagrams are colored according to each toron’s number of nearest neighbors (5 = blue; 6 = yellow; 7 = red). The black arrows in D indicate the
directions of motion of lattice defects. Crossed polarizer orientations are marked with white double arrows in C.
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individual torons are poorly correlated at the onset (Fig. 7J and SI
Appendix, Fig. S5A) but become synchronized with time (Fig. 7 K
and L and SI Appendix, Fig. S5 B and C). Most of the regions of
the sample’s field of view exhibit significantly deformed lattices of
torons, with deformations in area larger than 2% depicted in
colors coding the direction of stretching relative to v (Fig. 7 J–L).
Clearly, most of the crystallites of torons are stretched in the di-
rection roughly orthogonal to v (Figs. 5H and 7 J–L) while being
compressed along v. This out-of-equilibrium dynamics is, however,
rather complex because the motions of grain boundaries and other
defects within lattices also influence the electrically induced pe-
riodic self-shearing behavior. Moreover, sample imperfections like
dust particles and torons anchored on such imperfections also
influence this behavior, so that the deformations of toron lattices
are more complex within certain sample areas. The velocity order

parameter, defined as S=
���PN

j vj
����ðN   vcÞ, characterizes the de-

gree of ordering of velocity vectors vj, where N is the number of

skyrmionic particles and vc is the absolute value of velocity of a
coherently moving crystallite. S increases from the onset of motion
throughout the first couple minutes of motion (SI Appendix, Fig.
S5), where it then approaches the system’s dynamic equilibrium at
S ∼ 0.65, significantly lower than the S values of schools of sparse
skyrmions without positional correlations during motion (24). On
the other hand, the fact that motion of torons becomes coherent
within a short period of time and leads to increased ordering
correlations, evidenced by the characterization of hexatic order
parameter, is intriguing and consistent with the behavior of more
fluid-like schools of skyrmions studied previously (24).

Discussion and Conclusions
Typically, crystalline solids are thought to be incompatible with
motions of building blocks on large scales (generally associated with
fluid condensed matter systems), although malleability of solids is
an example of how large-scale dynamics can be mediated by mo-
tions of dislocation defects. Recent interest in active matter brought
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the color of the time stamps on corresponding micrographs. Crossed polarizer orientations are marked with white double arrows. (D–F ) Voronoi diagrams
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about concepts of “frozen flocks” and active “solids” (25–29), which
may relate to familiar behaviors of directed crowds and traffic
jams. However, the out-of-equilibrium dynamic behavior of
crystallites in material systems are poorly understood and rarely
studied. Our findings show that soft-particle–like topological
solitons can exhibit electrically powered motions that stem from
energy conversion on individual particle level but then translate
to large-scale coherent motions of crystallites of torons accom-
panied by periodic self-shearing–like deformations. Unlike solid
hard-sphere–type colloids, atoms, or most other building blocks
of condensed matter, these solitons display electric reconfigu-
rations and morphing due to transformations within the lattices
and grain boundaries between the crystallites. While recently
studied active-matter systems were paralleled with everyday life
examples like polarized crowds and traffic jams (26), the elab-
orate toron motions with 2D meandering of skyrmion tubes and
3D coherent configurational dynamics of both skyrmion tubes
and point defects within torons packed into crystals are remi-
niscent of the moving-while-dancing crowds in carnivals. Since
these motions are controlled by the nonreciprocal response of
the LC material, velocity and the very nature of this out-of-
equilibrium behavior of topological particle-like solitons could
potentially be controlled further by changing the shapes of the
electrical pulses, much like electric driving schemes in LC dis-
plays can be preengineered to achieve faster switching of pixels
(20). However, differently from LC displays with typical trans-
lationally invariant n(r) within each pixel, where voltage pulse
engineering is mainly used to control the (intrinsically different)
rise and decay times, here control of pulses can facilitate not only
the tuning of response time but also control of the complex
nonreciprocal evolution of 3D solitonic configurations and de-
fects within crystallites. In addition to the dielectric coupling of
n(r) and external fields, various electrokinetic and backflow ef-
fects (1, 17, 30) could be potentially predesigned to further ac-
celerate toron motions or, instead, to alter their dancing-like
dynamics within crystallites. On the other hand, recently dem-
onstrated optical control of topological solitons (31–33) may be
also extended to enable on-demand reconfiguration of periodic
lattices within moving crystallites.
Although the toron lattices remain quasi-hexagonal in nature,

with the local hexatic order parameter being rather high, the
application of field and motion make individual torons behave
like weakly asymmetric polar particles, which synchronize their
orientations and motions with time (Fig. 7). Such reconfigura-
tions of particle symmetry are not easy to achieve within more
common types of building blocks of matter, like colloids, especially
within the crystalline lattices that they form. However, qualitatively
similar effects could potentially arise due to ordering of Janus-like
active particles (34). Moreover, crystallites could potentially even
form in very dense crowds of people or herds of animals, which
could be deformable or prone to shearing, although not as squishy
as torons. Therefore, it may be of interest to explore how our
“crowded” assemblies of dynamic inanimate solitonic particles
would compare to the out-of-equilibrium behavior of other physical
systems, including those of biological origin. To date, however, such
motions of crystals of active particles have not been achieved be-
yond what we describe here, at least to the best of our knowledge.
To conclude, we have demonstrated that topological solitons

exhibit electrically powered emergent dynamics so far not ac-
cessible to their colloidal, atomic, and molecular counterparts.
These dynamics arise from facile responses of the LC host me-
dium to external fields, and particularly from the response to
turning voltage on and off that is not invariant upon reversal of
time. Such complex responses of this soft matter system effec-
tively convert injections of energy by electric pulses at the indi-
vidual toron level into motion, leading to emergent motions of
entire crystallites. Our experiments reveal how collective mo-
tions of crystallites of these solitons prompt fascinating evolution

of grain boundaries and five–seven defects within them. Since
the studied behavior emerges in samples and under conditions
resembling those in LC displays, we anticipate that our findings
may lead to new applications in electro-optics, photonics, dis-
plays, and diffractive optics. The rich emergent behavior of sin-
gular point defects and the solitonic skyrmion tubes within
torons self-assembled into crystallite arrays can be paralleled
with such elaborate and complex crowd motions of dancing-
while-moving carnivals.

Materials and Methods
Sample Preparation and Generation/Manipulation of Torons. To realize torons
experimentally, a chiral nematic ZLI2806 (EM Chemicals) was doped with
right-handed chiral dopant CB-15 (EM Chemicals) at a weight fraction
Cdopant = 1=ðξ ·pÞ to define the helicoidal pitch p of the chiral LC, where ξ is
the helical twisting power of the chiral dopant (SI Appendix, Table S1) (5).
The chiral nematic was additionally mixed with 0.1 wt% of cationic surfac-
tant hexadecyltrimethylammonium bromide (CTAB) (purchased from Sigma-
Aldrich) to allow for spontaneous generation of torons by means of
relaxation from electrohydrodynamic instability (24). The samples were
prepared by sandwiching these mixtures between indium tin oxide-coated
glass substrates. Strong perpendicular boundary conditions were set for the
LC director field by treating the substrate glass with polyimide SE1211
(Nissan Chemical) by spin coating it at 2,700 rpm for 30 s, followed by a 5-min
prebake at 90 °C and a 1-h bake at 180 °C. Samples of thickness d =
10 μm were assembled using glass spacers. In addition, commercial cells
(purchased from Instec) were used, with the same thickness and boundary
conditions but also with patterned indium tin oxide electrodes defining the
area within which torons are initially generated. The solitons were gener-
ated by first inducing and then relaxing electrohydrodynamic instability (SI
Appendix, Fig. S1) obtained at U = 20 V and f = 2 Hz, forming spontaneously
as energetically favorable structures after turning U off because of the chiral
LC’s tendency to twist (24). By manually switching on and off U that induces
the hydrodynamic instability three to five times in a matter of a few seconds,
one can increase the number density as desired, up to tight packing of
torons. The initial locations of the as-generated torons are random, but
crystallites slowly form due to repulsive interactions at high packing densi-
ties (SI Appendix, Fig. S1). Electric field was applied across the samples using
a homemade MATLAB-based voltage-driving program coupled with a data-
acquisition board (NIDAQ-6363; National Instruments) (17), which was done
in order to morph the solitons and power crystallite motions via macro-
scopically supplied energy.

Numerical Modeling. The Frank–Oseen free energy functional describes the
energetic cost of spatial deformations of n(r) within a chiral nematic LC:

F=
Z

d3r
�
K11

2
ð∇ ·nÞ2 +K22

2
½n · ð∇×nÞ�2 +K33

2
½n× ð∇×nÞ�2

+K22q0n · ð∇×nÞ−K24f∇ · ½nð∇ ·nÞ+n× ð∇×nÞ�g
�
,

[1]

where the Frank elastic constants K11, K22, K33, and K24 describe the energetic
costs of splay, twist, bend, and saddle-splay deformations, respectively, and
q0 = 2π=p characterizes the LC chirality. Strong boundary conditions (consis-
tent with experiments) on the surfaces are assumed, excluding surface en-
ergy from our calculation. We assumed K24 = 0 or K24 =K22 (11, 12), in both
cases obtaining qualitatively similar results, and all elastic constants utilized
in numerical modeling are based on experiments (SI Appendix, Table S1).
When an external electric field is applied, Eq. 1 is supplemented with the
corresponding electric field coupling term:

Felectric =−
1
2

Z
d3rðE ·DÞ=−

1
2

Z
d3rðE · eEÞ, [2]

where E is the applied electric field, D is the electric displacement field in the

dielectric LC medium, and e is the dielectric tensor with components
eij = e0ðe⊥δij +ΔeninjÞ, where e0 is the vacuum permittivity, e⊥ is the perpen-
dicular dielectric constant measured when electric field is applied perpen-
dicular to the director, and Δe is the dielectric constant anisotropy (SI
Appendix, Table S1).

Under our experimental conditions, the toron field configurations emerge
as local or global minima of the total bulk free energy given by the sum of
Eqs. 1 and 2, yielding the numerically generated structures at various applied
fields. A variational-method–based relaxation routine is used to perform
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numerical modeling of the energy-minimizing n(r) (4, 11, 12). At each iteration
of the numerical simulation, n(r) is updated based on an update formula de-
rived from the Lagrange equation of the system, nnew

i =nold
i − ðMSTS=2Þ½F�ni

,

where the subscript i denotes spatial coordinates, ½F�ni
denotes the functional

derivative of F with respect to ni, and MSTS is the maximum stable time step
(representing the time between iterations) in the minimization routine, de-
termined by the values of elastic constants and the spacing of the computa-
tional grid (11). The stopping condition is found by monitoring the change in
the spatially averaged functional derivatives, which, as it approaches zero,
indicates that the system is in a state corresponding to the energy minimum and
the relaxation routine is terminated. The 3D spatial discretization is performed
on large 3D square-periodic 128 × 128 × 32 grids, and the spatial derivatives are
calculated using finite difference methods with second-order accuracies. This
allows us to minimize discretization-related artifacts in modeling of the struc-

tures of these topological solitons. To construct a preimage of a point on S2

within the 3D volume of a topological soliton, we calculate a scalar field defined
as the difference between the solitonic field n(r) and a unit vector defined by the

target point on S2. The preimage is then visualized with the help of the
isosurfaces of a small value in this ensuing scalar field (4, 12). The effective
physical dimensions of torons as particle-like objects were defined as
sample regions that are interior of north-pole preimages corresponding to
torons (Fig. 3), whereas the effective toron’s “particle” surface was de-
fined as the surface separating the north-pole far-field preimage from
other preimages. Computer-simulated polarizing optical micrographs (Fig. 2 H
and J) were generated using a Jones matrix method (17, 35) in MATLAB
(obtained fromMathWorks), in which the configuration of optical axis ≡n(r) is
sampled layer by layer through the sample while using the experimental cell
thickness, pitch, and optical anisotropy (SI Appendix, Table S1).

Optical Microscopy, Video Characterization, and Data Analysis. All experi-
mental images and videos were captured using polarizing or bright-field
transmission-mode optical microscopy using an Olympus BX-51 upright mi-
croscope equipped with charge-coupled device cameras either Grasshopper
(Point Gray Research) or SPOT 14.2 Color Mosaic (Diagnostic Instruments) and
dry 4×, 10×, and 40× objectives (numerical apertures ranging from 0.3 to
0.9). In bright-field optical micrographs, the point defects are visible as dis-
tinct sharp dot-like features because they strongly scatter light when mi-
croscope’s focal plane coincides with the plane containing these defects. The
videos were analyzed for positions of torons and point defects using open-

source software ImageJ/FIJI’s (National Institutes of Health) particle tracking
capabilities coupled with a software plugin “wrMTrck” for generating posi-
tional data for each toron, extracted frame by frame with motion. The position
and particle-counting data were exported to MATLAB to characterize trajectory
pathways and displacements, giant-number fluctuation scaling, density fluctu-
ations, and various order parameters. Toron number density (extracted using
the particle-counting tools in ImageJ) was used to characterize giant-number
fluctuations with time for 30 areas of different sizes, ranging from 15 μm ×
15 μm to 1,500 μm × 1,500 μm, for each experimental video. A log-log plot of
the mean <N> and root mean square ΔN = <(N − <N>)2>1/2, shown in Fig. 6A,
was obtained using the compiled density data points by area. One such rep-
resentative number density fluctuation trend that was used for a single point in
Fig. 6A is shown in Fig. 6B for a 2,000-μm2 region. A composite of five videos
was analyzed for different regions within the samples, resulting in ∼150 data
points from which the scaling trend was extracted. Fluctuations were charac-
terized for each video over time periods of 500 to 600 s.

The positional data for each topological soliton was coupled with the
MATLAB function knnsearch to define nearest neighbors, compare positions,
create Voronoi diagrams using the voronoin function, and analyze shearing
behavior, packing, and bond orientational order. The local hexatic bond
orientational order ψ j (36–38) was used to color-code each individual toron
in Fig. 7 G–I. This analysis was then expanded to calculating the hexatic order
parameters for different sample areas (Fig. 7 G–I). The velocity order pa-
rameter S was calculated using the evolution of the positional data between
the consecutive frames, where the velocity vector vj was defined by drawing
a vector, pointing in the direction of motion, between each toron’s position
in consecutive frames of the experimental video (24, 39). These velocity

vectors were then used to determine S=
���PN

j vj
����ðN  vcÞ for N particles within

the field of view and average magnitude of crystallite velocity, vc (SI Ap-
pendix, Fig. S5).

All data for this study are contained in the manuscript text and
SI Appendix.
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