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Abstract
Humankind has been obsessed with knots in religion, culture and daily life for millennia,
while physicists like Gauss, Kelvin and Maxwell already involved them in models centuries
ago. Nowadays, colloidal particles can be fabricated to have shapes of knots and links with
arbitrary complexity. In liquid crystals, closed loops of singular vortex lines can be knotted by
using colloidal particles and laser tweezers, as well as by confining nematic fluids into
micrometer-sized droplets with complex topology. Knotted and linked colloidal particles
induce knots and links of singular defects, which can be interlinked (or not) with colloidal
particle knots, revealing the diversity of interactions between topologies of knotted fields and
topologically nontrivial surfaces of colloidal objects. Even more diverse knotted structures
emerge in nonsingular molecular alignment and magnetization fields in liquid crystals and
colloidal ferromagnets. The topological solitons include hopfions, skyrmions, heliknotons,
torons and other spatially localized continuous structures, which are classified based on
homotopy theory, characterized by integer-valued topological invariants and often contain
knotted or linked preimages, nonsingular regions of space corresponding to single points of
the order parameter space. A zoo of topological solitons in liquid crystals, colloids and
ferromagnets promises new breeds of information displays and a plethora of data storage,
electro-optic and photonic applications. Their particle-like collective dynamics echoes
coherent motions in active matter, ranging from crowds of people to schools of fish. This
review discusses the state of the art in the field, as well as highlights recent developments and
open questions in physics of knotted soft matter. We systematically overview knotted field
configurations, the allowed transformations between them, their physical stability and how one
can use one form of knotted fields to model, create and imprint other forms. The large variety
of symmetries accessible to liquid crystals and colloids offer insights into stability,
transformation and emergent dynamics of fully nonsingular and singular knotted fields of
fundamental and applied importance. The common thread of this review is the ability to
experimentally visualize these knots in real space. The review concludes with a discussion of
how the studies of knots in liquid crystals and colloids can offer insights into topologically
related structures in other branches of physics, with answers to many open questions, as well
as how these experimentally observable knots hold a strong potential for providing new
inspirations to the mathematical knot theory.
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1. Introduction

Topological concepts are currently at the research fron-
tier of modern condensed matter physics, with the exciting
recent developments promising to revolutionize the future of
many technologies, ranging from quantum computing to pre-
engineered mechanics of materials [1, 2]. Although topolog-
ical knot-related ideas are found in early works by Gauss,
Kelvin, Tait and Maxwell [3–7], it is only recently that the con-
cepts of topology have been successful in explaining entirely
new types of physical behavior of condensed matter systems
[1, 2], including phenomena that cannot be interpreted oth-
erwise. Various types of knots are studied in practically all
fields of physics [1–11]. The mathematical knot theory, once
inspired by early models in physics [3], has become a major
branch of topology with connections to statistical mechanics,
models of exotic states in Bose–Einstein condensates, theories
in elementary particle and nuclear physics, quantum field the-
ory, quantum computing, solid-state physics and many other
exciting frontiers of physics research [8–11]. The knots and
links in these theories are beautiful mathematical constructs
that, however, typically do not manifest themselves as phys-
ical objects accessible to experiments. This review concerns
the studies of physical knots in condensed matter systems such
as liquid crystals (LCs) and colloids [12–15]—ones that exist
in the three-dimensional (3D) space of these ubiquitous soft
materials, that can be manipulated by laser tweezers and that
can be directly observed through a microscope.

Recognizing some of the key milestones in understanding
the role of topology in physical behavior, the 2016 Nobel prize
was awarded for theoretical discoveries of topological phase
transitions and topological phases of matter [16–18], where
many of the original breakthroughs resulted from consider-
ing two-dimensional (2D) systems. The situation is even more
complex in 3D, where various knot-like structures can be sup-
ported, localized spatially and stabilized energetically, includ-
ing both knotted filaments (vortex lines/defects/singularities)
and knotted nonsingular textures such as skyrmions and hop-
fions [6–11]. Topological solitons are well studied in theoret-
ical models of high-energy physics [6, 7] aiming to describe
the behavior of fundamental particles and atomic nuclei.
This review considers such structures in ordered soft con-
densed matter systems, which can be realized and character-
ized in detail experimentally, like in the cases of LCs and col-
loids. Although quantum phenomena and hard condensed mat-
ter systems received much of the recent attention in applying
topology-related ideas [1], potentially an even greater play-
ground for deploying topological concepts exists in soft
condensed matter. While topological effects in soft matter
encompass a much broader spectrum of phenomena [2,
19, 20], here we focus on knotted structures of the order

parameter fields and their interaction with topologically non-
trivial surfaces in LCs and colloids.

Historically, knotted fields in modern physics emerged
in classical and quantum field theories [6, 7, 21, 22] and
in branches ranging from optics to chemistry, materials sci-
ence, particle physics, fluid mechanics and cosmology [19,
20, 23–32]. Recently, knotted fields found many experimental
and theoretical embodiments, including both nonsingular soli-
tons and knotted vortices [32–48]. Knots often arise in elec-
tromagnetic fields [28, 37]. For example, researchers found
solutions to Maxwell’s equations with knotted and linked field
lines [37]. Recent developments in optical holography and
microlithography make it possible to structure the flow of
light in free space, whereas the rich vectorial and phase struc-
ture of sculpted light allows for different kinds of knotted
and linked light beams. For example, knotted optical vortices
have been embedded into laser beams by Dennis and cowork-
ers [28]. Understanding the knots which can be embedded in
holograms [28] has even led to the new classes of knots now
being studied in the knot theory [8–11]. Moreover, unlike in
various material systems [24, 26], knot structures in electro-
magnetic fields could be hosted in free space, therefore aris-
ing in completely linear systems, including knotted field lines,
optical vortices and knotted textures in polarization [37, 38].
Numerical studies [19, 20] have revealed characteristic cas-
cades of fluid knot topologies, and explicit forms of knot-
ted flow fields with tunable helicity have been shown [39].
At the same time, Irvine and collaborators developed tech-
niques [19, 20, 27] to embed knotted vortex filaments in fluids
experimentally. In Bose–Einstein condensates, knotted topo-
logical solitons were realized as the initial ‘imprinted’ states
that then decayed, revealing interesting dynamics [40, 41]. In
magnetic hard condensed matter systems, knot solitons could
be stabilized as free-energy minima in thin films and discs of
non-centrosymmetric magnets [42], as well as in the bulk of
chiral materials with crystalline anisotropy [43] or helicoidal
structures [44]. Studies of various knots and related topologi-
cal effects are highly interdisciplinary in nature, and equally
important for understanding synthetic macromolecules and
biopolymers [45–47] and quantum material systems [48].

This brief and non-exhaustive overview of exciting new
developments in studies of knots shows how the manifesta-
tions of knotted fields penetrate different branches of science
and how theoretical and experimental explorations can now go
hand-in-hand in these systems, something that was far from
possible in the past, when knots were mainly a subject of
theoretical curiosity. The knots that are part of this review
are realized in soft condensed matter media [12–15], which
make them significantly more experimentally accessible, even
though these systems can exhibit an exceptionally broad range
of accessible symmetries and degrees of freedom at the same
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Figure 1. Orientationally ordered soft matter systems. (a) A schematic of a uniaxial LC made of rod-like molecular mesogens. (b)
Dispersion of monodomain magnetic colloidal nanoplates with magnetic moments m and macroscopic magnetization M aligning with n
(black lines), effectively ‘vectorizing’ the nonpolar director field n(r) by M(r) by selecting one of the directions parallel to it. (c) Biaxial
nematic phase with orthorhombic D2h point group symmetry characterized by three mutually perpendicular nonpolar directors (red, green
and blue double arrows). (d) A schematic of a ferromagnetic hexagonal nanoplate in a nematic host with its magnetic moment tilted away
from the LC ordering direction (left) and biaxial ferromagnetic LC colloids with magnetization M tilted with respect to the director n (right),
forming a monoclinic biaxial ferromagnetic LC.

time. While focusing on various knotted fields in soft matter,
the article draws the attention of the readers to related recent
developments in other branches of physics, as well as empha-
sizes how soft matter media like colloids and LCs can serve
as model systems to predict topologically related structures in
other branches of science.

What is soft condensed matter? Nobel laureate de Gennes
defined soft matter [12, 49] as a broad combination of systems
with strong response functions, which are capable of strong
responses to weak external stimuli. These strong responses
originate largely from the fact that the competing, behavior-
defining interactions between the constituent building blocks
of soft matter are weak and comparable in strength to thermal
fluctuations [13]. Another defining feature of soft matter is that
it often combines fluidity and ordering [12–15], with a very
broad range of intermediate mesophases (phases in-between
the fully ordered crystalline and disordered fluid states) with
the order parameter fields possibly being scalar, vectorial and
tensorial. LCs and colloids are classic examples of soft matter
[12–15] and will be the focus of this review. The soft matter
systems offer the possibility of laboratory realization and mod-
eling of effects that are typically hard to probe. For example,
order–disorder transitions in nematic LCs allowed for prob-
ing the Kibble mechanism of cosmic string dynamics in the
models of early Universe cosmology [50], whereas colloids
were used to model and probe the dynamics of dislocation
defects and glass formation in atomic and molecular systems
[14, 51, 52]. In a similar way, the power of soft matter can be
extended to modeling the topology of singular and solitonic
knotted fields. LC colloids, where molecular LCs serve as the
host medium for colloidal particles [53–55], are of particular
interest from this standpoint as they combine the complexity
of molecular and colloidal LC systems. Figure 1 shows exam-
ples of soft matter systems with vectorial and different ten-
sorial order parameters, including uniaxial nonpolar nematic
(figure 1(a)) and ferromagnetic (figure 1(b)) LCs, as well as
orthorhombic (figure 1(c)) and polar non-orthorhombic ferro-
magnetic (figure 1(d)) biaxial LCs. What kinds of knots can
be realized in such fields? The answer, which can be exper-
imentally tested using LCs and colloids, has a fundamental

importance spanning well beyond condensed matter because
topology and free energy potentials can be mapped to that of
related problems in other physical systems. Having soft matter
systems as host media with facile responses to external stim-
uli [12, 13] for these knotted fields also enables various types
of control by external fields, boundary conditions, light and
so on. The main goal of this review is to describe the recent
progress in realizing zoos of knotted fields in LCs and colloids,
as well as to emphasize how this can aid in similar explorations
in other branches of physics.

Below the review article proceeds with a brief historic
overview (section 2), which is followed by a discussion of
general classifications of different types of knots and links
and topologically nontrivial field configurations (section 3).
The article then continues by overviewing the recent progress
in studies of various topologically nontrivial structures in
nematic colloids and drops, where singular defects are com-
monplace (section 4). The structure, topology and self-
assembly of solitonic knots in LC and colloidal soft matter
systems are discussed in section 5. Section 6 is devoted to
emergent out-of-equilibrium behavior of such knotted fields
and particle-like topological solitons. The review article then
concludes with a brief discussion of open questions, opportu-
nities and perspectives in this research area (section 7).

2. Historic remarks

Humankind has long been fascinated with knots and has used
them for both practical and spiritual needs throughout history
[4, 56–58]. Over the last several millennia, knots often served
as decorations, signs, religious symbols and, in a more prosaic
daily life, just as the ubiquitous means to hold things together
(figure 2) [4, 8, 57, 58]. The diversity of knots allowed them
to be used in rather different contexts, ranging from record-
ing information on ropes and strings to writing, boat sailing,
climbing, netting, textile manufacturing and so on [4, 57, 58],
and of course to tie shoelaces. As decorations and symbols,
knots are important components of Tibetan, Roman, Celtic,
Byzantine, Coptic, Islamic, Kievan Rus’, Ethiopian, Chinese
and Indian cultures, among many others (figure 2) [4, 56, 57].

3



Rep. Prog. Phys. 83 (2020) 106601 Review

For example, the so-called eternal knot (also known as the
‘endless’ knot) is a symbol of the ultimate unity of every-
thing, one of the Eight Auspicious Signs endemic to Hinduism,
Jainism and Buddhism religions [4, 56, 57]. In different cul-
tures, many other types of knots were widely used to symbolize
love, family, eternity, union, weddings and so on [4, 57]. These
special cultural and religious uses of knots as symbols co-
existed with their widespread uses for practical and, recently,
scientific needs. For example, after joining the ends, the com-
mon overhand knot becomes a trefoil knot (figures 2(a) and
(b)), the simplest nontrivial knot in the mathematical knot table
that is also found in the Celtic Book of Kells (figure 2(c)) and
nowadays is often used for the identification with Celtic cul-
ture. This very same trefoil knot is also a symbol of the Trin-
ity in Christianity, and different variants of it played impor-
tant roles in Japanese, Korean and Tibetan cultures [4]. The
Solomon link and Borromean rings (figures 2(d) and (e)) are
two more out of many other examples of knots that are impor-
tant in the mathematical and physics theories but also have a
history of being used as important symbols [4]. While being
part of Chinese history for several millennia, knots like the
one shown in figure 2(f) are also widely used as decorations
in East Asian countries nowadays. The Gordian Knot legend
is an example showing how, historically, knots could be asso-
ciated with challenging problems and nontrivial solutions to
them, in this case involving Alexander the Great in 333 BC [4,
57]. Knotty problems are associated with challenging issues
not just in different branches of science (where knots actu-
ally often materialize in polymer chains, molecular structures,
field configurations and many other embodiments), but also in
politics, various legal practices, relations and so on [4].

An important branch of modern mathematics is knot the-
ory, which also has an interesting history [3–8]. In 1833,
Carl Friedrich Gauss introduced the linking integral for
computing the linking number of two knots and, together with
his student Johann Benedict Listing, did important early stud-
ies of knots from a mathematical viewpoint [4]. A very strong
interest in studies of knots was sparked by early models of
vortex atoms developed slightly later in Scotland, where Sir
William Thomson (Lord Kelvin) had an interesting hypoth-
esis that atoms were knots of swirling vortices [3–8]. Long
before even the very existence of atoms was widely accepted,
Kelvin and his colleagues in Edinburgh (among whom the
most prominent ones were James Clerk Maxwell and Peter
Guthrie Tait) classified various closed-loop knots into tables
that they were hoping could match the periodic table of chem-
ical elements, where different elements would correspond to
topologically distinct knots [3–5]. Experimentally, Tait and
Maxwell created smoke rings and links as simple model sys-
tems accessible at that time [3–6]. The researchers even hoped
that the systematic classification of all possible knots would
explain how atoms absorb and emit light [3–5]. Despite fail-
ing to explain the nature of atoms, these early works of Kelvin,
Tait and Maxwell became a nucleus for the development of the
modern mathematical knot theory [4, 8], an important founda-
tion for understanding various types of knots that eventually
emerged in different branches of physics, biology, chemistry
and cosmology [3–11]. Throughout history, cross-pollinating

Figure 2. Knots in history, culture and science. (a) A common
overhand knot. (b) A trefoil knot in two embodiments of opposite
handedness, which can be obtained by connecting the ends of the
overhand knot; these knots were generated using the KnotPlot
freeware (https://knotplot.com). (c) The symbol of interlaced
triquetra [Madboy74/CC BY-SA (https://creativecommons.org/
licenses/by-sa/4.0)] is a trefoil knot. (d) and (e) Ancient decorations
in the forms of (d) the Solomon link (Aquileia, Basilica. Photo by
Giovanni Dall’Orto) and (e) the Borromean link [Valknut detail
from Stora Hammar stone. Adapted from https://en.wikipedia.org/
wiki/Valknut. CC BY-SA 3.0 (https://creativecommons.org/
licenses/by-sa/3.0)]. (f) Used for millennia in Chinese culture
[6,8–11], knots are also very common decorations nowadays, with
this Chinese knot decoration, for example, being commonplace in
Beijing airport. (g) Many closed-loop mathematical knots belong to
the class of torus knots and can be confined to surfaces of a torus;
the examples provided here are the unknots (top) and trefoil knots
(bottom) featuring different numbers of windings around the
circular axis and axis of rotation of the torus provided in brackets.
Note that the two unknots (top) and the two trefoil knots (bottom)
shown by red and green colors in each case are further linked with
each other while residing on the tori in each case, forming different
two-component links.

connections between the knot theory and physics emerged
many times. For example, inspired by Kelvin’s model of atoms
[59], Skyrme proposed a topological model of subatomic par-
ticles with different baryon numbers [21, 59, 60]. As another
connection between the knot theory and physics, Ed Witten
was awarded the Fields Medal partly for bringing new insights
into the knot theory based on quantum physics [61]. Witten
also established connections between the Skyrme model and
quantum chromodynamics [60].

Another important concept that is a subject of this review,
the soliton, also has important historic roots in 19th-century
Scotland, where it was first observed in 1834 by John Scott
Russell [62, 63]. A solitary wave called a ‘soliton’ is typically
associated with a propagating self-reinforcing wave packet
that persists for a long time. Such solitary waves have been
observed in many branches of physics, with perhaps the other
most known example beyond the solitons in fluid dynamics
being the optical solitons that take the form of self-focusing,
non-spreading laser beams that propagate without diverging
due to nonlinear optical effects [62, 63]. From a more gen-
eral standpoint, solitons are solutions of nonlinear partial dif-
ferential equations describing different physical systems and
they often have a topologically nontrivial nature, with the sub-
class of topological solitons often exhibiting various knotted
structures in physical fields and order parameter spaces [7,
62, 63]. Such topological solitons in higher spatial dimensions
can be stable and stationary in nature, or exhibit a host of dif-
ferent types of translational and rotational motions and other
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dynamics. The topology-related ideas in studies of solitons
were introduced by Skyrme [21], who was inspired by the
works of Kelvin and Russell at the same time [7, 59], and these
studies also relate to other physics concepts, such as instantons
and singular topological defects.

Remarkably, ideas that knots in fields could emerge and
behave like particles persistently recurred throughout history,
with the knotted fields of Gauss in the early 1830s to Kelvin,
Maxwell and Tait later in the 19th century, and Skyrme and
Witten in the second half of the 20th century being just sev-
eral particularly interesting examples [3–7]. With many roots
in history, fundamental studies of knotted fields nowadays
promise a means to realize new materials with pre-engineered
properties that differ from those of naturally occurring ones,
and they may provide new inspirations to the mathematical
knot theory and physics models in many branches of science,
well beyond condensed matter physics. This review article will
show how knots in soft matter systems indeed behave like
particles, resembling the behavior of atoms, molecules and
other particles, being capable of forming crystals and even
exhibiting active matter behavior.

3. Mathematical foundations

3.1. Diversity of knots and links

In exploring diverse manifestations of knots in physics it is
important to systematically classify them. Starting from the
times of Kelvin and Tait [6], this is done by creating tables of
knots (figure 3), where distinct knots are labeled by knot prop-
erties, such as the crossing number [4]. In the most common
Alexander–Briggs notation, each distinct knot is labeled by its
crossing number (the minimum number of double points in the
knot’s planar projections). An additional subscript used in this
notation is a numbering index for each knot of that crossing
number (figure 3), though this subscript has no special sig-
nificance because the order is arbitrary [4, 6]. For example,
the simplest object of knot theory, the unknot, is labeled as
01, whereas the simplest knot distinct from the unknot, the
trefoil knot, is denoted as 31 [3–6]. Similar notations clas-
sify multicomponent links of closed curves without common
points (figure 4), including linked unknots and various inter-
laced knots within the 3D space [6]. A widely known subclass
of knots are torus knots that (in one of their embodiments)
fully reside on surfaces of tori (figure 2(g)), with the simplest
of the torus knots again being the trefoil 31 knot (figure 2(b))
[6]. Each torus knot can be further uniquely specified by two
integers pT and qT (figure 2(g)) [3, 4]. The notation T(pT,qT)
implies that the knot winds qT times around a circle in the inte-
rior of the torus, and pT times around its axis of rotational sym-
metry, though different notations are used as well. A T(pT,qT)
knot is equivalent to a T(qT,pT) torus knot and the crossing
number is found as min{pT(qT − 1), qT(pT − 1)}, establishing
the relation between the different notations and characteristics
of torus knots. As an example, a trefoil knot in this notation
can be labeled as T(2,3) or T(3,2) (figure 2(g)) [6]. Depending
on a convention, the signs of pT and qT define the directions in
which the strands of the knot wrap around the torus, where,

Figure 3. A table of knots. Only the first simplest 24 knots are
shown [6], with their Alexander–Briggs notations given in the
bottom-right of each knot. Knots were generated using the KnotPlot
freeware (https://knotplot.com ).

most commonly, pTqT > 0 corresponds to the right-handed
knot configuration [6, 8].

Like knots, links can be distinguished by their crossing
numbers [4, 8]. One way of classifying the links is the Rolf-
sen table of the prime links labeled as Cn

p by the crossing
number C, the number of closed-loop components n and the
order number p among the links with C crossings within the
table (figure 4(a)) [6, 8]. Multicomponent unknots and knots
can be interlaced with each other in much more nontrivial ways
than just the direct linking. For example, a series of Brun-
nian links with three or more components can be inseparable
from each other without a direct linking of each of the compo-
nents (figure 4(b)) [6]. A widely known example is Borromean
rings with six crossings, though similar inseparability of closed
loops is achieved in other configurations of three or more com-
ponents with different crossing numbers (figure 4(b)) [4, 8].
Similar to knots, a torus link is a multicomponent link geomet-
rically situated on the surface of a torus and is realized when pT

and qT are not relatively prime (figure 2(g)). Knots and links
are chiral when they are not equivalent to their mirror images
(figure 2(b)). On the other hand, an oriented knot that cannot
be distinguished from its mirror image is an amphichiral (achi-
ral) knot [3–6]. Therefore, knot’s properties can be specified
further and, overall, there are five types of knot symmetries
defined by chirality and invertibility [4, 8] whose manifesta-
tions in material systems potentially could be related to the
ordered host medium’s symmetry. Torus knots are chiral (see
the examples of trefoil knots in figure 2(b)) [3–6].

What are the different ways in which knots and links could
manifest themselves in soft matter systems? Biopolymers,
synthetic macromolecules, proteins, DNA and even small
molecule strands can take the shapes of different knots and
links [64–68], either because of the chemical design or
because of the random-walk-like processes. Colloids can
be shaped as unknots, knots and links [34, 35, 69–72].
Singular vortices in LCs can take the shapes of knots [33]
and various solitonic defects can be knotted too [24, 32,
73], with knots and links even emerging in the topologically
nontrivial states of the order parameter. These knots and
links play an important role in defining physical behavior of
soft matter systems because of various types of topological
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Figure 4. Multicomponent links. (a) A Rolfsen table of the first prime links, with the first 36 links shown along with the corresponding
notations [6]. (b) Examples of Brunnian links with different numbers of components and crossing numbers, with the first being the
three-component Borromean link. All links were generated using the KnotPlot freeware (https://knotplot.com).

protection associated with them. When creating knots on
strings like in the case of shoelaces, such as the overhand
knot in figure 2(a), we often intend undoing them at a later
time. Such unknotting is possible by manipulating the loose
ends of the string, but this would be impossible if the string
were to be infinitely long or if its two ends were to be glued
together to transform the overhand knot into a trefoil knot
(figures 2(a) and (b)). All the knotted configurations shown
in figures 3 and 4 cannot be unknotted or transformed one to
another without cutting or gluing, similar to how one cannot
inter-transform topologically distinct surfaces like a torus and
a sphere. Throughout this review, we shall see examples of
how such topological protection manifests itself when related
to knotted topology of colloids and order parameter fields of
various soft matter systems. Before we proceed, however, it is
also useful to briefly review the homotopy theory [74].

3.2. Homotopy theory of topological solitons and singular
defects

Topologically nontrivial field configurations can be of the sin-
gular type (singular topological defects), containing regions of
physical space where the order parameter cannot be defined, or
instead of the nonsingular type (topological solitons), within
which the structure of the field is continuous everywhere, but it
cannot be continuously morphed to a trivial uniform state with-
out destroying the order or introducing singular defects. Much
like (though not exhaustively) genus and Euler characteristics
distinguish topologically distinct surfaces, various topological
field configurations can be classified on the basis of mappings
of these fields from the physical configuration spaces to the
order parameter spaces (the manifolds of possible values of the

Figure 5. Homotopy theory classification of singular and solitonic
field configurations. The green, yellow and blue colors highlight
different examples of topologically nontrivial field configurations
discussed within this review, whereas the π3(S3) = Z topological
solitons (red) arise in high-energy and nuclear physics models of
subatomic particles.

order parameter) [74–76]. Typically, this is the mapping from
spheres of various dimensions to the order parameter spaces
that are often also spheres. Therefore, the homotopy groups
of spheres classifying these mappings are the most common
(figure 5) and are often utilized to label the different topo-
logically distinct field configurations, though there are also
other homotopy group examples relevant to LCs that will also
be briefly discussed below in the review. Algebraic topology
describes how such spheres of various dimensions can wrap
around each other, which is systematically characterized by
the homotopy groups that describe the structure of topological
spaces (without considering the precise geometry) [6, 74]. In
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Figure 6. Topologically nontrivial structures of fields. (a) and (b) Examples of 2D π1(S1) = Z singular defects classified by mapping the
vector field from S

1 surrounding the singularity to S
1 order parameter space of vectors confined to a 2D plane, with the order parameter space

covered once in (a) and twice in (b), yielding the corresponding winding numbers. (c) An elementary +1 radial point defect representing
a family of point singularities with integer-valued hedgehog charges labeled as π2(S2) = Z. (d) An example of a π1(S1) = Z topological
soliton in the form of an elementary 1D solitonic wall with 360◦ unit vector rotation embedded in the uniform (vertical, pointing upwards)
far-field background, which can be represented on S

1, as shown in (e), where red–blue colors on R
1 and S

1 correlate with and depict vector
orientations. (f) Skyrmions in R

2 (bottom) can be mapped bijectively from field configurations in S
2 (top) through stereographic projections

(P). The Neel-type (bottom-left) and Bloch-type (bottom-right) 2D skyrmions are related by a smooth rotation (R) of vectors. The vector
orientations are shown as arrows colored according to the corresponding points on the target S2 (inset). (Part (f) is reproduced with permission
from [79]). (g) A schematic of the S

2/Z2 order parameter space, with the diametrically opposite points of the circular base identified. (h)–(j)
Half-integer defects in nonpolar 2D n(r), including wedge disclinations (h) and (j) that in 2D would be characterized by opposite s = ±1/2
winding numbers, and a twist disclination (i). In R

3, there is only one type of topologically distinct disclinations different from a uniform
state, with the topologically distinct states labeled π1(S2/Z2) = Z2; local structures of defect lines like the ones shown in (h)–(j) can smoothly
inter-transform one into another in 3D and correspond to a single, topologically equivalent state. (k) A twisted wall with 180◦ rotation of
nonpolar n(r) embedded in a uniform background can be compactified on S

1/Z2
∼= S

1. (l) The mapped director field of the twisted wall winds
around the order parameter space S

1/Z2 once; since S
1/Z2

∼= S
1, 1D LC solitons are classified by π1(S1) = Z.

studies of topological solitons and singular defects, such clas-
sifications provide valuable means of summarizing topologi-
cally different structures in the order parameter fields, although
the existence of a nontrivial element in the homotopy class
does not guarantee their energetic stability or experimen-
tal observation [74]. The n-dimensional spheres (n-spheres,
denoted as S

n) are defined as sets of points equidistant from
the origin in n + 1 dimension, with an S

1 circle being the
1-sphere embedded in 2D space (R2), S2 being an ordinary
sphere embedded in 3D space (R3) and S

0 being a 0-sphere
embedded in R

1 that comprises two points equidistant from
the origin in 1D, and so on [3–7, 77, 78]. The homotopy group
labeled as πi(Sn) is the ith homotopy group that enlists the
topologically different maps from S

i into S
n, where none of

the distinct mappings can be continuously deformed to the
other mappings (figure 5) [74–78]. Algebraic topology results
are well established and depend on the integers i relative to
n, with πi(Sn) = 0 for i < n (figure 5), which means that the
corresponding homotopy group is the trivial group [77, 78].
In mappings between spheres of the same dimension (i = n),

πn(Sn) =Z, so that the spheres can be wrapped around spheres
an integer number of times for each map (figure 5). When
i > n, a particularly interesting example of the mappings is
called the Hopf fibration [77, 78] (figure 5), which wraps S3

around S
2 an integer number of times, π3(S2) = Z. How can

this abstract mathematical knowledge of mappings help with
classifying topological defects in soft matter?

The procedures for utilizing homotopy theory for solitonic
and singular defect field configurations differ slightly because
of their different nature. Since the singular defects in fields
are discontinuities in the form of walls, lines and points, with
the order parameter varying continuously outside these singu-
lar regions, one can surround them with spheres of the corre-
sponding dimensions (say S

1 for line defects and S
2 for point

singularities) and characterize how the field, like the vector or
director field, varies around these spheres (figure 6) [74–76].
The order parameter spaces often also take the form of spheres.
For example, the order parameter space for unit vectors in 3D
space R3 is S2 (describing all possible orientations of the unit
vector), but it becomes S1 when these unit vectors are forced
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to confine their orientations into a 2D plane R
2 and becomes

S
0 when the unit vectors can only take orientations parallel

or antiparallel to the positive direction in R
1. Therefore, the

topologically distinct singular defects in unit vector fields can
be classified with the help of maps from the i-spheres sur-
rounding them to n-spheres describing their order parameter
spaces [74]. Some of the simplest examples are illustrated in
figure 6. Just like one can wrap one circle around the other
an integer number of times (imagine wrapping a closed-loop
rubber band around a finger), the structure mapped from S

1

around a singular defect in 2D can wrap the S
1 order param-

eter circle an integer number of times, π1(S1) = Z, indicating
that singular defects with integer winding numbers exist in this
system (figures 6(a) and (b)). Also, the structures of a vector
field mapped from S

2 around a singular point defect in 3D can
wrap the S2 order parameter sphere an integer number of times
(figure 6(c)), π2(S2) =Z, again defining the charges of all pos-
sible singular point defects in this system (figure 6) [74–76].
On the other hand, the fact that π1(S2) = 0 informs one that
singular line defects in 3D unit vector fields are topologically
unstable, so that they cannot be knotted or even exist because
they can be smoothly morphed to a uniform topologically triv-
ial state [74]. Likewise, since π2(S1) = 0, one cannot form
topologically nontrivial point defects when the unit vectors are
forced to take orientations confined to a 2D plane [75].

What about nonsingular solitonic structures with differ-
ent topologies? While they may seem to be rather differ-
ent from singular defects, always having the field orientation
well defined, they can be classified on the basis of the very
same sphere-to-sphere maps (figure 5) [74–78]. In R

1, a soli-
tonic 360◦-twist nonsingular wall in a unit vector field has
the far-field vector pointing upwards, and, thus, this config-
uration space can be ‘compactified’ (by connecting the far-
field regions of R

1 with like-oriented unit vectors) into S
1

(figures 6(d) and (e)) [7, 24, 79]. The topological class of the
solitonic structures of this kind is then labeled by π1(S1) = Z,
similar to the case of singular line defects for the 2D unit vec-
tor fields (figures 6(a), (b), (d) and (e)) [79]. The configuration
space of solitonic topological structures embedded in the uni-
form far-field background inR2 can be compactified to S

2 (e.g.
by means of stereographic projection), so that the nontrivial
result π2(S2) = Z from algebraic topology (in addition to clas-
sifying singular point defects like the one shown in figure 6(c))
also informs us that all possible topologically nontrivial struc-
tures in this case are characterized by the integer-valued 2D
skyrmion numbers (figure 6(f)) [80, 81]. Similarly, the config-
uration space in R

3 with the uniform far field is compactified
to S

3 through a higher-dimensional analog of stereographic
projection and the mathematical result from algebraic topol-
ogy π3(S2) = Z also informs us that the Hopf indices of 3D
spatially localized solitons also take integer values [7].

Unit vector fields are not the only ones encountered in
soft matter (figure 1), and, thus, the n-spheres cannot always
represent the ground-state manifolds for the order parameters
[74–77]. The LC unit director fields with nonpolar symmetry
describe the average orientation of rod-like molecules, n(r) ≡
−n(r) (figure 1(a)). Because of the nonpolar nature, represent-
ing all orientations of n(r) on S

2 requires only half the sphere

and leaves diametrically opposite points non-distinguishable
from each other (figure 6(g)) [74]. The order parameter space
for n(r) is S

2/Z2 ≡ RP2, a sphere with diametrically oppo-
site points identified (figure 6(g)). One of the major differences
when compared to unit vectors is that π1(S2/Z2) = Z2, mean-
ing that singular vortex lines (disclinations) can be stable in
the 3D space of LCs [74, 75], though only one type of such
defect lines can be realized that is topologically different from
the uniform state. These defect lines can have different local
structures when embedded in 3D samples, including that of
wedge disclinations with opposite signs of winding numbers
(figures 6(h) and (j)) (which are topologically distinct when
realized in 2D) and twist disclinations (figure 6(i)). In 3D, how-
ever, the defect line structures shown in figures 6(h)–( j) can be
smoothly morphed one to another within R

3 and are therefore
topologically the same, much like (though not exactly) the sur-
faces of a doughnut and of a coffee mug are characterized by
the same value of genus g = 1 and (in one’s imagination) can
be morphed one into another without cutting or gluing [74].
In a similar way, unlike in vector fields, one can realize non-
singular twist domain walls with only 180◦ twist of nonpolar
n(r) embedded in a uniform far-field background (figures 6(k)
and (l)), which are labeled by π1(S1/Z2) ≡ π1(S1) = Z [79].
Solitonic structures that exist in lower dimensions can also
be embedded in higher dimensions while being translationally
invariant with respect to translations along them. For example,
the π2(S2) = Z solitons can be found as translationally invari-
ant structures spanning R

3 of LCs and magnets, either as indi-
vidual spatially localized structures or periodic arrays [79].
When embedded in R

3 in LC samples like glass cells of
finite thickness, such solitons often terminate on π2(S2) =
Z point defects due to boundary conditions [79–82]. Simi-
larly, translationally invariant solitonic walls π1(S1/Z2) = Z

are often embedded into finite-sized structures in 2D by singu-
lar defects of the same classπ1(S1/Z2)=Z; in 3D samples with
all 3D orientations of director allowed, such twist walls are
described by π1(S2/Z2) = Z and can be embedded into a uni-
form background by the π1(S2/Z2) = Z disclinations, forming
one type of the so-called ‘cholesteric fingers’ [79]. The exam-
ples above illustrate a more general rule for imbedding lower-
dimensional solitonic structures into a uniform background in
higher dimensions with the singular defects of a homotopy
class matching that of solitons [79]. The soft matter topolog-
ical solitons and defects have many topological counterparts
in other branches of physics, ranging from elementary parti-
cle physics to cosmology. For example, π3(S3) = Z Skyrme
solitons (figure 5) are used to model subatomic particles in
high-energy and nuclear physics [7, 21], which is also the rea-
son for often referring to their π2(S2) = Z low-dimensional
analogs in LCs and magnets as ‘baby skyrmions’ [7, 24, 80].

Although exceptionally useful in classifying topologically
distinct field configurations, homotopy theory does not pro-
vide the means for exploring the entirety of the topological
complexity of fields in soft matter, even in cases when defects
and solitons are embedded within a bulk of an ordered medium
like LC [82–86]. For example, a closed loop of a half-integer
π1(S2/Z2) = Z2 disclination is equivalent to a point defect
π2(S2/Z2) =Z in the far field, but its hedgehog charge depends
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Figure 7. Nematic colloids comprising spherical particles. (a) and
(b) Polarizing optical micrographs of an elastic dipole formed by
spherical colloidal particles with perpendicular surface anchoring in
a planar nematic LC cell. Orientations of the polarizer, analyzer and
the slow axis of a full-wave 530 nm retardation plate are labeled ‘P’,
‘A’ and ‘γ’, respectively. (c) and (d) Schematics showing the
corresponding (c) nonpolar and (d) vectorized n(r), with hyperbolic
point defects shown by black (c) and red (d) filled circles. (e) and (f)
Schematics of the quadrupolar n(r)-configuration around particles
with (e) homeotropic and (f) tangential surface boundary conditions.
The black ring in (e) represents the ‘Saturn ring’ half-integer
disclination loop. Boojums are marked as black-filled hemi-circles
at the particle’s poles along the far-field alignment. The inset in (f)
shows the radial ns(r) director field at the interface of an LC and
colloidal sphere corresponding to each of the two boojums.

on how this disclination is closed on itself, its local struc-
ture, twisting, knotting and possible linking with other defect
loops [82, 84–86]. Knowledge of this relation cannot be pre-
dicted solely by the homotopy theory, but can be understood
by invoking the analysis of the disclination’s structure along
the loop, its twist and writhe [84, 85]. In other words, the
homotopy theory identifies what the knotted fields can be com-
prised of, but not how to obtain field configurations with the
desired π2(S2/Z2) hedgehog number by looping and knotting
π1(S2/Z2) vortex lines or how to construct solitons with the
desired π3(S2/Z2) Hopf index by looping and knotting 2D
π2(S2/Z2) skyrmions. Moreover, when LCs and colloidal fer-
romagnets interact with surfaces due to various boundary con-
ditions, the topology of the structures of these fields interplays
with that of surfaces, which can be rather nontrivial and is a
subject of ongoing studies. The sections below will overview
illustrative examples showing how topology can define the
behavior of soft matter systems like nematic colloids, LCs,
emulsions, polymer–LC composites, colloidal ferromagnets
and so on.

4. Topology of nematic colloids and drops

4.1. Spheres and handlebodies as colloidal particles and
confinement surfaces

Colloids are an abundant type of soft matter consisting of tiny
(typically nanometers-to-micrometers in dimensions) particles
dispersed in chemically distinct host media. The shape of col-
loidal particles is usually spherical or topologically equivalent
to a sphere, though recently colloids with surfaces that have a

topology distinct to that of spheres have been developed [34].
When the dispersing medium of the colloidal system is the LC,
many interesting forms of interactions between the topologies
of surfaces and molecular alignment fields can arise due to the
boundary conditions at the LC–particle interfaces. Figure 7
shows polarizing micrographs (figures 7(a) and (b)) of the so-
called ‘elastic dipole’ director structure (figure 7(c)) [53–55,
87] formed by a solid spherical colloidal particle immersed
into an aligned nematic LC medium. The particle is accompa-
nied by a point defect, and one can immediately recognize that
the topological defect effectively compensates for the radial
structure of the director on the particle’s surface (figures 7(c)
and (d)) [53, 55, 87]. The boundary conditions on the colloidal
inclusion’s surfaces effectively act as a radial hedgehog point
defect, being compensated by a hyperbolic point defect of the
opposite hedgehog charge when embedded in the aligned LC
(figure 7(d)). Such behavior is natural as the net charge of
defects and particles embedded in a uniformly aligned back-
ground has to be zero, topologically neutral. Therefore, this
structure not only has the dipolar-type elastic far-field per-
turbation of n(r) [87], but also features a topological dipole
formed by colloidal and singular defect entities of opposite
hedgehog charge. However, this simple example can also be
further connected to the Poincare and Gauss topological theo-
rems describing interactions of fields and surfaces. Consistent
with these theorems, the topological hedgehog charge of the
distorted 3D n(r) at the particle’s surface is ±χ/2=±1, where
χ= 2 is the Euler characteristic of the sphere [30]. Indeed, by
choosing to vectorize the director so that vectors point out of
the surface of the sphere, one can see that the m = −1 topo-
logical charge of the particle-induced hedgehog point defect
(black and red filled circles shown in figures 7(c) and (d))
compensates for the +1 charge of the colloidal particle and
obeys the expected relation [55]. Had one chosen to globally
vectorize n(r) so that the vectors point into the particle’s sur-
face, the charge of the particle-induced defect would be −1
(sink) and that of the hyperbolic point defect nearby would
be +1 (source), showing that the hedgehog charges of point
defects in nematics are defined up to the sign and that these
signs reverse upon changing vectorization directions between
the two antiparallel directions along n(r) [55]. For a nonpo-
lar nematic n(r) field, inducing a hyperbolic hedgehog point
defect is not the only way to embed the particle with perpen-
dicular surface boundary conditions within an aligned LC. The
other possible structure, shown in figure 7(e), is what is known
as a nematic colloidal quadrupole (note the quadrupolar nature
of elastic distortions away from it) with a so-called ‘Saturn
ring’ disclination defect loop [87–91]. This disclination loop
is an unknot of a vortex line, the simplest object in the knot
tables (figure 3). Since both the hedgehog point defect and the
disclination loop can compensate for the same radial structure
of n(r) at the particle’s surface, it appears that this particular
disclination loop and the point defect must be topologically
equivalent and assigned the same hedgehog charge [12, 90]. In
the case where a colloidal sphere exhibits tangential boundary
conditions, n(r) features two surface point defects capping the
particle at north and south poles (figure 7(f)) [53, 54]. While
here one can understand this axisymmetric structure from very
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simple considerations of continuity of n(r) lines tangent to the
colloidal sphere’s surface, this is also a direct manifestation
of the Hairy Ball theorem, which requires that the field lines
tangent to S

2 form defects with a net total winding number
equal to χ = 2. Indeed, the degrees (winding numbers) of the
two +1 defects in the ns(r) field tangent to the sphere’s sur-
face add to +2 (figure 7(f)) [54, 55]. Beyond tangential and
perpendicular boundary conditions, the understanding of topo-
logical defects at the surfaces and in the bulk of LCs induced by
spheres was recently extended to tilted and conically degener-
ate boundary conditions, where boojums and disclination rings
tend to appear at the same time [92, 93].

Although the spherical nematic colloids are well studied
and understood, topologically nontrivial colloidal particles,
such as the ones with shapes of handlebodies, can be fabri-
cated by means of photolithography, two-photon photopoly-
merization or wet chemical synthesis [34, 55, 69–71]. Such
colloidal particles can be characterized by the Euler charac-
teristic χ = 2 − 2g, where g is the particle’s genus deter-
mined by the number of holes in its surface [30]. Although the
role of particle topology in determining the colloidal behav-
ior remains to be understood in fundamental contexts related
to Brownian motion, diffusion and self-assembly mediated by
electrostatic, depletion and other interactions, most of the work
carried out to date was reported for when such particles were
introduced into a nematic LC [34, 55, 69–71, 91]. This interest
in such nematic colloidal dispersions of topologically com-
plex particles stems from this soft matter system’s ability to
probe interactions between surfaces and field configurations,
where these particles induce topological defects dictated by
colloidal topology. Surface functionalization of particles, such
as the handlebodies of different genus g made from silica, gold
or different polymers [34, 55, 69–71], allows one to define
tangential, perpendicular and conically degenerate boundary
conditions for the LC molecular alignment and n(r) [34, 55,
69–71, 92, 93]. The strength of these boundary conditions can
be tuned by using different materials and surface functional-
ization approaches [94–98]. The n(r) around these handle-
body colloids, which approaches the far-field director n0 at
large distances, can be probed by conventional polarizing opti-
cal microscopy and different 3D director imaging techniques
[99–102], including sub-diffraction-limited mapping of n(r)
[103].

Like for spheres (figure 7), the interplay between the topol-
ogy of colloidal surfaces and LC alignment field can be probed
for ring-shaped and handlebody colloids with different bound-
ary conditions on particle surfaces as well. For tangential
surface anchoring, this interplay prompts the appearance of
defects dubbed boojums (which we already encountered when
discussing colloidal spheres, figure 7(f)), which are ubiquitous
and form on the surfaces of ordered media like superfluids,
LCs and Bose–Einstein condensates [104–108]. To minimize
free energy due to n(r)-distortions (figure 8), the nonspher-
ical particles tend to align with their ring planes parallel to
n0, although metastable configurations with ring planes per-
pendicular to n0 are also observed and can be reproducibly
obtained by repetitive local melting of the LC by laser tweez-
ers, followed by quenching it back to the nematic state [69].

Handlebody-shaped polymer particles with different genus g
distort the nematic molecular alignment while obeying topo-
logical constraints to induce at least 2g − 2 boojums, as
revealed by characterizing 3D textures of n(r) using polar-
ized nonlinear optical imaging (figure 8) [69]. Defects in the
2D ns(r) director field at the LC–colloid interface have a net
strength adding to χ [30] of the handlebody, although one
often also encounters additional surface defects of opposite
signs that self-compensate each other, providing additional
ways of satisfying topological constraints at multiple stable
or metastable particle orientations [69]. For example, a sin-
gle colloidal torus with a ring plane parallel to n0 induces four
boojums (figures 8(a)–(d)) in the most commonly observed
structures [69]. A less frequently observed metastable config-
uration of a torus particle aligned perpendicular to n0 contains
no boojums, but rather a nonsingular axisymmetric n(r) that
satisfies tangential boundary conditions on the surface of the
particle while approaching n0 at large distances from its sur-
face [69]. The 2D ‘surface’ nematic director at the surface of
a torus with tangentially degenerate boundary conditions con-
tains no defects in the latter case, but four 2D defects (point
disclinations) in the former case, two of strength (winding
number) +1 and two of strength −1 (figures 8(a)–(d)), with
winding numbers adding to zero, Σ isi = χ = 0, in both cases.
In a similar way, handlebody colloids with g > 1 aligned with
ring planes parallel to n0 induce several stable and metastable
configurations of n(r) with different numbers and locations
of boojums (figures 8(e)–(m)). The number of induced boo-
jums for g = 2 is most commonly within 6 to 10, and the net
winding number of defects in ns(r) tangent to the particle’s
surface is always Σ isi = −2 (figures 8(e)–(i)). For colloids of
genus 3, 4 and 5 (figures 8(j)–(m)) and all other colloids, the
total strength of the point disclinations piercing ns(r) at the
LC–colloidal interface also adds to the Euler characteristic,
Σ isi = χ, in agreement with the Poincare–Hopf index theorem
[69]. The s = ±1 point defects locally split into pairs of semi-
integer disclinations of equivalent total strength of singular-
ity (figure 8(i)). Rather interestingly, these split-core boojums
have handle-shaped bulk disclination semi-loops terminating
at the ±1/2 surface defects within ns(r) (figure 8(i)) [69, 109,
110]. Although various stable and metastable states can be
expected, colloidal surface topology dictates the presence of
at least 2|χ| half-integer defects or at least |χ| integer-strength
boojums (or some combination of them) of a total strength
equal to χ for strong and finite boundary conditions on par-
ticle surfaces. We note that this does not have to be the case
for weak surface anchoring or for particles with dimensions
approaching that of the size of singular defect cores (tens of
nanometers), where surface boundary conditions can be vio-
lated so that the particles produce no or very little perturbations
of the director [71].

Experiments reveal that colloidal handlebodies with per-
pendicular boundary conditions also tend to spontaneously
align with ring planes either perpendicular or parallel to n0,
which again is driven by minimizing the elastic energy costs
of the particle-induced n(r) (figure 9) [34]. Handlebody col-
loidal particles with planes of rings parallel to n0 induce point
defects, both inside and outside of the rings (figures 9(a)–(f)),
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Figure 8. Colloidal tori and handlebodies with tangential boundary conditions. (a)–(d) A torus-shaped particle with tangential anchoring and
the ring plane parallel to n0. Polarizing optical micrographs taken without (a) and with (b) a 530 nm retardation plate with a slow axis Z ′.
Orientations of the polarizer and analyzer are labeled ‘P’ and ‘A’, respectively. (c) A bright-field micrograph of a torus with four boojums
visible as dark spots. (d) A schematic of n(r) in a plane containing the ring and n0. Insets schematically depict 2D defects in the director ns(r)
tangent to the particle’s surface. Green and red semi-spheres and circles represent, respectively, s = 1 and s = −1 surface defects in ns(r).
(e)–(h) Colloidal handlebodies with g = 2. Polarizing optical micrographs (e) and (g) and corresponding bright-field (f) and (h) images of the
handlebodies with ring planes parallel to n0 but with the axis connecting the centers of two rings at different orientations with respect to n0.
(i) Numerically calculated n(r) in the LC bulk (blue rods) and ns(r) on the surface (black rods) of the g = 2 colloidal handlebody; the inset
shows a detailed view of n(r) and ns(r) in the near-boojum regions marked in (i), with the isosurfaces of the constant reduced scalar-order
parameter Q = 0.25 shown in red and visualizing a handle-shaped core structure of the boojum. (j)–(m) Colloidal handlebodies with genus
of (j) 3, (k) 4 and (l) and (m) 5. Reproduced with permission from [69].

which manifest themselves as points of termination of dark
and bright brushes in the polarizing optical micrographs
(figures 9(g)–(i)). Handlebody colloids aligned perpendicular
to n0 are all surrounded by single half-integer exterior disclina-
tion loops of hedgehog charge equal to unity (figures 9(j)–(n)).
Additionally, each such genus-g particle has g defects in its
holes, which are either singular disclination loops or hyper-
bolic point defects of elementary (unity) topological hedgehog
charge (figures 9(j)–(n)). Disclination loops in the holes of
each handlebody can be transformed into point defects and
vice versa by melting the LC into an isotropic state using high-
power focused laser light, showing that they correspond to
stable or metastable structures (separated by energetic barri-
ers) under the different conditions [34, 55]. Hedgehog charges
of these defects have been determined for vector field lines
pointing perpendicularly outward from the particle surfaces

and mapping onto the S
2 order parameter space for globally

vectorized n(r). Like for spheres (figures 7(c) and (d)), since
n(r) is nonpolar (n ≡−n), one could have chosen the opposite
direction of vectorizing, which would consequently reverse
the signs of all hedgehog charges due to defects and surfaces
of particles, all embedded within an aligned LC. Although
the handlebodies orientated perpendicular and parallel to n0

induce very different n(r), the sum of hedgehog charges is
always pre-determined by ±χ/2 = ±(1 − g). This finding is
consistent with predictions of topological theorems [30] that
define the charge of the n(r) on the surface of the handlebody
of a given χ. The topological hedgehog due to n(r) on the
particle’s surface is compensated by the net charge of particle-
induced defects

∑
imi = ±χ/2 (of opposite sign) in the LC

bulk, as is needed to embed such a colloidal object into the
uniformly aligned LC [34, 55]. This relation was found to hold
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Figure 9. Colloidal handlebodies with perpendicular surface boundary conditions. (a)–(d) Schematics showing the vectorized-field represen-
tations of n(r) (green lines with arrows) around single ((a) and (c)) and double ((b) and (d)) colloidal handlebodies in the plane of the rings ((c)
and (d)) and in planes orthogonal to them ((a) and (b)). (e) and (f) Diagrams of vectorized n(r) around hyperbolic topological point defects
of negative (e) and positive (f) signs shown by red- and magenta-filled spheres, respectively. (g)–(j) Polarizing optical micrographs of n(r)
for samples with different colloidal handlebodies. Orientations of the polarizer and analyzer are the same for all micrographs (g)–(j) and are
labeled ‘P’ and ‘A’ in (g). Colors in (j) emerge from polarized interference of imaging light passing through the LC. (k)–(n) Schematics of
n(r) (black lines) around colloidal handlebodies of different genus. Red and magenta lines show outer and inner disclination loops of hedgehog
charges m = −1 and m = +1, respectively. Magenta spheres show the m = +1 hyperbolic point defects. Reproduced with permission from
[34].

for handlebodies with g = 1, 2, . . . , 5 (figure 9) and for
spherical colloids with g = 0 (figure 7). Although perpen-
dicular boundary conditions due to the handlebody-shaped
particles in the LC with a uniform n0 can be satisfied by a
minimum number of point or ring defects of the same sign
with the total hedgehog charge of

∑
imi = ±χ/2, these field

configurations are often energetically costly and tend to relax
to topology-satisfying field configurations that minimize the
elastic free energy but have additional self-compensating pairs
of defects of opposite hedgehog charge. In the experimental
systems, colloidal g-handlebodies typically induce g + 1 indi-
vidual defects, from which two self-compensating defects have
opposite signs and appear just to minimize free energy [55,
111]. These additional self-compensating defects are caused
by energy minimization rather than topological requirements.
The fact that these extra defects help by minimizing energy

may sound strange because they are typically associated with
high energy costs; it often turns out to be energetically bene-
ficial to have such extra defects rather than much more severe
bend-splay-twist deformations of the director that would be
required to keep the overall number of defects at the topologi-
cally required minimum.

Examples in figures 7–9 show that, by building on the inter-
play of surface and field topologies with roots in Gauss, Hairy
Ball and Poincare theorems, one can (on-demand) generate
LC surface defects of total net winding number adding to ±χ
and bulk defects with hedgehog charges adding to ±χ/2 by
using colloidal particles with various Euler characteristics. It is
also interesting that colloidal unknots and handlebodies induce
unknots or point defects in the forms of closed-loop disclina-
tion defects in their interior and exterior [34, 55], as well as that
the energetically driven number of unknots or singular points
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Figure 10. Nematic colloidal knots with tangential boundary conditions. (a) Trefoil colloidal knots shown in (left) an optical micrograph of a
photopolymerized colloidal trefoil torus knot, with the corresponding 3D model shown in the inset, and (right) a nonlinear luminescence image
of a particle fabricated by means of the spatially-resolved graphene oxide reduction with femtosecond laser light (left-side image reproduced
with permission from [35]; right-side image reproduced with permission from [125]). (b)–(d) Scanning electron micrographs of a (b) 4 × 4
array of T(5,3) torus knots and (c) and (d) a single T(3,2) knot shown as viewed along the torus axis (c) and in an oblique direction (d). (e)
Bright-field and polarizing optical micrographs taken without polarizers (left), between crossed polarizers (middle), and with an additional
530 nm retardation plate with its slow axis aligned as shown by the blue double arrow (right). Orientations of crossed polarizers are shown by
white double arrows. Locations of boojums are marked by red arrows. (f) A 3D nonlinear fluorescence pattern (left) and representation of n(r)
deviating away from n0 due to the incorporated trefoil knot particle (right). Colors depict the azimuthal orientation of n(r) when projected
onto a plane orthogonal to n0 according to the scheme shown in the inset. The structure is visualized on a tube following the knotted particle’s
surface; points where colors meet are the boojum defects. (g) The same as in (f) but for the T(5,3) particle. (h) An optical micrograph of the
T(5,2) knot particle obtained for crossed polarizers (white double arrows) and a phase retardation plate (blue double arrow) aligned with its
slow axis at 45◦ to polarizers and n0. (i) The reconstructed 3D fluorescence pattern due to the T(5,2) colloidal knot particle and n(r) induced
by the particle as viewed perpendicular to the torus axis. ( j) The corresponding numerical model showing boojums induced by the T(5,2)
particle. Green and magenta areas show the spatial regions of a reduced scalar-order parameter, corresponding to the s =−1 and s = 1 defects
in the 2D n(r) at the LC–particle interface, respectively. Reproduced with permission from [35].

that a particle with perpendicular boundary conditions
generates in a nematic LC increases with g. Even though
some of these unknots are topologically self-compensating
and some are being substituted by point defects to minimize
energy [34], this interplay between the topology of colloids
and defects poses a question whether various knotted vortices
can be induced by colloidal particles with knot-like shapes,
which is addressed in the next section.

4.2. Knots as colloidal particles

By taking advantage of two-photon photopolymerization[112]
and other fabrication techniques [55], it is also possible to
fabricate knot-shaped microparticles (figures 10(a)–(d)) and
explore the interplay of topologies of the knotted surfaces
and molecular alignment fields [35]. This knowledge may
be used for understanding other experimentally less accessi-
ble physical systems with similar topological objects. On the
other hand, such knotted colloids can be interesting build-
ing blocks of topological matter arising from the mesoscale
self-organization of knotted colloidal ‘atoms’ driven by mini-
mization of elastic energy and mutual entanglement of induced
defects [35]. When dispersed in LCs, knotted colloids with

controlled surface boundary conditions distort n(r), so that
the minimization of free energy associated with these elas-
tic distortions again plays a key role in the physical behavior.
For example, to minimize elastic free energy, trefoil particle
knots tend to align with their torus planes perpendicular to
the undistorted far field n0. Particle-induced boojums at their
surfaces are visible in bright-field micrographs as dark points
due to scattering (figure 10(e)). A color-coded 3D represen-
tation of the azimuthal orientation of n(r) reveals 12 boojums
around the particle (figure 10(f)), forming nearby regions with
the largest local curvature of the trefoil knot’s surface [35]
and where the particle’s surface is locally orthogonal to n0.
These boojums can be characterized by a net winding num-
ber s of the defects in a 2D field ns(r) at the LC–particle
interface, just as in the case of colloidal handlebodies that
were discussed above, obtaining Σ isi = χ = 0, where χ =
0 for the knot particle’s surface [30]. Although this topo-
logical constraint could be satisfied in many different ways
that yield Σ isi = 0, the one observed experimentally cor-
responds to a minimum of the total free energy, containing
12 surface point defects, out of which six s = 1 boojums
localize on exterior tips of the knot and their six s = −1
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counterparts reside on the diametrically opposite sides of the
knotted tube along n0 [35]. Such characterization of particle-
induced defects can be extended to other torus knots, as shown
for another example in figures 10(g)–( j). Generally, colloidal
torus knots with tangential anchoring induce boojums which
obey the same topological constraint Σ isi = 0 as their trefoil
counterparts (figures 10(g)–( j)), since they all have χ = 0.
Typically the number of self-compensating surface defects
in stable colloidal structures induced by torus-knot particles
with tangential anchoring is four times the number of knot
string’s turns around the circular axis of the corresponding
torus, though one occasionally also observes metastable states
with different net numbers and locations of boojums with the
winding number adding to χ = 0 [35, 55].

Trefoil particle knots with perpendicular surface boundary
conditions tend to align with a torus plane orthogonal to n0

in the ground state (figure 11), but can also exhibit metastable
orientations, including those parallel to n0. Polarizing optical
micrographs (figures 11(a) and (b)) and depth-resolved nonlin-
ear optical ‘slices’ obtained for different polarizations of fem-
tosecond excitation laser light (figures 11(d) and (e)) show the
presence of defect lines and match the theoretical configura-
tion (figures 11(c) and (f)) [35, 55]. These defect lines compen-
sate for the director distortion imposed by the particle’s surface
(figures 11(c) and (f)). Two linear defects tracing the knotted
particle’s tube are also the basic feature of metastable states,
although these states are often accompanied by disclination
rewirings (figures 11(g)–( j)). This shows that knotted particles
can generate defect loops in nematic fields in such a way that
these singular loops are knotted too. For a trefoil knot particle
shown in figures 11(a)–(f), the two defect loops are both trefoil
knots linked with each other and with the particle knot (inset
of figure 11(f)), effectively forming a three-component defect-
particle composite link. Although the torus-knot particles with
perpendicular boundary conditions are typically accompanied
by two knotted half-integer defect lines, the topological con-
straints allow for flexibility in terms of precise ways of satis-
fying them because the knotted and interlinked loops can have
different effective hedgehog charges that just need to add to
zero because of the colloidal torus knot’s surface with χ = 0.
These configurations can be selected by varying confinement,
quenching of temperature and applying external fields, thus
creating an experimental arena for controlling this behavior.
Knotted defects can mediate colloidal self-assembly by means
of both anisotropic elastic forces and entanglement. Therefore,
by establishing general principles for the 3D control of defects,
the demonstrated interplay of the topologies of knotted col-
loidal surfaces and nematic fields provides a basis for highly
unusual forms of self-assembly [55].

Knotted structures of disclinations could also be induced by
particles differing from knots, such as colloidal spheres [33,
113–115] with the perpendicular surface anchoring in twisted
LC cells and by nonorientable colloidal surfaces [36]. It is very
interesting that free-energy minimization and topological con-
straints in these cases can yield knotted vortices as stable or
metastable structures in the presence of confinement, though

Figure 11. Colloidal knots with perpendicular boundary conditions.
(a) and (b) Optical micrographs of a trefoil knot in an aligned
nematic (a) taken between crossed polarizers (white double arrows)
and (b) with a 530 nm retardation plate (blue double arrow) inserted
with its slow axis at 45◦ to the polarizers. (c) Computer-simulated
n(r) within a cross-section perpendicular to the knotted tube marked
in (f). (d) and (e) Nonlinear polarized fluorescence images of n(r)
around the knotted particle shown in (a) and (b), and for the
femtosecond excitation-light polarizations (green double arrows) at
different orientations with respect to n0. Red arrows mark the defect
lines visible in the image plane. (f) Computer-simulated n(r) around
a trefoil knot with perpendicular boundary conditions and the torus
plane self-aligned orthogonally to n0. Green and magenta tubes
show the regions with a reduced scalar-order parameter
corresponding to the cores of the two knotted singular defect lines
seen in the cross-sections (d) and (e). The bottom-left inset shows a
topological schematic of the mutual linking between the particle
knot (blue) and defect knots (green and magenta). (g)–(j)
Bright-field micrographs of colloidal knots aligned with the torus
plane parallel to n0, and taken without polarizers (g) and (i) and
between crossed polarizers with an inserted full-wave retardation
plate (h) and (j). Green arrows in (i) indicate regions of the defect
line rewirings. Reproduced with permission from [35].

we will see later in the review that knotted vortices and soli-
tons can arise in LCs as stable field configurations, even with-
out colloids or confinement [73]. On the other hand, colloidal
knots in isotropic solvents have been considered theoretically,
as well as the potential to employ LC elastomeric knotted par-
ticles as topology-changing colloidal objects has been numeri-
cally explored [113, 114]. However, much more can be done as
topology has potential impacts on all aspects of colloidal sci-
ence, from self-assembly of crystals and quasi-crystals to out-
of-equilibrium dynamics [116–120]. For example, one could
combine topology and active matter paradigms in an effort
to achieve topology-dictated nonequilibrium self-assembly
of topologically distinct active particles [121–123]. Active
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colloids are a distinct category of nonequilibrium matter in
which energy uptake, dissipation and movement take place
at the level of discrete microscopic constituents [121]. They
are known to provide types of self-assembly not accessible in
traditional equilibrium condensed matter systems [121]. How-
ever, only topologically trivial types of active colloids (spher-
ical or topologically isomorphic to spheres) have been studied
so far. The interplay of topologies of surfaces and flow fields
due to the self-propulsion of active particles could result in
highly unusual yet controlled and practically useful forms of
self-assembly.

Large quantities of colloidal knots can be obtained by
combining two-photon photopolymerization and structured
shaping of femtosecond laser light with spatial light mod-
ulators [124]. In addition to polymer-based dielectric knot-
shaped particles, researchers have fabricated colloidal objects
through 3D-spatially-resolved laser reduction of graphene
oxide nanoflakes [125]. Utilizing the particle’s luminescence,
the shapes of such knots could be reconstructed from 3D pho-
toluminescence data (right-side of figure 10(a)) [125]. Because
the internal orientation of reduced graphene oxide flakes
within the colloidal structures matches that of the surrounding
graphene oxide flakes, the fabricated knotted particles differ
from the polymerized ones [35, 55] in that they do not induce
noticeable director distortions or topological defects in the sur-
rounding LC host [125]. This demonstrates that topological
defects can be avoided when the boundary conditions for the
director orientation on the surfaces of complex-shaped parti-
cles are weak or match the director of the surrounding LC,
even when the colloidal inclusions exhibit nontrivial topology
of knots. Super-paramagnetic knot-shaped colloidal particles
have also been reported and used to induce stick-slip motion of
surface defects [126]. These examples show that knot-shaped
colloidal particles of different types are becoming accessible to
the research community and offer great potential for advancing
new soft matter science.

4.3. Linked composite colloids

Recent advances in particle fabrication have also enabled col-
loids with the topology of multicomponent links classified in
figure 4, such as the two-component Hopf and Solomon links
(figure 12) [55, 72]. What are the implications of topologi-
cal linking on the behavior of the nematic colloidal systems?
Micrometer-sized colloidal particles with differently linked
components shaped as solid, rigid polymeric rings undergo
Brownian motion both relative to each other and as a whole
when dispersed in LCs [72]. These particles induce differ-
ent director field configurations that define elastic coupling
between the components, where certain relative orientations
and positions of rings correspond to local or global free-energy
minima determined by LC’s orientational elasticity of cor-
responding n(r) structures (figure 12) [72]. As an example,
colloidal Hopf links consist of two rings and are character-
ized by a linking number topological invariant Lk = ±1,
representing the number of times that each closed colloidal
loop winds around the other loop (figures 12(a)–(e)). In the
colloidal Solomon’s link of Lk = ±2 the two closed rings
are doubly interlinked, so that this particle exhibits four

Figure 12. Nematic colloidal two-component links with tangential
boundary conditions. (a) An optical bright-field micrograph (left) of
a Hopf-link particle with its 3D model shown in the inset and a 3D
nonlinear fluorescence image of the same particle (right). Red and
green colors are used in the inset to distinguish the two different
linked rings. (b) and (c) Optical micrographs of a colloidal Hopf link
in a nematic, as viewed between crossed polarizers without (a) and
with (b) an additional 530 nm wave plate (with its slow axis marked
by the yellow double arrow). (d) Numerically simulated n(r)
depicted using colors on the particle’s surfaces and using rods in the
LC bulk. Colors show azimuthal orientations of n(r) with respect to
n0 according to the scheme shown in the lower-left inset; the
lower-right inset shows details of the core structure of a boojum
splitting into a semi-loop of a half-integer defect line with the
handle-shaped region of the reduced scalar-order parameter shown
in red. (e) Numerical n(r) depicted as in (d) but in a metastable state
when the plane of one of the link’s rings is normal to n0; the inset
shows a different perspective view of the same link. (f) and (g) A
colloidal Solomon link in a homeotropic nematic cell as viewed (f)
between crossed polarizers and (g) between crossed polarizers and a
waveplate (the yellow double arrow depicts orientation of the slow
axis). (h) A numerical model of n(r) depicted using colors on the
particle surfaces corresponding to the experimental images shown in
(f) and (g). (i) and (j) Another configuration observed for a similar
Solomon link viewed between (i) crossed polarizers without and (j)
with an inserted wave plate. (k) The corresponding numerical n(r)
depicted using colors on the particle surfaces. Crossed polarizers
and the far-field director are marked by white double arrows, as
labeled on the images. Reproduced with permission from [72].

crossings of the two loops interweaving under and over each
other (figures 12(f)–(k)). Out of several stable and metastable
n(r) configurations induced by the Hopf-link colloids with tan-
gential anchoring, the most common one contains eight surface
boojums (figures 12(b)–(d)), four on each of the linked col-
loidal rings tilted away from n0. Elastic director distortions
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Figure 13. Nematic colloidal two-component links with
perpendicular boundary conditions. (a)–(e) A colloidal Hopf link
studied using optical micrographs taken (a) and (b) between crossed
polarizers shown by white double arrows (a) without and (b) with an
additional full-wave 530 nm retardation plate (the yellow double
arrow shows its slow axis), and (c) in a bright-field mode. (d) A
corresponding numerical model, with n(r) shown by rods and defect
lines as the red tubes of the reduced scalar-order parameter. The
inset shows a schematic of linked colloidal and defect loops. (e) A
zoom-in view of (c) focusing on the jumping disclination seen in
both experiments and theory, marked by red arrows in (d) and (e).
(f)–(h) Another configuration of a similar Hopf link. (f) and (g)
Optical micrographs of this particle taken under conditions as in (a)
and (b). (h) A corresponding theoretical model; the inset shows a
simplified topological skeleton. (i) Topological skeletons and
graphical representations of Hopf-link particles and accompanying
closed defect loops. The mutually linked physical-particle rings are
shown in blue and yellow colors, and the defect line loops are shown
in red. In the graphs, the individual links are indicated by black
edges connecting the corresponding red–blue–yellow filled circles
that represent colloidal or defect rings; the overall number of links is
indicated next to the topological skeletons. Reproduced with
permission from [72].

weakly couple the two linked components, defining the equi-
librium center-to-center distance and locations at which these
rings cross the planes of each other (figure 12(d)), as well as
the equilibrium angle between the center-to-center separation
vector connecting the linked components and n0. Anisotropic
elastic forces also keep the linked particles apart, acting against
touching of the linked component rings. Metastable colloidal
and field configurations with other orientations of rings and
different numbers of boojums are also observed [72]. For
example, one of them (figure 12(e)) contains a boojum-free
ring perpendicular to n0, linked to a ring with four boojums
[72], both with well-defined orientations relative to n0. Boo-
jums always appear in self-compensating pairs of opposite
winding numbers in 2D n(r) at the LC–particle interfaces, con-
sistent with the zero Euler characteristic of the rings of multi-
component particles. Colloidal Solomon links with tangential
boundary conditions tend to induce twice as many boojums
than their Hopf counterparts (figures 12(f)–(k)), with these
surface point defects located at the tip points of the tubes along
n0. A large number of stable and metastable mutual positions
and orientations of the linked components, as well as their ori-
entation with respect to n0, lead to diverse n(r) configurations
differing by the number of the generated boojum–antiboojum
pairs with opposite 2D winding numbers (figures 12(f)–(k)).
These illustrative examples reveal that linked ring colloids
inherit the diversity of structures that we have seen above
for single rings (e.g. individually each ring component of the
link can have no associated boojums or even numbers of self-
compensating boojums), but now with the diversity of acces-
sible metastable and stable structures boosted dramatically by
different linking invariants, different relative orientations and
positions of the rings, as well as their relative orientations with
respect to n0.

Even more exotic behavior of linked colloids is observed
when their surfaces impose perpendicular boundary condi-
tions for n(r) (figure 13). These particles tend to induce closed
loops (unknots) of singular defect lines [72]. In addition to
the purely elastic coupling, colloidal components often get
entangled by unknots of defect lines that act as elastic strings
(figures 13(a)–(e)). Surfaces of colloidal links have χ = 0, so
that the hedgehog charge of n(r) on their surfaces is equal χ/2
= 0, requiring no bulk defects to embed in the aligned LC and
also imposing constraints on the overall zero bulk hedgehog
charges of defects around such particles [30, 55]. However,
free-energy minimization and the nonpolar nature of n(r),
combined with the rich configuration space of the colloidal
object itself, accommodate the boundary conditions on particle
surfaces by forming a variety of topologically distinct config-
urations of closed defect loops (figure 13) [72]. Individually
linked components of the defect-colloidal entity freely move
with respect to each other due to thermal fluctuations. With
field configurations governed by the elasticity of the nematic
fluid, they exhibit relative separations and orientations corre-
sponding to the free-energy minima (figures 13(a)–(h)) [72].
The simplest observed configuration involving a Solomon link
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Figure 14. Topologically nontrivial polymer-dispersed LC drops with tangential anchoring. (a)–(c) A polymer matrix with g = 1 nematic
drops (a) as observed in an optical polarizing micrograph and (b) depicted based on 3D numerical n(r) modeling (with the color-coded scheme
of azimuthal orientations shown in the inset) and (c) with zoomed-in n(r) in the vicinity of self-compensating defects found in metastable states
of some drops, as shown in the drop’s interior. Disclinations are shown as red tubes and filled circles representing regions of the reduced scalar
order parameter. (d)–(g) Nematic g = 2 drops (d) seen in a polarizing micrograph obtained with an additional 530 nm phase retardation plate,
(e) and (f) in 3D representation of n(r) at the surface of a g = 2 drop based on (e) numerical modeling and (f) experiments. The color-coded
scheme of azimuthal orientations is shown in the inset of (e). (g) Nematic configurations and defects at the junction of two tori, with n(r) at
the LC–polymer interface depicted using rods and the line defect cores in the bulk of the g = 2 drop shown using (red) regions of the reduced
scalar-order parameter. (h)–(l) Nematic g = 3 drops (h) as seen in an optical micrograph obtained between crossed polarizers and with an
additional retardation plate and in ((i) and (j)) 3D representations of n(r) at the LC–polymer interface obtained (i) by numerical modeling
and (j) experimentally; the color-coded scheme of azimuthal orientations is shown in the inset. (k) and (l) Defect lines at tori junctions seen
as red tubes of reduced order parameter (k) and n(r) shown for one of them (l). (m) and (n) A polarizing optical micrograph of g = 5 drop
obtained between crossed polarizers with an additional phase retardation plate (m) and corresponding 3D representation of n(r) at the drop’s
surface (n). For polarizing micrographs, white double arrows depict orientations of crossed polarizers and the blue double arrows show the
orientation of a slow axis of the 530 nm retardation plate. Reproduced with permission from [142].

with perpendicular surface boundary conditions contains pairs
of individual looped defect lines following each of the linked
components. Interestingly, particles of the same linking num-
ber and perpendicular boundary conditions can induce con-
figurations of defect loops which cannot be continuously
transformed one to another. For example, the Hopf-link col-
loids were found exhibiting two to four unknots of half-integer
defect lines, which can be linked with a single or both colloidal
rings or with each other, which are summarized along with the
corresponding graphs in figure 13(i). The graphs show that the
number of the linking-connected inseparable graph entities can
range from one, when all particle and defect rings are inter-
linked, to five, when Hopf-link particles are accompanied by
four unlinked defect loops (figure 13(i)). These mixed defect-
colloidal multicomponent links cannot be smoothly morphed
one to another, having different total numbers of unknots (col-
loidal rings or defect loops) and numbers of links between
them visible in simplified topological skeletons and graph rep-
resentations (figure 13(i)). The configurations in figure 13(i)
do not exhaust all the topology-admissible structural varieties

of field configurations. Moreover, it is rather interesting that
a single Hopf link of colloidal particles can be accompanied
by different configurations of up to four defect loops with
different links between them. This experimentally revealed
topological diversity calls for one to apply techniques like
those used in [82, 85] to reveal further details of this fas-
cinating behavior. Due to inseparability of the linked parti-
cle components, pair and many-body interactions can exist
among the linked components belonging to the same compos-
ite particle, constrained by the physical linking, or to different
multicomponent particles. Sharing or linking of defect loops
induced by the linked rings provides an additional colloidal
interaction mechanism due to the line tension, which is of the
order of 50–70 pN for singular half-integer defect lines [127],
and which can alter the response of such particles to external
stimuli like light [128, 129].

The nematic colloidal links and knots above exemplify the
unexpected emergent topological complexity of defect struc-
tures that appear even when they are not required by the
known topological theorems for particle surfaces with zero
Euler characteristics. However, in addition to linked genus-one
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Figure 15. Handlebody-like LC drops with perpendicular boundary conditions. (a) and (b) Genus-one drops with (a) a single s = 1 and (b)
two s = 1/2 disclination unknots, with isosurfaces of the reduced order parameter shown in blue, with the insets depicting n(r) in the drops’
cross-sections. (c) A Hopf link and (d) trefoil T(3,2) torus knot of half-integer disclination loops, with blue isosurfaces depicting regions of the
reduced scalar-order parameter. (e) A torus-shaped drop with nonsingular 3D-‘escaped’ n(r). (f) Escaped n(r) structures depicted in the drop’s
midplane for a g = 2 drop. The insets show junction regions and blue tubes depict isosurfaces of the reduced order parameter. Hyperbolic
hedgehog defect core and disclination loops with zero (green-framed) and unity (red-framed) topological hedgehog charges. (g) and (h) A g
= 2 drop with singular defects depicted using blue isosurfaces of the reduced order parameter (g) and the corresponding cross-section of n(r)
(h). (i) Experimental 3D polarized fluorescence texture for a g = 2 drop obtained by superimposing images with polarizations of probing light
at 0◦ (red), 45◦ (green), 90◦ (blue) and 135◦ (pink); note the dark areas in junctions, where n(r) is perpendicular to the image. ( j) Escaped
n(r) in the midplane of a g = 3 drop. (k)–(m) Texture as in (i) but for g = 3, 4 and 5 drops, respectively; dark areas in junctions are regions
where n(r) is perpendicular to the image planes. Reproduced with permission from [144].

rings, one can study linked particles with larger g and larger
numbers of linked components. Beyond LCs, one can expect
that linking will alter interactions between colloidal compo-
nents when, for example, interactions originate from electro-
static or depletion forces [130, 131], opening a new avenue for
colloidal self-assembly and functionality.

4.4. Knotted vortices in nematic drops

Similar to nematic colloids, LC drops are a useful platform for
probing the relationship between surface confinement topol-
ogy and defect structures in ordered media [55, 132–141].
The genus g of closed surfaces of micrometer-sized nematic
drops can be experimentally varied (figure 14). The topolog-
ical requirement that the net winding number of 2D surface
defects in n(r) tangent to the LC droplet’s surface adds to

χ is effectively the same as for the colloids discussed above
[30, 142]. Also, the hedgehog charges of bulk defects in
the drop’s interior need to add to ±χ/2 to compensate for
the hedgehog charge of the drop’s inner surface of given g
[142]. Minimization of the total free energy selects stable and
metastable states out of configurations satisfying these con-
straints. Therefore, by utilizing this interplay of topological
invariants characterizing surfaces and fields, similar to what
we discussed above for colloids, one can either avoid defect
formation for drops of g = 1 [142, 143] or generate singular
bulk and surface defects with well-defined topological invari-
ants for g > 1. We shall see below how this allows for con-
trollably obtaining line and point defects labeled as π1(S2/Z2)
= Z2 (bulk disclinations in the 3D director field), π1(S1/Z2)
= π1(S1) = Z (surface defects in the 2D director fields at
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LC-droplet interfaces) and π2(S2/Z2) = Z bulk point defects
in 3D n(r).

Let us start with drops in a polymer matrix imposing
tangential boundary conditions for n(r). Figure 14(a) shows
an array of torus-shaped g = 1 drops embedded in such a
polymer matrix. Most of them contain defect-free concentric
n(r), as expected for the confinement surface with χ = 2 −
2g = 0 (figures 14(a) and (b)), though some drops contain
self-compensating defect pairs (figures 14(a) and (c)) [142].
Although the Poincare–Hopf theorem [15] requires that the
winding numbers s of defects at the LC–polymer interface
add to χ, it does not prescribe particular ways to satisfy this
constraint, which explains this diversity of topology-compliant
configurations. For g > 1, millimeter-sized drops with han-
dles were shown to contain boojums at droplet surfaces [143],
in a way closely resembling how the topological constraints
are satisfied for handlebody colloids with tangential anchoring
(figure 8). Differently, micrometer-sized drops tend to exhibit
(figures 14(d)–(g)) [142] half-integer disclinations spanning
through the drop’s volume. Defects in the inter-tori junctions
are half-integer singular lines pinned to opposite parts of han-
dlebody surfaces (figures 14(d)–(m)). Some of the drops con-
tain the minimum numbers of half-integer defects needed for
the net winding number to add to χ. For example, g = 2
drops have two half-integer bulk defect lines spanning the
droplet’s volume (figures 14(d)–(g)), so that the LC interface
with a polymer matrix contains four such s = −1/2 surface
defects in ns(r) adding to χ = −2 of the confining surface.
Drops with g = 3 have at least four such half-integer bulk
defects (figures 14(h)–(l)) terminating on eight surface defects
in ns(r), g = 4 drops have at least six and g = 5 drops at least
eight bulk half-integer defects (figures 14(m) and (n)). The
winding numbers of defects at the interfaces are thus always
twice that of the sum of winding numbers of half-integer discli-
nations spanning within the LC bulk, always adding to the
drop’s χ when considering the winding numbers in ns(r).
In the larger drops with tens-to-hundreds micrometers sizes,
boojums and half-integer defect lines can co-exist because they
correspond to lower free energy depending on their locations
within the drops. As the droplet size increases to millimeters
[143], only boojums are stable because of the lower free energy
of the corresponding n(r). The above examples show how, in
addition to the appearance of boojums, the nonpolar nature
of n(r) allows for satisfying the Poincare–Hopf and Gauss
theorems through the emergence of surface-terminating bulk
π1(S2/Z2)=Z2 defect lines, which assure that the π1(S1/Z2)=
Z defects (associated with the end points of bulk defect lines)
in the interfacial 2D director field ns(r) add to χ. This sce-
nario cannot be realized for vector fields which cannot host
bulk defect lines in 3D because π1(S2) = 0.

Handlebody-shaped nematic drops with perpendicular
boundary conditions also reveal a large diversity of configura-
tions, including ones with linked and knotted defect lines that
form various knots [144] (figure 15). Singular disclinations
shaped as unknots, knots and links, as well as half-skyrmions
and other nonsingular structures emerge depending on geo-
metric and material parameters. Surface topology and bound-
ary conditions dictate the net topological hedgehog charge

m = ±(1 − g) of defects in the nematic bulk of such
drops, which, to assure the topological charge conservation,
compensate the hedgehog charge of the field on the drop’s
inner confining surface, complying with the Gauss–Bonnet
and Poincare–Hopf theorems [30]. One would therefore
expect that the nematic interior of a single torus is topo-
logically uncharged, g = 2 double-torus-confined drop hosts
a defect of m = ±1 topological charge, and so on, where
the sign of m depends on the choice of vectorization direc-
tion of n(r). However, the mathematical theorems again
allow for ‘flexibility’ in satisfying these constraints while
also minimizing free energy. This leads to many topo-
logically nontrivial configurations that can be selected as
energetically stable and metastable structures [144]. For
example, g = 1 drop surfaces can induce a single integer-
strength disclination loop (topologically unstable, but ener-
getically stabilized), two half-integer disclination loops, or
nonsingular solitonic ‘escaped’ n(r) (figures 15(a)–(e)),
depending on geometric and material parameters. While the
hedgehog charges m (marked on figure parts) of disclination
loops and knots add to zero (figures 15(b) and (d)), these results
illustrate how loops and knots of s∈Z2 = π1(S2/Z2) disclina-
tions can yield different effective m ∈ Z = π2(S2/Z2) hedge-
hog charges to satisfy topological constraints under different
free-energy-minimizing conditions. As examples, figure 15(c)
shows a Hopf link of two half-integer disclination loops and
figure 15(d) depicts a trefoil knot of a single half-integer defect
line, which are both permitted configurations for nonpolar
n(r). For large drops, escaped director structures with nonsin-
gular solitonic n(r) are energetically favorable (figures 15(e)
and (f)). Drops of higher genus stabilize even larger com-
binations of multiple singular disclination loops and soli-
tonic configurations supplemented with additional point and
disclination loop defects (figures 15(f)–(m)). While hedge-
hog charges always add to ±χ/2, the particular defects that
occur are selected as free-energy minima for given conditions.
Three half-integer disclination loops form in small drops of g
= 2 (figures 15(g) and (h)), with one running along the whole
drop’s perimeter and the other two encircling the holes. One
disclination loop winds around the largest perimeter and g
small loops encircle holes for g > 2 (figures 15(g) and (h)).
For larger g � 2 drops, the ‘escaped’ director profiles appear
instead of defect rings (figures 15(f) and (i)–(m)), yielding
point defects or small disclination loops localized in the drop’s
junction regions.

When droplet dimensions increase to hundreds of microme-
ters and millimeters, different kinds of behavior are observed,
which were recently explored by Fernandez-Nieves and col-
leagues [143, 145]. For example, double-twisted toroidal con-
figurations arise in drops with g = 1 as a result of saddle-splay
LC elasticity, and splay and bend deformations are often sub-
stituted by twist deformations due to lower energetic costs
[143, 145]. When a chiral nematic LC is used, depending on
the relative dimensions of droplets and cholesteric pitch, knot-
ted structures of entangled disclination lines can appear, even
in spherical drops [140], which can also feature constella-
tions of high-charge point defects with hedgehog charges still
adding to ±1 [146, 147].
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Figure 16. Colloidal analogs of mathematical surfaces with boundaries. (a) and (b) Optical images of discs made of (a) thick foil with
thickness hf ≈ 1 μm and (b) thin foil with hf ≈ 100 nm obtained in (left) bright-field and polarizing imaging modes (middle) without and
(right) with a 530 nm retardation plate with a fast axis γ inserted between the crossed polarizer (P) and analyzer (A); red arrows in (a)
indicate boojums. (c) and (d) Schematics of n(r) around (c) thick and (d) thin foils, with boojums in (c) depicted as red hemispheres. (e)–(j)
Colloidal pyramidal cones in a nematic LC: (e) a schematic; (f) scanning electron micrographs of pyramids made from gold foil with (left to
right) hf ≈ 100 nm and 200 nm; (g) a polarizing optical micrograph and (h) a schematic of n(r) and defects around particles oriented with a
base-tip vector b⊥n0. (i) A polarizing micrograph and (j) n(r) and defects around pyramids with b‖n0. Red fragments of spheres in (h) and
(j) show the fractional boojums; red arrows indicate the boojums in (g) and (i). (k) Bright-field (left), polarizing (middle) and reflection
(right) optical micrographs showing a colloidal octahedron formed through the assembly of two pyramidal cones in a nematic LC, with n(r)
and surface defects (red) depicted in (l). Reproduced with permission from [155].

A spectacular property of confined nematic systems is
the diversity of structures satisfying topological constraints
imposed by mathematical theorems for given topology and
boundary conditions, which largely stems from the nonpolar
nature of n(r). All half-integer defect lines would be disal-
lowed in polar systems, thus precluding the appearance of
knotted and linked defects and highly reducing the num-
ber of topologically admissible structures. The fact that the
nature of nematic fields allows for singular linked, knotted and
other configurations is important beyond soft matter because
nonpolar fields in cosmology and in other physical systems
often host defects topologically similar to nematic disclina-
tions (cosmic strings), although much less accessible experi-
mentally [50, 148, 149]. The confined nematic studies could be
extended to thin LC shells formed by handlebody surfaces, an
emergent research area where most studies so far focus on
spherical shells [141, 150–153]. In addition to fundamen-
tal importance, this behavior may be of interest for multi-
state optically addressed topological memory devices [154]

that can allow for recording and reading information through
laser-writing different topology-satisfying field configurations
within drops of controlled genus.

4.5. Surfaces with boundary and surface-bound defects

Surface genus and (related to it) Euler characteristics
are not the only topological surface properties defining
interactions with LCs [36, 155, 156]. Colloids can also serve
as physical analogs of a mathematical surface with bound-
ary [30], interacting with n(r) without inducing defects [155].
Such colloids were recently experimentally demonstrated in
the embodiment of very thin nanofoils [155]. Disc-shaped
flat nanofoils with tangential boundary conditions and thick-
ness hf spontaneously align with large-area faces parallel to
n0 while freely rotating around it (figures 16(a)–(d)). They
induce two surface boojums [74, 104, 105, 157] when hf ≈
1 μm (figure 16(a)), but not for hf ≈ 100 nm when no defects
are optically detectable (figure 16(b)). Overall, the LC–foil
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Figure 17. Edge-pinned defect lines induced by a faceted ring particle in a twisted nematic cell. (a), (b), (d) and (e) Optical micrographs
obtained between crossed (a), (d) and (e) and parallel (b) polarizers labeled with ‘P’ and ‘A’. A pair of bulk half-integer defects (shown by
black arrows) is visible inside the ring. The inset in (b) shows the twist of n(r) between the orthogonal easy axes eb and et at the confining
cell substrates. (e) A zoomed-in view of the bulk defect line seen in (d) while traversing from one particle’s edge to another. (c) and (f)
Schematics of defects and their transformation corresponding to (a) and (d), respectively. Handle-shaped bulk defect lines are shown as thick
red tubes. Quarter-strength edge-bound surface defect lines of opposite strengths (in terms of their 2D cross-sections) are shown using thin
blue and orange lines, with strengths of opposite signs marked next to them. (g)–(i) Schematics of n(r) (green lines) and defects in the region
of transformation of disclinations inside the ring opening (g) and outside (i) of a toroidal particle with a faceted square cross-section (h). Thick
red lines are handle-shaped bulk defects; blue and orange lines are quarter-strength edge-bound surface defect lines of strengths with opposite
signs marked next to them. Reproduced with permission from [70].

interactions are determined by a competition of bulk elas-
tic and surface-anchoring energies at the nanofoil perimeter,
which is characterized by the anchoring extrapolation length
ξe [155]. When hf 
 ξe, e.g. for hf � 100 nm (figure 16(b)),
thin-foil particles behave as colloidal analogs of orientable sur-
faces with boundaries that induce no defects (figures 16(b)
and (d)). Interestingly, particle-induced boojums with frac-
tional geometry-defined hedgehog charges of opposite signs
are found when these surfaces with a boundary are shaped
into hollow pyramids without a base, the pyramidal cones
(figures 16(e)–( j)) [155]. The pyramids spontaneously align
with the base-tip vectors b, either parallel or perpendicular
to n0 [155]. The particle geometry causes director distortions

revealed by polarizing micrographs (figures 16(g)–( j)), with
the boojum defects at the apex points of inner and outer sur-
faces of hollow pyramids. Mapping vectorized n(r) onto a
2D sphere S

2 does not fully cover it, and the ratio of the
covered and total areas of S2 gives the fractional charge mb.
For these colloidal surfaces with boundaries, one finds self-
compensation of hedgehog charges associated with inner and
outer boojums (figures 16(h) and (j)) [155]. Colloidal inter-
actions between pairs of nanofoil-based colloidal pyramids
emerge from the minimization of elastic free energy, typically
resulting in nested assemblies [155, 157–159]. Formation of
hollow octahedrons (figures 16(k) and (l)) is an example of
colloidal assembly that leads to transformation of two
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pyramid-shaped surfaces with a boundary into a single closed
surface without a boundary, which then becomes compli-
ant with the Poincare–Hopf theorem. Indeed, winding num-
bers of boojums at vertices add to the octahedron’s χ = 2
(figure 16(i)). Since extensions of the Poincare–Hopf theorem
for surfaces with boundaries are known only for special
cases [30], experimental embodiments of such surfaces in
LC–colloidal systems are fundamentally important. Because
all surfaces are characterized (up to homeomorphism) by
genus, orientability and the number of boundary components,
as stated by the classification theorem [30], these colloids
expand the scope of experimental topology. In addition to thin
metal foils (figure 16), LC colloids with boundaries can be
made out of 2D materials, like graphene and graphene oxide
[156].

Another interesting regime of interactions arises between
the director field and surface boundary conditions on geomet-
rically and topologically nontrivial particles with sharp cor-
ners. Using examples of faceted ring-shaped particles of g = 1
[70], figure 17 demonstrates examples of inter-transformation
of induced defect lines as they migrate between locations in
the bulk of the nematic host and edge-pinned locations at
particle surfaces. This behavior, also compliant with topolog-
ical constraints [70], is enriched by the diversity of surface-
pinned defect lines that appear for facetted particles because
the winding number of such defect lines at LC surfaces is not
constrained to be a half-integer or integer and can be frac-
tional, similar to the fractional boojums induced by pyramidal
cones that we discussed above [70]. In addition to common
half-integer defect lines encircling and entangling spherical
and topologically nontrivial particles, surface quarter-strength
defect lines are commonly pinned to sharp edges of faceted
particles [70]. Nodes of defect lines with different strengths
often form, of which some are pinned to colloidal surfaces
while others are the bulk defect lines only adhering to sur-
faces at their end points. The winding number of individ-
ual surface-pinned disclinations around colloidal particles is
unconstrained and can be controlled by the geometry of col-
loidal inclusions while the overall topological characteristics
of particle-induced defects comply with topological theorems
[70]. A key feature of the particles showing such behavior is
that the smallest particle’s dimension is much larger than the
surface-anchoring extrapolation length [70], yielding strong
boundary conditions that cannot be violated at sharp edges of
faceted particles. Such nematic colloids exhibit director con-
figurations with splitting and re-connections of singular defect
lines, prompted by colloidal particles with sharp edges and
strong boundary conditions (figure 17). This shows how the
diversity of topological defects can be expanded by invok-
ing fractional surface disclinations patterned with a particle’s
sharp geometric feature shapes. The transformations of bulk
and surface defect lines induced by faceted colloids diversify
the elasticity-mediated colloidal interactions and can poten-
tially enrich their controlled reconfigurable self-assembly.

Two examples of colloidal surfaces in this section illustrate
the importance of geometry and topology of colloidal sur-
faces in defining the behavior of nematic colloids and various
confined systems. While geometry and topology are also

important for conventional colloids [91], their role is truly
defining for nematic colloids and drops because of defining the
formation of defects, elastic distortions, elasticity-mediated
interactions, self-assembly and so on.

5. Topological solitons in LCs and colloids

5.1. 2D skyrmions

Similar to many other branches of physics and cosmology,
soft condensed matter systems like LCs and colloids can
host a large variety of topological solitons and related spa-
tially localized nonsingular structures. For example, the LCs
host a variety of 2D merons (figures 18(a) and (b)) and
skyrmions (figure 18(c)) [32, 160–170], where the latter are
particle-like low-dimensional analogs of Skyrme solitons in
particle physics [7]. When embedded in 3D samples, these
2D Skyrme solitons have topologically protected translation-
ally invariant 2D tube-like structures (figures 18(c) and (d))
that cannot be eliminated from a uniformly oriented back-
ground without destroying the order or introducing singu-
lar defects. Not enjoying this type of topological protec-
tion, tubes of merons, also known as fractional skyrmions
(figure 18(a)), have a long history in the LC research field.
In fact, some of the earliest reports on LCs dealt with chiral
phases in cholesterol derivatives, including the so-called ‘blue
phase’ [12, 171–174]. These phases are various crystalline
arrays of double-twist tubes that are fractional skyrmions
(merons) [160–170], including cubic and hexagonal lattices
[163, 164, 173]. Rod-like molecules in a fractional skyrmion
tube are parallel to its axis at the center, twisting radially out-
wards to form barber-pole-like patterns on concentric cylin-
drical surfaces (figure 18(a)). Full LC skyrmion tubes, with
such a 180◦ radial twist from the central cylinder’s axis to
the periphery, contain all possible molecular orientations and
embed in a uniform far-field background (figures 18(c) and
(d)) [160]. Historically, many structures were found to have
such a radial π-twist from center to periphery in certain local-
ized regions, but they were typically not 2D translationally
invariant, often transforming into and co-existing with singular
defects. Recently, researchers identified conditions needed for
the stability of 2D skyrmions as topologically distinct objects
with translational invariance [79, 161].

Solitonic LC n(r) structures can be vectorized to give a
smooth vector configuration (figures 18(d)–(f)), which then
has the S

2 order parameter space and is similar to skyrmions
in the magnetization field of magnets that drive much excite-
ment in spintronics, including for data storage [175–182].
Recent studies have demonstrated that the density of such
stored information could be increased using skyrmions with
varying topological degrees (whose distinction is topologically
protected) [160]. LCs provided insights into how high-degree
skyrmionic structures can form [160] as stable chiral compos-
ite skyrmion bags. To realize them, one places multiple sin-
gle antiskyrmions (each with degree +1) next to each other
within a stretched skyrmion, thus forming the skyrmion bags
(figures 18(g)–( j)) [160]. Moreover, multiple nested structures
can be formed with, say, antiskyrmion bags within skyrmion
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Figure 18. The 2D skyrmions and skyrmion bags. (a) A translationally invariant quarter-skyrmion tube with n(r) shown by rods colored
based on orientations. The inset shows a color scheme for the nonpolar n(r) used in (a)–(c) and determined by director orientations as
mapped to S

2/Z2 in the inset of (a). (b) and (c) Top views of a half-skyrmion (b) and an elementary full LC skyrmion (c). (d) A
translationally invariant skyrmion tube visualized by colored arrows smoothly decorating n(r) based on S

2 shown in the bottom-right inset.
(e) and (f) Top views of a vectorized-field half-skyrmion (e) and a full skyrmion (f). (g) Polarizing optical micrographs of skyrmion bags
with one-to-four antiskyrmions inside, two stable conformations of the bag with 13 antiskyrmions inside and the bag with 59 antiskyrmions
within it. (h) and (i) Computer-simulated counterparts of the skyrmion bags in (g) depicted according to the insets in (a) and (d),
respectively. Crossed polarizers for (g) and (h) are marked by white double arrows in (g). ( j) A close-up view of a computer-simulated bag
with three antiskyrmions shown by colored arrows. Reproduced with permission from [160].

bags and skyrmions within them, and so on [160]. This yields
nonsingular skyrmionic structures with arbitrary degrees and
of both positive and negative signs because this design allows
for wrapping and unwrapping S

2 by mapping n(r) from the
sample’s 2D plane by controlled numbers of times in a non-
alternating fashion [160]. The total degree of a bag with
NA antiskyrmions is NA − 1. More complex structures with
antiskyrmion bags inside skyrmion bags have a net degree
NA − NS, where NS is the total number of skyrmions; counting
NS and NA also includes the nested skyrmion and antiskyrmion
bags. Skyrmions and skyrmion bags in LCs require careful
selection of experimental conditions and materials to assure
stability [79], where important roles are played by soft but
well-defined perpendicular boundary conditions on confining
surfaces, elastic anisotropy, confinement, etc.

The relation of 2D skyrmions to knots might not be apparent
when examining their structure. After all, the knots reviewed
in section 3 are intrinsically 3D in nature. However, skyrmions
are topologically protected and, just like knots, cannot be elim-
inated or inter-transformed without cutting: skyrmions cannot
be eliminated without destroying continuity of order within the
LC. Moreover, skyrmions and related structures can be part
of knotted field configurations. For example, Sutcliffe showed
that knotted skyrmions can arise as energy minima in frustrated
magnets [26]. On the other hand, the heliknotons (structures
emerging within a helical field, which will be discussed below)
comprise knots of fractional skyrmions [73]. We will also see

below how emergent behavior of chiral LCs leads to various
types of knotting as a result of the interplay of skyrmionic con-
figurations with confinements and applied external fields [32,
81, 169]. In the bulk of chiral LCs and magnets, minimiza-
tion of free energy can also lead to lattices of orthogonally
oriented skyrmions in helical and conical backgrounds, which
was already observed via direct optical imaging in LCs and for
which there is also indirect evidence from neutron scattering
experiments in solid-state magnets [183].

5.2. Torons with skyrmions and knots within them

In a geometry similar to that used for observing skyrmions
and skyrmion bags [79, 160, 161], discussed above, one can
also observe structures with both skyrmion-like and Hopf and
Seifert fibration features when a chiral LC with a ground-
state pitch p0 is confined by substrates treated for perpen-
dicular alignment [32, 81, 169]. When the separation gap
d of the confining planes is approximately equal to p0, the
LC’s tendency to twist is incompatible with the strong per-
pendicular boundary conditions. In this frustrated geometry,
numerous localized solitonic configurations emerge within the
background of unwound n0 [32, 79, 81, 184]. These solitonic
configurations incorporate energetically-favorable localized
twist while meeting boundary conditions, and can be con-
trolled using laser tweezers in both nonpolar chiral LCs [32]
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Figure 19. The 3D structure and topology of elementary LC torons. (a) and (b) Computer-simulated cross-sections of an axisymmetric
elementary toron shown in (a) a plane orthogonal to n0 and (b) containing n0. (Reproduced with permission from [81].) (c) An elementary
toron is a skyrmion terminating at the two point defects (red spheres) to meet uniform surface boundary conditions and match the
topologically nontrivial skyrmion tube with the uniform far-field background of the 3D LC sample. Detailed field configurations on spheres
around the point defects are shown as right-side insets. (Reproduced with permission from [79].) (d) Toron’s preimages of S2-points (inset,
shown as cones), with regions where preimages meet corresponding to point defects. (e) Closed-loop n(r)-streamlines within the toron at
different distances from its circular axis form different torus knots and links. Reproduced with permission from [81].

and chiral LC ferromagnets [185]. The simplest such config-
uration is known as an elementary toron (figure 19), which
can be thought of as a degree-one skyrmion terminating on
point defects near substrates with perpendicular boundary con-
ditions [79]. In the cell midplane between confining substrates,
the elementary toron embeds a π-twist of n(r) radially from
the center in all directions (figures 19(a)–(c)) and smoothly
meets the n0-periphery [79]. This skyrmionic configuration
within the LC bulk terminates at two singular point defects
near substrates (figures 19(b) and (c)). Vectorized n(r) from
the toron’s midplane cross-section (figure 19(c)) maps to fully
cover S

2 once (inset of figure 19(d)), as for an elementary
skyrmion. This skyrmion tube, however, terminates at point
defects that match it to the uniform boundary conditions at
surfaces (figures 19(b)–(d)). Both top and bottom defects are
self-compensating elementary hedgehogs of opposite charge
in vectorized n(r) and, like elementary skyrmions, are labeled
by π2(S2) = Z (π2(S2/Z2) = Z) for the nonpolar case) [79]. It
is therefore natural that the elementary skyrmion tube orthogo-
nal to the cell substrates is terminated (embedded in a uniform,
topologically trivial background) by the two point singulari-
ties, consistent with the notion that the spatial translation of a
π2(S2) = Z point singularity can leave a trace of a π2(S2) = Z

topological soliton within the locally perturbed background n0

[74].
Torons have structural features that bring about the resem-

blance of not only skyrmions, but also the Hopf and Seifert
fibrations, which can be seen by probing streamlines tan-
gent to n(r) (figures 19(e) and 20). These streamlines form
various torus knots, like those found in toroidal DNA drops
[136, 186]. Regions near the toron’s circular axis resemble
fragments of S

3 to R
3 stereographic projection [81]. Like

in toroidal DNA drops [186], this implements the LC’s ten-
dency to twist while forming an axisymmetric configuration.

Differently from biopolymer drops, the toron’s n(r)-twist rate
changes smoothly as one moves away from its axis, accom-
modating the effects of confinement and presence of the sin-
gular defects, so that different torus knots form (figure 19(e)).
Incompatible with Euclidian 3D space [186], the 3D twist is
inherently frustrated, but the geometry of fiber bundles shows
how the LC embeds it into the toron’s volume [186]. Knots
T(pT,qT) can be related to Hopf and Seifert fibrations with
different twist properties and can be visualized with a series
of streamlines of n(r). The toron configuration has spatially
varying director distortions deviating from the idealized 3D
twisted structure that one could obtain by the stereographic
projection, so that both the rate of the twist and the formed
T(pT,qT) knots of streamlines depend on the location within
a toron. This is because the toron combines the favorable
3D twisted region with some bend and splay distortions that
aid in embedding the twisted director configuration into a
uniform far field while minimizing the overall free energy.
Within a toron (figure 20), one finds Hopf links T(1,1), trefoil
T(3,2), pentafoil T(5,3), quatrefoil T(3,4) and other torus knots
formed by the streamlines (figure 20). As the electric field
morphs the toron (figures 20(a)–(e)), different knots on torus
surfaces never pass through each other (figures 20(e)–(g)),
but the contour lengths of the closed-loop knots increase with
voltage (figures 20(c)–(e)). While the elementary toron is a
skyrmion tube terminated on point defects, it also has an inter-
pretation inspired by the torus-knot-like streamlines tangent
to n(r). One can think of it as a half-skyrmion double-twist
tube (or a tube of twist-escaped integer-strength line) forming
a circular loop and compensated near substrates by a pair of
hyperbolic point defects [32] (figure 20(h)). It has been shown
that the point defects within these torons can open up into sin-
gular half-integer defect loops [32]. Therefore, within the 2D
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Figure 20. Torus knots in director streamlines within torons. (a)–(d) Streamlines tangent to n(r) at applied voltages U, with lengths depicted
according to the color scheme, with the blue (red) colors representing the short (long) ones. (e) The contour length of streamlines normalized
by the winding number of the torus knots S/q versus U. The top-left inset shows examples of tracked torus knots and unknots at U = 0.8 V.
The top purple curve (circles) is the circumference of the circular axis. Crosses, asterisks, squares and triangles mark the length of the Hopf
unknot and pentafoil, quatrefoil and trefoil knots, respectively. The torus knots tracked each have insets representing their topology and the
torus-knot winding numbers, with the corresponding U-dependencies of the contour lengths. (f) Torus surfaces where the respective torus
knots and unknots are found, including the circular axis. (g) Rectangles schematically represent unwrapped tori shown in (f) with the same
colors. Thin black lines indicate the streamlines that loop around the two axes of the torus to form various knots. (a)–(g) Reproduced with
permission from [81]. (h) A schematic of a triple-twisted toron configuration consisting of two point defects (blue dots) and a twist-escaped
disclination loop (red line in the midplane). (i) A different toron configuration with two half-integer defect rings replacing the point defects
compared to that shown in (h). (h) and (i) Reproduced with permission from [32].

axially symmetric cross-section of a toron with two such sin-
gular loops (figure 20(i)) [32], the half-skyrmion (also known
as meron and also twist-escaped integer-strength line) is com-
pensated by two singular defect lines in a way similar to
what has also been shown for individual linear half-skyrmions
embedded into a uniform background and periodic lattices
[166]. The overall structure of torons evolves with changing
parameters and, under different realization conditions, brings
about analogies with not only 2D skyrmions and half-skyrmion
loops (or double-twist tori as opposed to double-twist tubes),
but also with Hopf fibration in the streamlines tangent to n(r)
[169]. Depending on the pitch p0, sample thickness d, elas-
tic constants and applied fields, the elementary toron’s lateral
extent relative to p0 and 3D shape vary, so that one or the other
of these mutually equivalent descriptions of torons is used [81].

Torons have been generated by laser tweezers and means
such as temperature quenching from an isotropic phase both as
individual objects and in periodic arrays [170, 187, 188], with
and without lattice defects. Toron lattices have been used as
diffractive optical elements, whereas lattices with edge dislo-
cations could be utilized as generators of optical laser vortices
[163]. These lattices with and without lattice defects could
be reconfigured or erased by applying external electric fields,

showing how topologically nontrivial knotted objects in soft
matter can be utilized in various photonic, electro-optic and
singular optics applications [163]. In addition to chiral LCs,
torons have been theoretically predicted to exist in solid-state
magnetic systems [189]. While types of torons with loops
of half-integer singular lines can exist in LCs with nonpo-
lar n(r) (figure 20(i)), they are disallowed in vector fields of
colloidal and solid-state magnets, where only the structures
with point defects have been observed (figures 19(a)–(c) and
20(h)) (which is because half-integer disclinations cannot exist
as standalone objects in vector fields, where π1(S2) = 0) [185,
189]. Another localized topological object, dubbed a ‘hopfion’
[24], has a fully nonsingular structure spatially confined in 3D
and can also exist in both polar and nonpolar fields, as we shall
see next.

5.3. Hopfions in ferromagnetic colloidal fluids

The topological Hopf soliton, also called a ‘hopfion’, was
recently observed experimentally and modeled numerically
in magnetic fluids formed by colloidal dispersions of mag-
netically monodomain platelets within a chiral nematic host
[24]. This soliton contains knotting of the order parameter that
can be described by utilizing the concept of ‘preimage’, the
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Figure 21. Hopfions in chiral colloidal ferromagnetic LCs. (a) Linking of a hopfion’s circle-like closed-loop preimages of
points (cones) on S

2. (b) An illustration of a Hopf map of closed-loop preimages of a hopfion embedded in a far field m0
onto S

2. (c) and (d) Computer-simulated and experimental preimages, respectively, of two diametrically opposite S
2 points

(cones) in the top-right inset of (c). The bottom-right inset in (c) shows signs of the crossings and circulation directions that
determine the linking of preimages. The inset in (d) is a polarizing optical micrograph of a hopfion. (e) Polarizing optical
micrographs showing the polar response of hopfions in a c ferromagnetic LC, which expand (middle) and shrink (right)
compared to their zero-field equilibrium size (left) when the magnetic field is antiparallel or parallel to m0, respectively. (f)
and (g) Cross-sections of the hopfion taken in a plane orthogonal to m0 (f) and in a plane containing m0 (g), with the vector
field shown using cones colored according to S

2 shown in the insets of (a) and (b). (h) and (i) Linking of preimages of (h)
two and (i) five representative points on S

2, including south- and north-pole preimages (the latter corresponds to m0 and is
the exterior of the torus confining all other preimages). ( j) Preimages of the S2-points of constant polar but varying azimuthal
m(r) orientations form a torus. Reproduced with permission from [24].
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Figure 22. Tiling and linking of preimages of S2 points within a
hopfion. Preimages of different azimuthal m(r)-orientations tile into
tori for the same polar angles, with the smaller tori nesting inside
bigger tori; the largest torus contains the north-pole preimage in its
exterior corresponding to m0 and the other preimages nested within
its interior.

spatial region of the ferromagnet’s 3D space with a single unit
magnetization field m(r) orientation corresponding to a sin-
gle point on S

2 (figure 21(a)). For hopfions, preimages of all
S

2 points are closed loops [7] (figures 21(a) and (b)). Imbed-
ding into a uniform m0 and localizing in three spatial dimen-
sions (figure 22), hopfions are classified on the basis of maps
from R

3 ∪ {∞} ∼= S
3 to the ground-state manifold S

2 of 3D
unit vectors, π3(S2) = Z [7]. Topologically distinct hopfions
are characterized by the Hopf index Q ∈ Z with a geometric
interpretation of the linking number of any two closed-loop
preimages. Most of R

3 is occupied by the preimage of the
point in S

2 corresponding to m0 (figure 22) [24], except for
the interior of a torus-embedded region, within which all other
preimages are smoothly packed. Preimages with the same
polar angles but different azimuthal angles tile into tori; then
tori corresponding to different polar angles sequentially nest
within each other’s interior, all imbedded within the biggest
torus that has all the preimages in its interior, except for the m0-
preimage that is in its exterior (figure 22) [24]. Stable hopfions
in physical systems ranging from elementary particles to cos-
mology have been predicted by Faddeev, Niemi, Sutcliffe and
many others [7, 22, 42], as well as demonstrated experimen-
tally as stable solitons in colloidal ferromagnets and LCs [24,
190, 191]. Nonlinear optical 3D imaging was utilized to unam-
biguously identify topological solitons, revealing an experi-
mental equivalent of the mathematical Hopf map (figures 21(c)
and (d)) and relating experimental and theoretical closed-loop
preimages of distinct S2 points [24]. Agreement of experimen-
tal and simulated real-space cross-sectional nonlinear optical
images of hopfions and preimages of different points of the
order parameter space (figures 21(c) and (d)) confirms the hop-
fion identity. While nonlinear optical imaging of m(r) cannot
discriminate m(r) and−m(r) because of being based on orien-
tations of transition dipole moments of the organic LC molecu-
lar host [24], this ambiguity related to telling apart the preim-
ages of diametrically opposite points is lifted by probing the
response to applied magnetic fields B in directions parallel or

antiparallel to m0 (figure 21(e)). B applied antiparallel to m0

forces the soliton to grow, with the outer diameter increasing
and the inner region shrinking [24], with the opposite response
for B‖m0 (figure 21(e)). Since the coupling of B and m is lin-
ear, described by a corresponding free-energy term, this elim-
inates the m versus −m ambiguity, so that the entire structure
can be smoothly vectorized [24].

The detailed structure of axisymmetric m(r) within the
static Hopf soliton is depicted in figures 21(f) and (g). It min-
imizes the Frank–Oseen free energy of a chiral ferromagnetic
LC at no applied external fields:

FCFLCC =

∫
dr

{
K11

2
(∇ · m)2 +

K22

2
[m · (∇× m)]2

+
K33

2
[m × (∇× m)]2 + q0K22m · (∇× m)

}

(1)

For splay, twist and bend Frank elastic constants equal,
K = K11 = K22 = K33, within the one-constant approximation
[12], the ferromagnetic LC’s free-energy functional reduces to
a micromagnetic Hamiltonian for non-centrosymmetric chiral
magnets for A = K/2 and D = Kq0 [24, 165, 175]:

F =

∫
dr

[
A(∇m)2 + Dm · (∇× m)

]
(2)

where the coefficients A and D for magnetic solids describe
the effective exchange energy and the Dzyaloshinskii–Moriya
coupling. Numerical minimization of both free-energy func-
tionals yields minima corresponding to Hopf solitons with
linked preimages (figures 21–23) [24, 42, 191]. This linking
cannot change without a breakdown of the m(r) continuum,
e.g. through melting or generation of singular defects, fur-
ther helping to stabilize such topological solitons. Hopfions
with different Hopf indices can co-exist in monodomain sam-
ples because they can all correspond to local or global free-
energy minima. Both the ferromagnetic LC and a Hopf link of
any two preimages with consistently defined circulations of a
hopfion are chiral, so that taking a mirror image negates the
linking number and Q while also transforming a left-handed
ferromagnetic LC into its right-handed counterpart [24, 191].
Many-body elastic interactions between individual hopfions
in the presence of a lateral confinement lead to hexagonal
arrays imbedded into m0 [24], consistent with their particle-
like nature. Self-assembly of hopfions may result in 2D and
3D solitonic condensed matter phases, analogs of the so-called
‘A-phase’ of 2D skyrmions [175–181], which calls for a
detailed study of phase diagrams.

Minimization of free energy given by equation (2) pre-
dicts the existence of 3D topological solitons in solid non-
centrosymmetric ferromagnets [42] with experimental values
of A and D. Like in the chiral term in free energy for ferromag-
netic colloidal systems [24], the Dzyaloshinskii–Moriya term
in equation (2) helps in overcoming the stability constraints
defined by the Derick theorem [193]. Solid-state magnetic
hopfions have been predicted to exist in nanodiscs, thin films
and nanochannels of non-centrosymmetric magnetic solids
with perpendicular surface anisotropy [42] (figures 23(a) and

27



Rep. Prog. Phys. 83 (2020) 106601 Review

Figure 23. Hopfions in solid-state non-centrosymmetric magnets. (a) Cross-sections of the magnetization field within a hopfion in the plane
perpendicular to m0 (upper) and that containing m0 (lower) in a magnetic solid material. Magnetization fields are shown with cones colored
according to S

2 (lower-left insets). In the x–z cross-section, black stripes at the top and bottom indicate interfaces with boundary conditions
achieved using perpendicular surface anisotropy and thin-film confinement. (b) Preimages of S2 points indicated as cones in the inset. The
linking number of preimage pairs is consistent with the Hopf index Q = 1. (c) Geometry and topology of the Hopf fibration. (d)
Visualization of the emergent magnetic field Bem by the isosurfaces of constant magnitude and streamlines with cones indicating directions.
(a)–(d) Reproduced with permission from [42]. (e) and (f) For hopfions, preimages of S2 in R

3 (and S
3) form Hopf (e) and Solomon links

(f) with linking numbers matching their Q = 1 (e) and Q = 2 (f) Hopf indices. Since direct (φ) and inverse (φ−1) stereographic projections
relate configurations on S

3 and in R
3 when embedded within n0 and m0, these solitons are characterized by S

3 → S
2 maps, π3(S2) = Z

homotopy group and Q ∈ Z; crossing signs in (e) and (f) are marked in red. (e) and (f) Reproduced with permission from [191].

(b)), featuring closed-loop preimages of all S
2 points, with

each pair linked Q times. Due to the field topology, the emer-
gent magnetic field (Bem) ≡ �εijkm(∂ jm × ∂km)/2 of a solid-
state elementary hopfion spirals around its symmetry axis with
a unit flux quantum (figures 23(c) and (d)) [42]. Streamlines
of Bem, describing the interaction between conduction elec-
trons and the spin texture, also resemble Hopf fibration [192].
This behavior of Bem mimics the topology of preimages for
hopfions (figures 23(e) and (f)). It will be interesting to explore
in future whether Bem in solid-state systems can also mimic the
behavior of preimages in high-Hopf-index hopfions, like those
with Q = 2 Solomon link topology (figure 23(f)). The capabil-
ity of encoding 1, 0, 2, −1 and other states in the topological
charges of 3D Hopf solitons in a chiral magnet can lead to data
storage and other spintronics applications, with some of them
already pursued in modeling [42, 43]. While the stability of
3D solitons like hopfions has always been challenged by the
Derrick theorem [43, 190–193], their experimental observa-
tion in chiral LCs and colloidal ferromagnets [24, 190] offered
insights that led to the predictions of such hopfions in magnetic
solid-state materials [42, 43, 191], demonstrating the power of
using soft matter as model systems. The insight in this par-
ticular case is that the energetic stability of Hopf solitons is
enhanced by the medium’s chirality, and that such topological

objects can be hosted as stable or metastable structures in sys-
tems with Hamiltonians like the ones given by equations (1)
and (2) of chiral ferromagnetic colloidal LCs and solid-state
magnets.

5.4. Hopfions in nonpolar LCs

Hopf solitons in chiral nematics differ from those in vector
fields of chiral magnets discussed above in that they are real-
ized in the nonpolar field with the S2/Z2 order parameter space
[190]. Shown in figure 24 are elementary LC hopfions with
opposite signs of Hopf indices. Rod-like molecules and n(r)
twist by 2π in all radial directions from the central axis to the
n0 periphery within both solitons (figure 24) [190]. By vec-
torizing n(r) of the two solitons (figure 24), so that n0 points
in the same direction for both of them and so that circulations
of preimages are defined continuously, one finds Q = 1 for
the soliton shown in figures 24(a)–(e) and Q = −1 for that
in figures 24(f)–( j). For both hopfions, all S2/Z2 points for
the nonpolar director have individual preimages in the form
of two linked loops (figure 24) [190]. This is expected since
the manifold S

2/Z2 is effectively half of S2, and the smoothly
vectorized version of the hopfion has all preimages of S2 in the
form of individualized closed-loop regions. While the handed-
ness of the n(r) twist is determined by LC chirality and is the
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Figure 24. Nematic LC hopfions. (a)–(e) A hopfion with Q = 1 determined using the vectorized n(r). (a) and (b) Computer-simulated (a)
in-plane and (b) vertical cross-sections of the axisymmetric n(r) of the hopfion depicted using double cones and the color scheme that
establishes correspondence between director orientations and the points on S

2/Z2 (top-right insets). (c) Computer-simulated preimages of the
hopfion for two sets of the diametrically opposite points on S

2/Z2 marked by double cones in the top-right inset. (d) and (e) A comparison of
representative (d) computer-simulated and (e) experimental preimages of the hopfion for two diametrically opposite points on S

2/Z2
(top-right insets). Gray arrows in (c-e) show the consistently determined circulation directions of the preimages. (f)–(j) A hopfion with Q =
−1, with characterizations and visualizations performed analogously to those shown in (a)–(e). Reproduced with permission from [190].

same for the two solitons within the same host material, the
localized director configurations yield Hopf links of preimages
of opposite handedness (figures 24(c)–(e) and (h)–( j)), both
of which, interestingly, correspond to energy minima (though
with somewhat different energies) [190]. For both hopfions,
experimental preimages closely match their theoretical coun-
terparts (figures 24(d), (e), (i) and (j)). The Q values stay the
same upon inverting the vectorization direction n(r)→−n(r),
different from the case of hedgehog charges of point defects
in nonpolar LCs that change signs with n(r) → −n(r) [34].
However, taking a mirror image negates the linking numbers
of all preimage links and Q values, again different from hedge-
hog charges of point defects that would stay unchanged [34].
These properties of LC hopfions also apply to their topological
counterparts in chiral magnets discussed above [24, 191].

Interesting soliton configurations arise when increasing the
amount of the radial n(r) twist embedded within n0. For
example, n(r) twists by 4π in all radial directions from the
two solitons’ central axes to their periphery in figures 25(a),
(b), (h) and (i), yielding two-closed-loop preimages of S

2

points for vectorized n(r), with preimages of each point on
S

2/Z2 of nonpolar n(r) comprising four individual closed
loops (figures 25(d)–(g) and (k)–(n)). Preimages for the same
polar angle θ of vectorized n(r) and with different azimuthal
n(r) orientations tile into tori (figures 25(f) and (m)). There
are always two such tori for a given θ (figures 25(f) and
(m)), which is different from the case of elementary hopfions
(figure 24). For all S2 points of vectorized n(r) of the soli-
ton shown in figures 25(a)–(g) (figures 25(h)–(n)), the indi-
vidual preimages are formed by two separate unlinked closed
loops while preimages of two separate S

2 points form two
Hopf links with the linking number +1 (−1) for each of them,
as seen in figures 25(d) and (e) (figures 25(k) and (l)). Tori
formed by preimages of constant θ remain separate until merg-
ing with the far-field background when n(r) becomes parallel

n0 (figures 25(f), (g), (m) and (n)). The behavior of the indi-
vidual S2/Z2 preimages of nonpolar n(r) is reminiscent to that
of pairs of S2 preimages for vectorized n(r) (figures 25(d)–(g)
and (k)–(n)). The preimages of S2 points in the vicinity of the
north pole are two separate tori that characterize n(r) smoothly
transforming to n0 in their exterior (figures 25(g) and (n)).
Thus, one can interpret the two solitonic structures shown
in figure 25 as Q = 2 and Q = −2 hopfions, respectively,
each formed by coaxial arrangements of two separate like-
charged hopfions of Hopf index Q = 1 (figures 25(a)–(g)) and
Q =−1 (figures 25(h)–(n)). Hopfions that could be thought of
as comprising elementary hopfions of opposite signs of Q have
been experimentally observed [190], including those with a Q
= 1 hopfion in the interior and Q = −1 hopfion in the exte-
rior of the coaxial hybrid solitons and vice versa [190]. Coax-
ially arranged hopfions of opposite signs can annihilate and
transform into a uniform state, whereas that of like-charged
hopfions gives high-index solitons with Q being the sum of Q
values of individual structures [190, 191]. While each hopfion
is uniquely characterized by Q and the corresponding link-
ing number of preimages, there are different ways to obtain
the same linking numbers within a soliton. For example, a
hopfion with Q = 2 could have two Hopf links for each pair
of preimages or a single Solomon link [191]. Analogously, a
localized solitonic structure with Q = 0 could be comprised
of coaxially arranged Q = −1 and Q = 1 hopfions or sim-
ply have no linked closed-loop preimages (even if still fea-
turing closed-loop preimages) [191]. Such variations of inter-
linking are often found within the same 3D solitons, where,
as an example, pairs of some preimages can form a Solomon
link, but others form two Hopf links, in each case with the
same linking number [190, 191]. Moreover, even individual
preimages can have different geometries within different parts
of order parameter space for the same soliton, as long as the
linking number, which is the topological invariant defining Q,
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Figure 25. The 3D solitons formed by coaxial arrangement of two elementary hopfions. (a)–(g) A Q = 2 topological soliton comprising two
coaxially arranged hopfions, each with a Hopf index Q = 1 (a) and (b). Computer-simulated (a) in-plane orthogonal to n0 and (b) vertical
containing n0 cross-sections of the axisymmetric n(r) of a Q = 2 soliton depicted using colored double cones; the color scheme establishes
the correspondence between n(r)-orientations and S

2/Z2 (insets). (c) A polarizing optical micrograph of such a soliton in a chiral nematic LC.
White double arrows show orientations of crossed polarizers. (d) Computer-simulated and (e) experimental preimages of the soliton for the
diametrically opposite points on S

2/Z2 marked by double cones in the inset. (f) For a constant polar angle (inset), the closed-loop preimages
of individual points on S

2 tile into two tori sharing the same vertical axis along n0. (g) Preimages of the north and south poles of S2 for the
vectorized n(r). (h)–(n) A Q =−2 soliton just like that shown in (a)–(g), but comprising two coaxial hopfions with Q =−1 each, with figure
parts mirroring those in (a)–(g). Reproduced with permission from [190].

is conserved for all pairs of preimages [191]. The large num-
ber of possibilities to realize solitonic structures of given Q
(in both experiments and modeling) contributes to the diver-
sity of Hopf solitons [190], which is revealed by simplified
topology and graph presentations (figure 26). In these graphs,
the closed-loop preimage components are filled circles col-
ored according to the positions of corresponding points on
the ground-state manifold, and the individual links are indi-
cated by black edges connecting these circles (figure 26) [190].
Moreover, figures 21–26 illustrate that not only elementary
hopfions but entire zoos of π3(S2) = Z and π3 (S2/Z2)= Z

solitons exist in soft matter. The insights into the diversity of

structural embodiments of topological Hopf solitons exper-
imentally revealed by LC and colloidal systems are useful
for theoretical modeling and experimental discovery of such
topological objects in other branches of physics.

5.5. Hybrid torons and twistions

In addition to the elementary torons with π-twist of n(r) from
their central axes to the n0-periphery in all radial directions
(figure 19), torons with larger amounts of such twist exist.
For example, torons shown in figures 27(a) and (b) contain 3π
twist of n(r) in all radial directions [190]. Additionally, torons
with 5π and larger amounts of twist within axisymmetric toron
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Figure 26. Linking diagrams and graphs of complex 3D topological solitons. The analysis reveals the linking of preimages of two different
points on S

2 and S
2/Z2 on the basis of both nonpolar and vectorized n(r). The insets in the red boxes at the top of the columns ‘linking

diagrams’ depict the order parameter spaces of vectorized (top) and nonpolar (bottom) n(r), with arrows or double arrows indicating the
points for which the preimage linking is analyzed. The dashed lines on the S

2 and S
2/Z2 separate regions of S2 and S

2/Z2 with θ < θc (top
parts) and θ > θc (bottom parts), where θc is the critical polar angle defining the boundary lines between different subspaces of the order
parameter space; θc lines separate regions with different individual preimages [190]. Locations of points corresponding to preimages, shown
using single and double arrows on S

2 and S
2/Z2, are the same for all solitons within the same column. In the graphs, individual links are

indicated by black or gray lines connecting the corresponding colored filled circles that represent closed-loop preimages (black lines indicate
positive signs of linking of preimages, whereas gray lines correspond to the negative ones). The colors of the filled circles are indicative of the
points on S

2 (for schematics shown above the horizontal dashed lines of the table) or S2/Z2 (for schematics shown below the horizontal dashed
lines of the table); for n(r) at θ < θc, two out of eight filled circles of the graphs are shown as red and the rest as orange to distinguish them
on the basis of the number of times the corresponding preimages are linked. The mutually linked preimage rings in the simplified topology
presentations are also shown in colors corresponding to their locations on S

2 and S
2/Z2 and have arrows denoting circulation consistent with

the far-field preimage. Point defects of torons within the topological skeletons are shown using black stars. Both the topological skeleton
and graph representations of the preimage structures are constructed for the same configurations and are provided next to each other for the
vectorized n(r). Reproduced with permission from [190].

structures were found in recent experiments [190]. Preimages
of distinct points on the S

2/Z2 or S2 for such toron–hopfion
hybrid structures are either closed loops or bands starting and
terminating on the hyperbolic point defects (figures 27(c)–(e)).
Such torons can be thought of as a separate elementary hopfion
and an elementary toron arranged coaxially so that their sym-
metry axes coincide. The multicomponent preimages, com-
prised of closed loops and half-loop bands that terminate
on the point singularities, reveal the diversity of topological
and structural compositions of such torons (figure 26). Soli-
tonic and singular topological structures also co-exist within
hybrid structures called ‘twistions’, localized configurations

that embed spatially localized twisted regions into a uniform
n0 background but lack axial symmetry and (unlike torons)
contain more than two point defects [194] (figure 28).Within
a structure shown in figure 28, n(r) twists from its interior
to periphery by ∼π, though twistions with larger amounts of
such twist exist too, analogously to what was discussed above
for torons [190, 191, 194]. The twistion in figures 28(a)–(c)
contains a stretched loop of π-twist of n(r) and four self-
compensating hyperbolic point defects, as revealed with the
help of cross-sections. Its topology can again be analyzed
using preimages, which are bands spanning between the four
point singularities (figures 28(d) and (e)). This example shows
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Figure 27. A complex toron structure formed by coaxial arrangement of an elementary toron and hopfion. (a) and (b) Computer-simulated
(a) in-plane orthogonal to n0 and (b) vertical containing n0 cross-sections of axisymmetric n(r) structure depicted using colored double
cones; the color scheme establishes the correspondence between director orientations and the points on S

2/Z2 (insets). (c)
Computer-simulated and (d) experimental preimages for the diametrically opposite points on S

2/Z2 marked by double cones in the insets.
Gray arrows indicate the consistently determined circulations of preimages. (e) For each polar angle, closed-loop preimages of individual
points on S

2 tile into a torus and a sphere, with the sphere having two small holes at poles corresponding to the two point defects.
Reproduced with permission from [190].

that localized skyrmion-, toron- and hopfion-like field con-
figurations in confined chiral nematic LCs are not restricted
to hosting none (as in skyrmions and hopfions) or only pairs
(as in the torons) of self-compensating singular defects. Such
self-compensation can occur in a number of other more com-
plex ways, e.g. with four hyperbolic point defects shown in
addition to various solitonic components with band-like or
closed-loop preimages (figure 28). Similar multi-point-defect
configurations with solitonic n(r) in-between have also been
reported for cholesteric LC drops [147].

5.6. Topological inter-transformations of solitons

LCs are known for their facile responses to external fields,
though this switching typically involves topologically triv-
ial structures [12]. Switching of solitonic structures in chiral
nematic and ferromagnetic LCs has been explored too, demon-
strating both topology-preserving morphing and topological
transformations (involving changes of topological invariants)
driven by electric and magnetic fields [191]. The far-field
director n0 and magnetization m0 were fixed to assure com-
pactification of R3 to S

3 for the 3D solitonic structures dur-
ing switching. Since ferromagnetic LC is polar, m(r) responds
differently to external magnetic fields H and −H, making
magnetically driven transformations of solitons especially rich
(figure 29) [191]. As an example, an axisymmetric soliton with
complex linking of preimages but net Q = 0 at zero field is
shown in figures 29(a) and (b) [191]. H applied parallel or
antiparallel to m0 drives this soliton’s m(r) through a series
of continuous and discontinuous deformations (figures 29(c)

and (d)), where the distinct types of encountered preim-
age linking are shown schematically in the insets [191].
A structural diagram in the coordinates of thickness-to-pitch
ratio d/p and applied magnetic field (figure 29(d)) encom-
passes a wealth of knotted configurations, where the Hopf
index Q stays unchanged within some parameter ranges, but
changes discontinuously at the boundaries of the diagram
between the topologically distinct states with different Q.
Within a broad range of parameters, solitons morph without
changing topology (figure 29(d)) [191]. The S

2 ground-state
manifold splits into two subspaces (figure 29(b)) separated
by a boundary at a critical polar angle θc dependent on H
(figure 29(c)). Different preimages of points on S2 not only co-
exist within the same knot soliton, smoothly embedding within
a localized volume in R

3, but are also magnetically inter-
transformed while remaining nonsingular, as long as the link-
ing number of all preimage pairs for a given soliton stays con-
served. Outside of the central parts of the diagram, with chang-
ing d/p and H, Q = 0 solitons with complex preimage linking
discontinuously inter-transform into Q = −1 solitons, torons
and other structures (figure 29(d)) [191]. Since both chiral LCs
and colloidal ferromagnets are optically birefringent, different
Hopf index values can be associated with optical signatures,
such as polarization rotation, phase retardation, and light trans-
mission when the sample is placed between polarizers, which
could potentially expand the wealth of current electro-optic
applications of these soft matter systems [12]. The illustrative
example of a structural diagram (figure 29(d)) with the topo-
logical soliton switching is just one of many that have been
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Figure 28. A twistion structure in a chiral nematic LC. (a)–(c) Computer-simulated (a) in-plane and (b) and (c) vertical cross-sections of the
3D n(r) of the twistion shown with double cones and the color scheme of director orientations according to S

2/Z2 (insets). Locations of
vertical cross-sections (b) and (c) are depicted in (a) using arrows. (d) Computer-simulated preimages of the twistion for points on S

2/Z2
marked by double cones in the inset. (e) Computer-simulated preimages of the twistion for points on the ‘equator’ of S2/Z2 (top-right inset).
(f) A polarizing optical micrograph of the twistion, with the white double arrows showing crossed polarizers. Reproduced with permission
from [190].

reported, including examples of magnetic- and electric-field-
controlled stability diagrams of solitons in LC, colloidal and
solid-state magnetic systems [42, 44, 73, 191]. The similarity
of findings in physical behavior (including switching) of soli-
tons in soft and hard chiral condensed matter systems [42, 44,
73, 191] once again shows how LCs and colloids can be used
as model systems in the studies of solitons in other fields.

5.7. Heliknotons and crystals of knots

Recently, stable micrometer-sized knots, called ‘heliknotons’,
have been demonstrated in helical fields of chiral nematic
LCs [73]. The helical fields comprise a triad of orthonormal
fields (figure 30(a)): the molecular n(r) field, the helical axis
χ (r) field and τ (r)⊥n(r)⊥χ(r). Heliknotons are topological
solitons with linked closed-loop n(r) preimages (figure 30(b)),
while their χ(r) and τ (r) contain half-integer singular vortex
lines forming knots (figure 30(c)). Therefore, the heliknoton
is a hybrid embodiment of both preimage and vortex knots
[73]. These knot solitons embed in a helical background and
form spontaneously after the transition from the isotropic to
LC phase when an electric field E is applied to a positive-

dielectric-anisotropy chiral LC along the far-field helical axis
χ0. These structures comprise localized regions (depicted in
gray in figures 30(b) and (c)) of perturbed helical fields and
twist rate [73]. They display 3D particle-like properties, with
anisotropic pair interaction potential varying from attractive
to repulsive and from tens to thousands of kBT [73], depend-
ing on the choice of LC, applied voltage U, sample thickness,
equilibrium cholesteric pitch p0, etc. The inter-heliknoton
interactions arise from sharing long-range perturbations of the
fields and minimizing the overall free energy for different rel-
ative positions [73]. These interactions enable a plethora of
crystals, including 2D and 3D low-symmetry and open lattices
(figure 30) [73], with tunable crystallographic symmetries
and lattice parameters [73]. The 3D crystals of heliknotons
emerge in samples of thickness >4p0, when anisotropic inter-
actions yield triclinic pedial lattices (figure 30(d)), whereas 2D
crystals form in thinner samples. Besides the Q = 1 elemen-
tary heliknotons, Q = 2 and Q = 3 topological solitons were
observed as well [73], with preimages in the material field n(r)
linked twice and three times, respectively. For Q = 2 (Q = 3)
heliknotons, singular vortex lines in χ(r) and τ (r) form closed
51 (71) knots co-located with the same knot of a meron in n(r).
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Figure 29. Control of localized topological structures by confinement and magnetic fields. (a) A computer-simulated cross-section of a stable
axisymmetric Q = 0 soliton at H = 0 and thickness-over-pitch ratio d/p = 2.7. (b) Ground-state manifold S

2 with four points (colored cones)
corresponding to preimages of the same color schematically shown in the insets of (d). The black circle shows the θc-boundary line separating
subspaces of S2 with different types of individual preimages, double unlinked loops for θ > θc and a Hopf link of closed loops for θ < θc.
(c) The critical angle θc and Q vs μ0H at d/p = 2.7. Q values are indicated atop of the colored regions of constant Q = −1 (green regions)
and Q = 0 (blue regions). Singular point defects (depicted by stars in the insets) accompany the nonsingular solitons, forming elementary
torons, within the diagram’s white regions. Here, μ0H is defined as positive when H is parallel to m0 and negative when antiparallel to it. (d)
A stability diagram of the solitons vs d/p and μ0H. The insets depict the diverse topology of two-point preimages and their links for a family
of hopfions with Q = 0, −1, and the two different types of torons that emerge in different regions of the diagram. Reproduced with permission
from [191].

These and other heliknotons with even larger Q can be ground-
state and metastable structures [73], behaving like particles.
However, unlike the atomic, molecular and colloidal crystals,
heliknoton crystals exhibit giant electrostriction and dramatic
symmetry transformations under <1 V voltage changes. The
closed-loop preimages of heloknotons are interlinked with the
torus knot of vortices within the orthonormal fields [73], show-
ing how remarkably beautiful and complex knotting of helical
fields can be and calling for their search in other physical sys-
tems. For example, they can potentially emerge in solid-state
non-centrosymmetric magnets and ferromagnetic LCs with

helical fields and Hamiltonians similar to those of chiral LCs,
as recently predicted theoretically [44].

6. Topological, solitonic and knotted active matter

6.1. Solitons as active particles in passive LCs

The examples showing the role of topology in the LC and
colloidal soft matter behavior presented so far relate to equilib-
rium or metastability conditions, but an even richer interplay
of topology, ordering and fluidity can emerge under the out-
of-equilibrium conditions. Topological structures of defects
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Figure 30. Topology and self-assembled crystals of heliknotons. (a) A helical field comprising a triad of orthonormal n(r), χ(r) and τ(r). (b)
Preimages in n(r) of a heliknoton colored according to their orientations on S

2 for vectorized n(r) (inset). (c) Knotted co-located half-integer
vortex lines in χ(r) and τ(r). Gray isosurfaces in (b) and (c) show the localized regions of the distorted helical background. (d) The primitive
cell of a 3D triclinic heliknoton crystal. Isosurfaces (gray) of heliknotons with a distorted helical background are co-located with both vortex
knots (red) and preimages of antiparallel vertical orientations in n(r) (black and white). (e) and (g) Closed rhombic and (f) open heliknoton
lattices obtained at U = 1.9 V and U = 1.7 V, respectively. Reproduced with permission from [73].

and solitons in LCs and nematic colloidal particles can be
effectively ‘activated’ by supplying energy [80, 81, 194–198],
just like this was done in the past with granular particles by
shaking them [121, 199, 201], as an example. When sup-
plied to LC and colloidal samples on macroscopic scales under
well-controlled conditions, the external energy can be con-
verted into motion on the individual soliton or singular defect
basis; this can lead to various types of emergent active mat-
ter behavior, differing from classic effects like electrophoresis
and dielectrophoresis, where external fields predictably pre-
determine motions of particles. As we shall see below while
focusing on examples that involve skyrmions and torons, this
enables synthetic active matter with rich varieties of collec-
tive motions of particle-like topological solitons and defects.
While Skyrme solitons have been used historically as physi-
cal models of subatomic particles [7] and a variety of other
topologically protected field configurations are commonly uti-
lized as models of particles in different branches of physics, the
significance of the active-matter-like behavior of topological
solitons and defects in soft matter directly shows the utility of
such topological models in active matter. We shall review how
periodic pulses of an applied field lead to squirming motion
of individual skyrmions and torons [80, 81], and then how this
enables collective schooling and orderly motions of hundreds-
to-millions of such topologically protected particle-like struc-
tures, with all motion directions selected spontaneously and
arising from emergent behavior, uncorrelated with directions
of the oscillating fields [195–198]. While in active nematics
topological defects behave as active particles themselves [121,
199, 202], the active topological solitons that we will focus on
here can be understood as active particle-like objects within

an effectively passive medium, behaving as active topological
excitations [80, 81, 195–198]. With fluid flows and complex
hydrodynamics being an important part of the conventional
active nematics and behavior of defects within them [121, 199,
202], the situation can be very different in the case of active
topological solitons in passive nematics that rely mostly on the
rotational director dynamics to move [80, 81]. Various back-
flow effects can be present (though typically not strong) during
such dynamics [80, 81], but they are localized and not instru-
mental in defining motions that arise from non-reciprocity of
rotations of n(r). The way topological solitons move when
invoking this nonreciprocal rotational director dynamics could
be paralleled with stadium waves (which move around the sta-
dium without people actually leaving their seats) and concert-
wave dance dynamics in response to music that can propagate
with the speed of sound without carrying the dancers with
them. The LC soliton motions also resemble the dynamics
of topologically similar skyrmions in spin textures in solid-
state magnets that can move through rotations of spins within
solid films with up to kilometer-per-second speeds, being of
interest for spintronics applications like in racetrack memory
devices [160, 178–183]. However, the most fascinating fea-
ture of topological soliton behavior in soft matter is that their
emergent collective motions can mimic that found in biolog-
ical systems, like in schools of fish, though happening here
without advection but rather through rotational dynamics in
the order parameter field [197].

The facile response of LCs to periodically varying fields
can cause local conversion of electric, magnetic, mechanical
or other forms of energy into elastic energy stored within soli-
tonic n(r) deformations and then into a soliton’s translational
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Figure 31. Translational skyrmion motions powered by an oscillating electric field. (a)–(f) Topology and electric switching
(topology-preserving morphing) of 2D baby skyrmions: (a)–(c) polarizing optical micrographs of a 2D skyrmion at (a) no fields and (b) and
(c) at voltages U indicated on the images. The electric field applied to negative-dielectric-anisotropy LC is perpendicular to the images.
(d)–(f) Computer-simulated vectorized n(r) corresponding to (a)–(c), shown using arrows colored according to corresponding points on S

2

(insets), with the far-field orientations depicted using cones. (g) Translation of a skyrmion in response to switching U on and off, with
corresponding computer-simulated results shown in the top-right inset. The bottom inset illustrates the square waveform voltage driving
with the carrier frequency f c = 1 kHz and the modulation period Tm. Motion of the skyrmion is compared to that of a tracer nanoparticle at
zero field (black solid line) and at U = 4 V (green solid line). (h) Experimental and (i) computer-simulated polarizing optical micrographs of
a skyrmion when moving along a vector connecting the south- and north-pole preimages (positive x direction). The schematic in the inset
between experimental and computer-simulated micrographs shows the timing of turning U on and off within the elapsed time equal to Tm,
correlated with the micrographs in (h) and (i). Reproduced with permission from [80].

motion [80, 81, 195–198]. In the electric field case, dielec-
tric coupling of n(r) with the electric field E morphs a soli-
ton (figures 31(a)–(f)) and elastic free-energy costs associated
with this deformation tend to drive relaxation of n(r) back to
the initial state that minimizes energy at zero applied field. The
nonreciprocal nature of n(r) rotation in response to switching
voltage U on and off causes translation of solitons in lateral
directions (figures 31(g)–(i)). Within each voltage modula-
tion period Tm, the solitons are asymmetrically squeezed dur-
ing the ‘field-on’ cycle and relax to minimize the elastic free
energy during the ‘field-off’ cycle of Tm (figures 31(h) and
(i)) [80]. This periodic nonreciprocal asymmetric morphing of
the localized n(r) resembles squirming in biological systems,
albeit LC solitons have no cell boundaries, density gradients
or interfaces, so that the similarity is limited, mainly just in
terms of the nonreciprocal character [81]. Like for active col-
loidal or granular particles [122, 123, 199–201], the energy
conversion happens at the scale of individual particle-like

solitons. Although the oscillating energy-supplying field is
applied globally to the entire sample, its direction is not related
to the emergent motion direction [80]. Depending on the
applied voltage, this morphing of LC solitons by voltage pulses
can take place below or slightly above the threshold of switch-
ing of the LC director in the background far away from the soli-
tons [80, 196, 197], though in both cases the LC host medium
features no or very minimal macroscopic flows, so that the LC
stays passive (practically no advection) while the topological
solitons start exhibiting active-particle-like emergent motions.

6.2. Out-of-equilibrium elastic interactions and schooling of
skyrmions

Out-of-equilibrium elastic interactions between moving
skyrmions emerge to reduce the free-energy costs of n(r)
distortions around the topological solitons, albeit without
the dynamic n(r) reaching equilibrium because of the
periodic voltage modulation and soliton motions [197].
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Figure 32. Schools of skyrmions. (a) and (b) Frames from videos of (a) moving chains and (b) a school of moving skyrmions without
clustering. Directions of the electric field E are marked on (a) and (b). Polarizer (P) and analyzer (A) orientations and the skyrmion school
motion velocity vector (vs) are marked in (b). (c) The interaction potential, extracted from the radial distribution function g(rcc) shown in the
inset, versus center-to-center distances rcc for schooling skyrmions under conditions like those depicted in (b). (d) Evolution of velocity Sv
(blue data points and eye-guiding curve) and polar Sp (red data points and eye-guiding curve) preimage vector order parameters with time.
The insets schematically show the corresponding field configurations. (e) A diagram of static and dynamic skyrmion assemblies and schools
versus packing fraction, frequency f and voltage U. The configurations shown in the insets are consistent across all f at which skyrmions are
stable. Reproduced with permission from [197].

These interactions, at least partially, define the collective
behavior of skyrmions while they move (figures 32(a) and
(b)). The elastic interactions between skyrmions confined to
a 2D plane have a dipolar nature (note also that the director
configuration around a skyrmion in an applied field is of
the dipolar type, figures 31(c) and (f)), though the complex
temporal evolution of n(r) with modulated U effectively
changes their tilt relative to the 2D sample plane within each
Tm [197]. Such dynamic dipolar skyrmions mutually repel
at small U, but exhibit anisotropic dipolar-like interactions,
including attractions, when the oscillating field E prompts
symmetry breaking and motions [197]. E rotates preimage
dipoles (connecting preimages of S2 poles of the vectorized
n(r)) from being orthogonal to the sample plane at U = 0 to
being tilted or in-plane when U increases. Since the response
of n(r) to oscillating U is fast (10–100 ms) compared to the
timescales of skyrmion motions at ∼1 μm s−1, tuning n(r)
by U and frequency f modifies elastic forces and prompts
cohesion within schools of skyrmions. The emergent behavior
and orientational-elasticity-mediated pair and many-body
interactions of such topological solitons can be understood as
that of elastic dipoles with periodically oscillating tilt with
respect to the 2D sample plane (figure 32) [197]. The nature
of instantaneous interactions between continuously morphing
solitons effectively changes within each Tm, but the overall
collective behavior then arises from the cumulative effects of
Tm-averaged instantaneous interactions (figures 32(a)–(c)).
This behavior gives origin to a variety of emergent types of
behavior of moving solitonic assemblies (figure 32(a)) and
schools of solitons (figures 32(b)–(e)).

In the presence of thousands-to-millions of skyrmions,
applied E initially induces random tilting of the director
around individual skyrmions, so that their south–north preim-
age unit vectors pi = Pi/|Pi| initially point in random in-plane
directions. Individual skyrmions exhibit translational motions
with velocity vectors vi roughly antiparallel to their pi. With
time, coherent directional motions emerge, with schooling
of skyrmions either individually dispersed (figures 32(b) and
(c)) or within various cluster-like assemblies [197]. Veloc-
ity and polar order parameters Sv = |

∑N
i vi|/(Nvs) and Sp =

|
∑N

i pi|/N characterize degrees of ordering of vi and pi within
the moving schools, where N is the number of skyrmionic
particles and vs is the absolute value of velocity of a coher-
ently moving school. Both order parameters increase from
zero to ∼0.9 within seconds (figure 32(d)), indicating the
emergence of coherent unidirectional motion of particle-like
solitons. The dynamic elasticity-mediated assembly of multi-
skyrmions within schools (figure 32) echoes nuclear physics
models (where subatomic particles with high baryon numbers
are modeled as clusters of elementary skyrmions [7]), with
each skyrmion cluster characterized by a net total skyrmion
number corresponding to a sum of topological invariants of
elementary solitons within it [80, 81, 197]. Interestingly, one
often observes dynamic fission and fusion of such clusters dur-
ing the active schooling [197]. Figure 32(e) summarizes the
schooling behavior of skyrmions within a structural diagram,
showing electric reconfigurability of this emergent behavior
[197]. It is surprising and unexpected that relatively simple
topological solitons, the 2D skyrmions, exhibit such com-
plex out-of-equilibrium behavior when powered by oscillating
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Figure 33. Dynamics of 2D crystallites of torons. (a) A schematic of crystallite motions powered by an electric field orthogonal to the cell
substrates. (b)–(d) Crystallites of torons colored according to orientations relative to the average motion direction (b) and shown in
polarizing micrographs at zero applied voltage (c) and at U = 2.5 V (d); black arrows in (d) denote crystallite motion directions. The color
scheme for visualizing crystallite orientations in (b) is shown in the inset between (a) and (b). (e) Trajectories of crystallite motions at U =
2.5 V, f = 10 Hz, progressively zooming in on the details of translations, colored according to elapsed time (with the maximum elapsed time
marked in each part); dashed hexagons indicate the unit cell shift during motion, colored according to the color-coded timescale. (f) Average
displacement of the hyperbolic point defects near the confining substrate, analyzed with bright-field microscopy (video frames in insets). (g)
and (h) South-pole preimages (magenta) and point defects (orange and yellow) of a hexagonal unit cell of torons shown (g) before and (h)
during motion. (i) Nonreciprocal angular rotations of torons within crystallites upon voltage modulation, with the times of turning
instantaneous voltage on and off marked by the blue and red dashed vertical lines. Reproduced with permission from [196].

electric fields. How can this behavior be altered further by
increasing the number density of the solitons and by the pres-
ence of singular point defects co-existing with the skyrmions
(e.g. within the elementary toron structures)? This question is
addressed below.

6.3. Crystals of moving torons

Let us now consider an experimental geometry similar to that
discussed above for skyrmions (figure 33(a)), but with dense
polycrystalline arrays of torons (figures 33(b) and (c)). An
oscillating field E applied to a chiral LC with such poly-
crystalline arrangements of torons prompts motions of crys-
tallites and lattice defects (figure 33(d)), showing behavior
very different from that of the skyrmions discussed above
[196]. E is again applied orthogonally to cell substrates,
and motions emerge along a spontaneously selected direc-
tion in a plane orthogonal to E (figures 33(a)–(d)). The
crystallites have different orientations of crystallographic
axes of the quasi-hexagonal lattice relative to the average
motion direction before and during motion (figures 33(b)–(d)).
The temporal evolution of deformations of the complex
director field upon turning U on and off is not invari-
ant upon time reversal, prompting lateral translations of
torons, which synchronize to yield coherent motions of the

crystallites of torons within quasi-hexagonal periodically
deformed lattices (figure 33) [196]. Although the average
direction of motion of toron crystallites is well defined,
individual torons within the lattices execute rather elaborate
‘dancing-like’ dynamics (figure 33(e)), where local transla-
tions in directions other than motion direction average out
over longer periods of time. As a result, the primitive cells of
crystals of torons are translated along the average motion
direction (figure 33(e)) with velocities approaching a microm-
eter per second range (figure 33(f)). While there is no net dis-
placement of toron lattices and both skyrmions and singular
point defects within them at zero applied field (though thermal
fluctuations of toron positions are present), this displacement
becomes linear in time soon after the periodically oscillat-
ing voltage is applied (figure 33(f)). Numerical modeling and
experiments reveal that this motion is accompanied by volt-
age U-dependent lateral shifts of hyperbolic point defects and
tilts/deformations of preimages compared to those at U = 0
(figures 33(g) and (h)). This electrically powered self-shearing
of torons is apparent when visualizing the south-pole preim-
ages and lateral shifts of the singular point defects at opposite
confining surfaces (figure 33(h)), as well as it can be inferred
from tracking point defects in bright-field microscopy (insets
of figure 33(f)). Furthermore, all the preimages also rotate
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around an axis normal to the sample plane [196] (figure 33(i)).
As voltage is effectively turned on and off within each period
of square-wave modulation, the toron’s preimages rotate coun-
terclockwise and clockwise (figure 33(i)), so that the director
evolution that is manifested through such textural changes is
not invariant upon reversal of time (figure 33(i)). Collective
motions of crystallites of these solitons prompt fascinating
evolution of grain boundaries and 5–7 defects [196], which
are not generated by external stresses (like this would be the
case, for example, during mechanical deformation of crys-
talline solids) but rather emerge from collective motions of
crystallites of topological solitons within the material’s inte-
rior, powered by the conversion of energy on an individual
soliton basis. Furthermore, these complex dynamics arise from
facile responses of the LC to external fields, which can be
related to periodic morphing of knotted director streamlines
within each toron [81], like those depicted in figure 20 [196],
further enriched by electrically powered periodic shearing and
dynamics of lattice defects. The collective dynamics of torons
within lattices increases the hexatic order parameter and also
causes polar ordering of asymmetrically sheared solitons, as
well as leads to rather high-velocity order parameters, which
are all rather unexpected emergent properties [196]. These
findings show that, being ‘activated’ by supplying energy that
is converted into motion locally, singular point defects, torons,
skyrmions and various other knotted solitonic field configura-
tions can emerge as a new breed of topological active matter
[80, 81, 196, 197, 202–205].

6.4. Utility of the activated solitonic matter

While motion of individual solitons and their schools or crys-
tals can take place with no or very little advection, these
dynamic textures of n(r) can be used for transporting colloidal
micro-cargo with well-defined surface boundary conditions by
coupling the localized director textures with the solid parti-
cles through surface-anchoring boundary conditions [81]. It
is tempting to again draw an analogy of such particle trans-
portation with the so-called ‘crowd surfing’ typically enjoyed
by concert performers, where the relatively static crowd trans-
ports the artist with localized dynamics of moving hands.
However, it is important to note that the soliton-assisted trans-
portation of colloidal particles throughout the LC generates
more significant (though still localized) fluid flows [81]. Con-
sidering that the ‘activated’ topological solitons can be realized
in very diverse synthetic material systems under geometry and
sample preparation conditions similar to those of LC displays
[197], their out-of-equilibrium emergent behavior might be of
interest for technological applications, ranging from microflu-
idics to dynamic diffraction gratings and singular optics.
For example, one can envisage their use in generating emer-
gent patterns of polarization and intensity of light (including
optical vortices and knots made from them) by exploiting opti-
cal properties of the uniaxial LC host media. Since torons and
skyrmions can also be pinned to surfaces in desired locations
using laser tweezers, further control of their out-of-equilibrium
behavior like jamming was recently achieved by combining
static (often serving as obstacles) and dynamic topological

solitons [80, 195, 198]. In general, the combination of topo-
logical protection, reconfigurability and the facile response of
the optically anisotropic LC host medium makes the topo-
logical solitons ideal for applications in various emergent
technologies and as model systems in fundamental research.

7. Open questions, opportunities and perspectives

While the study of knotted and other topological structures in
soft matter attracts a great deal of interest, many fundamen-
tal questions remain to be answered, including a systematic
classification of these configurations, the allowed transforma-
tions between them, their physical stability and how to use one
form of knotted fields to create and imprint other forms. The
large variety of symmetries accessible within the selection of
soft matter host media (figure 1) [13] will allow one to gain
insights into stability, transformation and dynamics of fully
nonsingular and singular knotted fields. The open questions to
be answered include the following. What restrictions do differ-
ent material symmetries impose on the knot types that can be
realized? Which knot invariants have physical significance for
each knotted field realization? How do soliton-type and sin-
gular knotted fields co-exist with each other and with other
topological defects, colloids and confining surfaces? How do
director fields switch between different knotted states? What
new knotted condensed matter phases are possible for differ-
ent symmetries? What are the mechanisms by which knot-
ted fields are stabilized? When knots decay or emerge within
a uniform background, what are the topological cascades of
knot types in different systems? What is the relation between
topological complexity and energy landscapes? Can turbu-
lence be engineered in LC fluids through imprinting knotted
flow structures, like in microfluidics embodiments [205, 206]?
How do knotted structures in a complex soft matter medium
interact? What types of dynamics and active-particle-like
motion of singular knots [206, 207] of line defects and topo-
logical solitons in 3D active nematics can be realized? Can
interaction of knotted structures and confining surfaces be con-
trolled [208]? What are the implications of knotting of vortex
lines in LCs on the structure of their cores [209–212]? How
extensions of topological concepts to dynamical phenomena
can lead to entanglement of dynamic and static material prop-
erties. Could active nematics or passive nematics with acti-
vated dynamics of defects host soft matter analogs of instan-
tons [7]? Can knotted optical fields act as templates to excite
knotted LC and ferromagnetic states, and vice versa? Orien-
tationally ordered soft matter provides unique opportunities
for integrating analytical, numerical and analog modeling with
experiments to answer the above questions.

While topologically protected knotted solitons and vortices
can exhibit behavior similar to that of particles, with effec-
tive dimensions in nanometer and micrometer ranges, it is
of interest to explore how such structures interact and co-
exist with colloidal particles in LC colloidal dispersions, gels
and emulsions [213–218]. Preliminary studies in this direction
have appeared already [219, 220], demonstrating that colloidal
particles immersed in LCs can be accompanied by combina-
tions of solitonic and singular structures, but more extensive
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research explorations are still needed. For example, 3D soli-
tons like heliknotons could effectively bond with colloidal
objects to form hybrid soliton–colloidal crystals, or instead
new breeds of hybrid structures could arise from their inter-
actions. These studies could lead to sparse but ordered open
and closed 2D and 3D lattices of colloidal superstructures [73,
221], or may also diversify our abilities to knott nematic field
configurations. If thinking about both colloids and solitons as
‘big atoms’, this may also significantly expand our abilities
to model atomic and molecular systems with soft matter, as
well as going beyond what is accessible to atomic and molec-
ular building blocks in terms of symmetries of organization,
responses to external stimuli, etc.

Throughout the article, relations between topological struc-
tures in soft matter and those in other branches of science
have been mentioned. Experimental realizations and a deeper
understanding of, for example, hopfions and heliknotons in
solid-state magnetic systems may be aided by explorations of
such structures in LCs and colloids [24, 42, 44, 73]. Indeed,
the synergy in studies of these solitons in different systems
is even beyond just the topological equivalence and analogy,
and can build on the similarity of free-energy functionals, var-
ious types of surface and bulk anisotropies, field couplings,
etc [42, 44]. In many other physical systems, like elemen-
tary particle physics and cosmology, structures of fields are
not experimentally accessible and, thus, ordered soft matter
media can provide much needed model systems and deeper
insights [7]. On the other hand, synergy can be developed in
explorations of topological configurations, even within differ-
ent soft matter systems. For example, Petit-Garrido and oth-
ers [222, 223] demonstrated how vortices within molecular
monolayers can imprint arches of singular disclinations
within LCs in contact with them, but such study could also
involve topological solitons and knotted vortices. Having self-
assembled monolayers made of photo-responsive molecules,
e.g. those containing azobenzene, may enable interesting
dynamics, similar to what was observed for spiraling 1D
solitons [224], but now this could be extended to higher-
dimensional solitons, like skyrmions and hopfions.

In addition to the most common examples discussed above,
more complex LCs and colloids can be characterized by
a variety of other types of order parameters and the cor-
responding order parameter spaces (figures 1(c) and (d)).
For example, particularly interesting high-dimensional order
parameter spaces in these soft matter systems are SO(3) =
S

3/Z2 of the monoclinic biaxial colloidal ferromagnets [225]
(figure 1(d)) and SO(3)/D2 = S

3/Q8 of the orthorhombic
biaxial nematics (figure 1(c)) [226]. The types of antici-
pated/allowed defects and solitons in these systems are under-
stood on the basis of homotopy theory, with one particularly
interesting example being the nonabelian line defects in the
orthorhombic biaxial nematic LC, π1(S3/Q8) = Q8 [227],
but little is known about the interactions of these soft mat-
ter systems with confining and colloidal surfaces of com-
plex topology, and even the fundamental properties of these
defects have not been probed experimentally. What types
of solitonic and singular knotted field configurations can
exist in these biaxial low-symmetry nematics and colloidal

ferromagnets? For example, π3(S3/Q8) = Z and π3(S3/Z2) =
Z topological solitons in biaxial nematics and ferromagnetic
LCs would be rather interesting analogs of the Skyrme solitons
in high-energy physics, but can they emerge as global or local
free-energy minima in these soft matter systems? What would
be the fate of various solitonic and singular knots during mono-
clinic–orthorhombic,orthorhombic–uniaxial nematic and var-
ious other phase transitions involving these mesophases? It is
only now that researchers can start addressing such fundamen-
tally important questions because these soft matter systems
have become experimentally accessible [225, 226]. The recent
demonstration of 3D active nematics [207] also promises
a variety of new opportunities in realizing various out-of-
equilibrium knotted vortices and solitons. For example, both
active [207, 228–234] and out-of-equilibrium passive LCs
with ‘activated’ dynamic defects [80, 81, 195–198] could
reveal various analogs of topological instantons and nontrivial
topological connectivity, where the dynamics of defects and
topological solitons could even lead to the formation of topo-
logical field configurations in a different class, including vari-
ous knotted field configurations. Although topological objects
in soft matter can be realized only in 1D-to-3D physical con-
figuration spaces (figure 5), time in certain cases can be treated
as an additional spatial dimension (say R

3+1 for a 3D config-
uration space with certain special temporal dynamics and the
corresponding S

4 compactification) [7, 235], so that an inter-
esting question arises if topological objects predicted by the
homotopy theory and labeled as π4(S2) = Z2 and π4(S3) = Z2

could be potentially realized in out-of-equilibrium soft mat-
ter systems. At the same time, active matter behavior, curva-
tures of confining surfaces and orientational polar or nematic
order could interplay to yield interesting topological effects
that are analogous to topology-enabled phenomena recently
widely studied in quantum materials [1, 234], with many new
interesting possibilities arising and in need of exploration.

While recent advances in the study of topologically nontriv-
ial structures in soft matter have primarily fundamental impor-
tance, they could also be useful in various applications, extend-
ing the scope of what is done already in relation to more classic
types of topological defects. For example, controlled pattern-
ing of defects in thin photo- and thermally-responsive LC
elastomeric films recently enabled tuning surface topography,
e.g. inducing cone- and saddle-like deformations of thin films
and oscillating surface profiles [236–238]. These ideas can
be extended to skyrmions, hopfions and heliknotons, where
the topologically protected nature of these field configurations
can be utilized to produce well-defined localized mechan-
ical responses, much like with singular defects [236–238],
but now with a considerably larger inventory of possibilities.
Conversely, topographic features at LC interfaces can be used
to define and pattern spatial positions of various knot solitons
by harnessing interactions mediated by the LC’s orientational
elasticity, much like colloidal particles in nematic LCs could
be attracted by topographic features like pyramids [239]. On
the other hand, optical effective refractive index patterns asso-
ciated with various arrays of solitons with and without lat-
tice defects can be utilized to generate tunable diffraction pat-
terns and optical vortices in laser beams [162, 163, 240, 241],
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where 3D topological solitons like heliknotons [73] within
crystalline arrays may again allow for much needed recon-
figurability in defining these diffractive elements and optical
vortex generators. It will be interesting to explore how vari-
ous linear and nonlinear optical interactions within LCs can be
exploited to use topological solitons in guiding laser beams of
light and optical solitons like nematicons [242, 243], as well as
how these interactions can potentially be controlled by nano-
confinement [244] and enable practical applications in beam
steering and telecommunications.
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[164] Fukuda J and Žumer S 2011 Quasi-two-dimensional skyrmion
lattices in a chiral nematic liquid crystal Nat. Commun. 2
246

[165] Leonov A O, Dragunov I E, Rößler U K and Bogdanov A N
2014 Theory of skyrmion states in liquid crystals Phys. Rev.
E 90 042502

[166] Nych A, Fukuda J, Ognysta U, Žumer S and Muševič I 2017
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