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High-order elastic multipoles as colloidal atoms
Bohdan Senyuk1, Jure Aplinc2, Miha Ravnik 2,3 & Ivan I. Smalyukh 1,4,5

Achieving and exceeding diversity of colloidal analogs of chemical elements and molecules as

building blocks of matter has been the central goal and challenge of colloidal science ever

since Einstein introduced the colloidal atom paradigm. Recent advances in colloids assembly

have been achieved by exploiting the machinery of DNA hybridization but robust physical

means of defining colloidal elements remain limited. Here we introduce physical design

principles allowing us to define high-order elastic multipoles emerging when colloids with

controlled shapes and surface alignment are introduced into a nematic host fluid. Combi-

nation of experiments and numerical modeling of equilibrium field configurations using a

spherical harmonic expansion allow us to probe elastic multipole moments, bringing analo-

gies with electromagnetism and a structure of atomic orbitals. We show that, at least in view

of the symmetry of the “director wiggle wave functions,” diversity of elastic colloidal atoms

can far exceed that of known chemical elements.
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Colloids are ubiquitous in everyday life and can be found
everywhere from industrial, highly technological materials
to commonly used health care and nutrition products1–3.

Macroscopic structure and physical properties of self-assembled
colloidal systems can be tuned by changing the interaction
between their building blocks. Thus, designing new colloidal
particles as atom-like building blocks can enable self-assembly of
new complex artificial materials with desired properties, including
the ones not encountered in nature. This “bottom-up” approach
caused an explosion in the development of various kinds of col-
loidal particles1–5. Geometry of colloidal particles is often used to
define directional interactions between them, similar as the
valence of atoms determines bonds that atoms can form within
molecules and crystals6. Directional bonding of colloidal particles
has been pursued in many systems of colloidal “atoms” with
varying shape and geometry6, patchy features7–9, and via various
chemical functionalizations and DNA-hybridization7,10–14 of
nanoparticles and microparticles. Elastic multipoles induced by
colloidal particles dispersed in liquid crystals (LCs) provide yet
another promising approach of defining controlled directional
interactions of nematic colloidal “atoms”15–31, with design prin-
ciples often building on the analogy of these multipoles with their
electrostatic counterparts. When designing self-assembly of col-
loidal superstructures, conditions of certain multipolar charge
distributions, as well as the nature of interactions between them,
can provide insights into how nematic colloids can be con-
trolled15. For example, similar to electrostatic charge distribu-
tions, odd moments of elastic multipoles are expected to vanish
when the LC director field n(r), which describes spatial patterns
of orientation of rod-like constituent molecules, is symmetric
about the particle center and a plane orthogonal to the far-field
director n0, as in the cases of elastic quadrupoles17–19 and hex-
adecapoles31. On the other hand, both odd and even moments
should be present for particles with asymmetric n(r), such as
elastic dipoles16,18. The design of elastic colloidal multipoles can
potentially not only take advantage of such symmetry con-
siderations, but also build on the versatile means of controlling
n(r) by surfaces of colloidal inclusions with elaborate geometry
and topology15. However, general physical principles and feasi-
bility of “on-demand” achieving a diverse variety of elastic col-
loidal multipoles remain unknown.

Colloidal particles locally distort the uniform alignment of n(r)
in a nematic LC host medium, prompting elasticity-mediated
interactions between them, which tend to minimize the system’s
free energy16. Surface boundary conditions on colloidal particles
play an important role, often introducing bulk and surface line and
point defects15–31. This gives rise to interactions between colloidal
particles, which tend to arrange such that energetically costly
distortions can be shared, and essentially resemble interactions of
electrostatic multipoles16,18–21. However, mainly only colloidal
elastic dipoles22,23 and quadrupoles17,22,24,25 were studied, whereas
the higher order multipoles were rarely considered, although
recently the conic degenerate anchoring boundary conditions30

enabled observation of hexadecapolar (16-pole) LC colloids31.
Beyond the electrostatic analogy, elastic multipoles also share the
mathematical description in terms of spherical harmonics with
chemical elements, whereby the elastic monopoles, dipoles, quad-
rupoles, and octupoles have atomic analogs with the structure of
filled s-, p-, d-, and f-orbitals15,31. Since none of the known che-
mical elements have filled orbitals higher than f, colloidal “atoms”
in the form of elastic hexadecapoles and higher order multipoles
have the potential to go beyond and, thus, could provide com-
pletely new insights and means of realization of new breeds of
composite materials. Moreover, such artificial atoms and molecules
could be used not only to define symmetry and structure of
mesoscopic composite material systems, but also their physical

properties. Indeed, the analysis of electric and magnetic multi-
poles32 is also performed in optical metamaterials, as a central way
to characterize the interaction of the electromagnetic fields with the
material, which today underpins some of the most important
technologies, ranging from telecommunications to data storage
and light-assisted manufacturing33,34. Within this approach, elec-
tromagnetic media are described as a set of point-like multipole
sources, consisting of electric, magnetic, and toroidal
multipoles33,34. Such metamaterials are typically nanofabricated,
which limits their utility and calls for the development of means to
self-assemble them from colloidal meta-atoms.

In this work, we uncover the physical mechanisms that may
allow for an on-demand control of the leading-order elastic
multipoles in LC colloids. We systematically demonstrate how
shape and boundary conditions on colloidal particle surfaces
determine the structure of elastic distortions, which allows us to
identify the “design rules” for obtaining desired elastic multipoles
and, thus, also the ensuing elasticity-mediated interactions. This
may allow for developing preprogrammed composite metama-
terials that self-assemble to yield the desired mesoscopic structure
and physical properties.

Results
Elastic multipoles in nematic LCs. Multipole expansion is an
approach that represents a distinct complex spatially varying
field, electric, magnetic, gravitational, material, as a series of
elementary contributions—the multipoles32,33,35. Multipoles
represent the magnitude and spatial profile of basic sources of the
fields, typically in some small region, to give full fields in more
distant regions. Multipole moments usually consist of inverse
powers of the distance from the sources and angular dependent
terms with the key assumption that only some, usually selected
lowest order, multipoles are sufficient to adequately describe the
full variability of considered fields. The existence or nonexistence
of some multipoles not only has profound importance for the
properties of the fields, but can even determine fundamental laws.
One prime example is the nonexistence of magnetic monopoles,
which fundamentally determines the structure of Maxwell’s
equations of electromagnetism, one of the fundamental laws of
Nature36. Another prime example are atomic orbitals in atoms,
where quantum numbers of orbitals reflect the corresponding
underlying multipole-type nature of atoms37.

We explore elastic multipoles in the material orientational field
of nematic complex fluids, with a central distinction that these
multipoles can be directly measured and determined with optical
and material science techniques and, moreover, that usually
noncommon leading-order multipoles such as 16-pole, 32-pole,
and even 64-pole can be realized (Fig. 1). The ordering field of
nematic complex fields, into which multipoles will be imprinted by
colloidal particles of designed surface-imposed ordering, is
determined by an effective total free energy, which in full
Landau-de Gennes form consists of effective nematic bulk elastic
and ordering and surface anchoring terms38 (Methods). The
leading contribution that can transfer interaction, e.g., between
multiple colloidal particles, colloidal atoms, in analogous way as
electromagnetism in atomic orbitals, is the nematic elasticity which
in the elementary one-elastic-constant form can be written as

fE ¼ 1
2
K

X
μ¼x;y

∇nμ
� �2

; ð1Þ

where fE is elastic free energy density, K is the single-average
Frank elastic constant and nμ (μ= x, y) are director components
perpendicular to the far field direction (z-axis). This formulation
of the free energy density relies on the crucial assumption of
roughly uniform director field n(r)≈(nx, ny, 1), with small
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nx, ny≪1, which becomes justified at large distances from the
localized source of nematic distortions, such as colloidal particles.
The elementary solutions of the nematic field around localized
sources, elastic multipoles, can be introduced by minimizing the
free energy density (Eq. (1)) with the Euler–Lagrange formalism
giving Laplace equations

∇2nμ ¼ 0; ð2Þ

which in full 3D are separable and can be analytically solved as a

series, i.e., as a summation over the elastic multipoles

nμ r; θ; ϕð Þ ¼
X1
l¼0

Xþl

m¼�l

qμlm
Rlþ1
eff

rlþ1
Ym
l θ; ϕð Þ; ð3Þ

where θ is polar and ϕ azimuthal angle, Ym
l θ;φð Þ are spherical

harmonics, qμlm are dimension-free elastic spherical multipole
coefficients, l determines the order of a multipole as 2lth pole,
−l ≤m ≤l, and Reff is the characteristic scale of the multipole
(given in our case by the effective size of the particle). Using
orthogonality of spherical harmonics, multipole moments qμlm can
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Fig. 1 Correspondence between elastic multipoles, electrostatic charge distributions, and atomic orbitals. a Analytic elastic multipoles. The xz cross-section
of the normalized director field (nx, ny, 1) of individual multipoles in Cartesian coordinates. Note that r2 = x2+ y2+ z2 and ρ2= x2+ y2. b Diagrams for s-,
p-, d-, f-, g-, i- and k-atomic orbitals calculated using the angular wavefunction. c Elastic multipoles around spherical particles with a tilt of director at their
surface. d Elastic multipoles and atomic orbitals for hexadecapoles with different m
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be determined with the following integral

qμlm ¼
Z 2π

0

Z π

0
nμ r; θ;φð Þ r

lþ1

Rlþ1
eff

Ym�
l θ;φð Þdθdφ; ð4Þ

which is particularly useful for calculating multipoles numerically.
Clearly, this integration must be performed at the radius that is
large enough to satisfy assumptions of nx, ny≪1 and nz ≈ 1. In
practice the director field nμ, obtained from experiments or
modeling, is defined only in discrete points (θi, ϕj); therefore, the
calculation of multipole coefficients reduces to the discrete
Fourier and Legendre transform on a selected spherical grid
(Methods). Figure 1 shows examples of elastic multipoles and
relates the symmetry of associated director distortions to the
analogous descriptions of charge distributions in electrostatics
and electron wave functions in the description of electron shells
of chemical elements.

Elastic multipoles at composite colloids of dissimilar spheres.
The aim of this work is to systematically investigate how high-
order elastic multipoles can be induced by colloidal particles with
varying shape and boundary conditions. Dimers of spheres
(Fig. 2) are interesting sources of elastic distortions because they
can be mass-synthesized using wet chemistry approaches39–41

(making them relevant for composite material fabrication) while
also allowing for more complex director distortions than what
can be induced by individual colloidal spheres. We first study

elastic multipoles formed around colloidal particles comprised of
two dissimilar spheres (Figs. 3, 4) having different sizes, com-
position, and anchoring. In the first case, gourd-shaped dimer
colloidal particles consist of two lobes of different diameter and
with different surface anchoring boundary conditions for n(r)
(Fig. 3a–f). The dissimilar anchoring is defined through the
particle synthesis, in which cross-linked polystyrene spherical
seeds (a smaller lobe) were swollen with styrene and the elastic
contraction of the cross-linked polystyrene expels styrene out of
the swollen seeds to give rise to the second (larger) lobe39–41. As a
result, the smaller particle’s lobe has tangential anchoring and the
larger lobe has a conic anchoring30,31. Figure 3a–c shows POM
textures of such particles in LC, from which the director structure
around the particle (Fig. 3d) was experimentally deduced. Gourd-
shaped dimers align with their cylindrical symmetry axis parallel
to n0. These nematic colloids induce two surface point defects
(called “boojums”), one at the south pole of a large lobe and
another at the north pole of a smaller lobe, as well as a surface
defect loop at the equator of the larger lobe (Fig. 3d, e). In
addition, a singular defect loop is visible spanning around the
neck of a dimer particle, where two lobes come to the contact,
which is due to the mismatch in the alignment of molecules at
both lobes in the point of contact. Interestingly, the presence
of this defect loop can be avoided by adjusting a distance db
(Figs. 2, 5) so that the particle geometry is fully compatible with
boundary conditions at the two lobes, as we will show below
using numerical calculations. The induced configuration of n(r) is
complex and the number of reversals of the director tilt with
respect to n0 at the surface of the particle is the same as in an
elastic 64-pole (compare Figs. 3d, e and 1 for l= 6). However, the
structure also lacks symmetry with respect to the plane ortho-
gonal to n0, which is not the case for the pure elastic 64-pole (see
the analytical ansatz in Fig. 1). While the strengths of different
elastic multipoles for such particles can be assessed numerically
(see below), also the elastic interactions between such gourd-
shaped dimers provide important insights (Fig. 3h–j). The highly
anisotropic elastic interactions depend on the multipole magni-
tude and orientation (with respect to n0) of the separation vector
connecting centers of two interacting gourd-like dimers. There
are many narrow zones of attractive interactions separated by
zones of repulsive interactions (Fig. 3g). For a colloidal particle
with a 64-pole strongly dominating (or pure), the angular
dependence would consist of 24 such zones, 12 attractive, and 12
repulsive (Fig. 3g). However, the experimental angular diagram
(Fig. 3h) is even more complicated because of the presence of
other multipole moments, in addition to the 64-pole. Depending
on the orientation of the separation vector with respect to n0,
gourd particles self-assemble into various pair arrangements,
examples of which are shown in Fig. 3k–o. This rich behavior
illustrates that the tunable multipolar nature of elastic high-order
multipoles can be used for predefining colloidal self-assembly
structures. Furthermore, these findings are consistent with the
particle’s lack of symmetry plane orthogonal to n0 and numerical
results presented for colloidal particles with tunable shape that we
discuss below. The elastic pair interaction potential between
colloidal particles extracted from the experimental distance vs.
time dependencies is several hundreds of kBT, with the interac-
tion force approaching ~1 pN near their full contact. Fitting the
experimental interaction potentials (Fig. 3i, j) with an expression
for the colloidal pair-interaction energy within the multipolar

approach31 Uint ¼ 4πK
P
l;l′

blbl′ �1ð Þl′ l þ l′ð Þ! R
lþl′þ2
eff
rlþl′þ1Plþl′ cos θð Þ,

where Plþl′ cos θð Þ are the Legendre polynomials, yields the
coefficients corresponding to the strength of elastic multipole
moments (Fig. 3). We find that the hexadecapolar moment b4 is
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�

�

n0

Planar degenerate
anchoring

Fig. 2 Model of a colloidal particle consisting of two interpenetrated
spheres used in calculations. The lower sphere has a constant radius ra and
is positioned at a distance −ra from the coordinate origin (note axes x and z
are indicated by dashed red and blue lines, respectively). The upper
sphere’s radius rb and distance db of the upper sphere center from the origin
are particle geometrical parameters varied in the process of analysis. The
anchoring on the upper sphere is planar degenerate, while that on the lower
sphere is conic degenerate with a tilt angle α. At the neck, where two
spheres with distinct anchoring meet, the angle between two anchoring
directions is represented with angle β. Blue sphere indicates the
interpolation sphere of radius ri and blue dot depicts its center displaced by
di from the origin, both ri and di are varied in the analysis to determine the
center and magnitude of the elastic multipoles. Red dot represents
geometrical center of the composite colloidal particle whereas half of the
composite particle length along z-axis represents the effective particle
radius Reff
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still strongly pronounced, which is due to the larger lobe with
conic anchoring (Fig. 6). Although different approaches can be
used for fitting (Fig. 3), it is clear that the role of 64-pole (b6)
becomes significant at small inter-particle distances r. The
interaction potential of gourd-shaped particles (Fig. 3i, j) cannot
be fit using expressions with only quadrupolar (b2) or hex-
adecapolar (b4) nonzero coefficients. The angular dependence of
elastic interactions of two gourd-shaped particles, as expressed by
different relative magnitudes of the multipole coefficients, is very
sensitive to the geometrical parameters of a dimer, like the rela-
tive dimensions and overlap of the dimer lobes, which is calling
for the need of establishing design principles for expressing the
desired leading-order multipoles, as we do numerically below.

Another model colloidal object in our study is a dimer particle
consisting of two spheres with dissimilar size and anchoring
boundary conditions, which is made from superparamagnetic
beads (SPMB) and glass spheres (Fig. 4). SPMBs are somewhat
smaller as compared to glass particles (Fig. 4). Using the laser
tweezer, two different particles were placed close to each other
and LC around them was locally melted to the isotropic state
by converting the infrared laser irradiation to heat through

absorption, irreversibly forming a colloidal dimer bound by van
der Waals forces. The LC was then quenched back to the nematic
state. The resulting dimer aligns with the symmetry axis along n0
(Fig. 4). In bright-field microscopy textures, epoxy-based SPMBs
look brownish due to the light absorption by magnetic
nanoparticles embedded within them. SPMBs impose the planar
alignment on the LC director. On the contrary, the treated glass
particles impose perpendicular alignment of LC molecules at their
surfaces. The resulting director structure contains a surface point
defect on the pole of a SPMB sphere and a bulk disclination loop,
called “Saturn ring”, at the equator of a glass sphere (Fig. 4e–g).
Analysis of experimental and numerical n(r), including the
corresponding color-coded diagram of the nx sign alternation at
the surface of the dimer, reveals the structural similarity with an
elastic octupole with l= 3 (compare Figs. 4e, 1). Other structures
of n(r) around such dimers were also observed (Fig. 4d, h), within
which the accompanying disclination loop shifted from the
equator of the glass particle and resided near the SPMB sphere,
just above the contact point of two particles, effectively generating
a dipolar director structure. This diversity of multipolar
structures7 that can be induced by colloidal dimers calls for
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Fig. 3 Elastic multipole induced by a gourd-shaped particle. a–c Textures of a sample with a gourd-like particle in a nematic cell from optical polarizing,
a without and b with a retardation plate, and c bright field microscopy. d, e Schematic diagram (blue lines) of n(r) at the surface and corresponding color-
coded diagram of nx. f Calculated n(r). g, h Map of elastic interactions between gourd particles with respect to n0 calculated for elastic 64-poles with
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extracted from fitting. k–o Textures of self-assembled pairs of the gourd-shaped particles imaged by bright-field microscopy. Scale bar: 5 μm
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identifying parameters that can lead to on-demand formation of
various multipoles.

Figure 5 shows numerically calculated structures of n(r)
induced by colloidal particles composed of two dissimilar
spherical colloidal objects. The radius of the upper sphere rb is
varied from 0 to the size of the lower sphere ra in steps of ra/5. The
position of the upper sphere is also varied and is gradually
immersed into the lower sphere in steps of ra/5, where, in the
limiting regimes, the upper sphere is completely contained (left
side of the pyramids) or barely touches the lower one (right side of
the pyramids). Conic anchoring on the lower sphere introduces
additional parameter α (Fig. 2) that corresponds to the tilt angle of
the conic anchoring. In the limiting case when the conic
anchoring angle α reaches 90° (Fig. 5a), the director is locally
oriented perpendicular to the surface of a lower spherical lobe.
This homeotropic anchoring induces a disclination loop defect
“Saturn ring” on the lower sphere. The tangential anchoring on
the upper sphere induces a boojum at its north pole. Another loop
of reduced degree of order can emerge in the neck, where the two
spheres with distinct anchoring meet. It is induced by a mismatch
between the two easy-axis directions imposed at the contact of the
two surfaces by two different boundary conditions, measured with
angle β (Fig. 2). The mismatch angle β characterizes the effective
surface-imposed frustration in the defect region within the neck
and depends on both the conic anchoring angle α as well as on the
angle at which the two spheres intersect. The neck region with the
reduced degree of order vanishes when geometry of the composite
colloid (size and displacement of the upper sphere) assures
intersection of the two spheres at 90° setting mismatch angle β=
0° (third diagonal from the right side of the pyramid in Fig. 5a). As
also observed in experiments (Fig. 4d, h ), the Saturn ring can
change its vertical position and slide from equator of the lower
colloid toward the neck, or even on the neck joining with the
regular neck defect. This rearrangement occurs in the lower left

region of the parameter–space pyramid (Fig. 5a), where n(r) is
found to be dipolar-like.

Figure 5b–d shows the composite colloids and their corre-
sponding field structures when conic anchoring boundary
conditions respectively at angles α= 60°, α= 40°, and α= 20°
are applied on the lower sphere. For these conic angles, the
distinct nature of conic anchoring (Fig. 2) induces a ring defect at
the equator of the lower sphere. The tangential anchoring on the
upper sphere establishes a boojum defect at the surface of the
colloidal particle. At the neck, where the two spheres intersect
and the two regions with dissimilar anchoring meet, again the
singular region of reduced order emerges. Its actual profile
depends on the mismatch angle β, which is now conditioned by
the conic anchoring angle α and composite colloid parameters rb
and db. The neck region of reduced order completely vanishes
when the two spheres intersect at an angle equal to α. Indeed, one
can see that the neck region of reduced order effectively
disappears for the composite colloids at third diagonal from the
left side of the pyramid in cases α= 60° (Fig. 5b), α= 40° (Fig. 5c)
and for second diagonal from the left in case of α= 20° (Fig. 5d).
When α is small (Fig. 5d), the anchoring on the lower colloid is
nearly tangential. Consequently, the effective Saturn ring
distortions become less pronounced, whereas distortions of the
neck region of reduced order becomes stronger at large
separations db (right edge of the pyramid on Fig. 5d). We have
analyzed elastic multipole moments of experimental (Figs. 3, 4)
and simulated (Fig. 5) structures of composite particles using
decomposition on spherical multipoles with the SHTns numerical
library (Methods), as detailed below.

Figure 6 shows spherical multipole coefficients of all simulated
composite colloids at various angles α. The dipolar coefficient qx11
is generally weak and positive for low α; however, a prominent
peak is observed at α= 90° for the structures close to rb/ra= 4/5,
db/ra=−2/5 (see Fig. 5a). Consistent with experiments, it is

ba dc
n0 n0

n0

n0 n0

n0

P

A

γ
P

A

nx > 0

nx < 0

gfe h

–nxmax

nxmax

nx = 0

Fig. 4 Elastic multipoles induced by a pair of dissimilar particles. a–d Textures of a sample with particles in a nematic cell obtained by optical polarizing,
(b) with and (a) without a retardation plate, and (c, d) bright field microscopy. Top particle has planar and bottom particle has homeotropic anchoring.
e–g Schematic diagram (blue lines) of n(r) (g) also calculated in (f) and (e) corresponding color-coded diagram of the nx directly at the surface of the
particle shown in (a–c) and at the surface of the interpolation sphere. Inset shows a corresponding atomic orbital. h Schematic diagram of n(r) around a
pair of particles shown in (d). Scale bar: 5 μm
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energetically favorable that the Saturn ring defect moves from the
equator of the lower particle to the neck, effectively joining with
the neck defect. Defect in the neck only weakly distorts the
surrounding director field (Fig. 5a); therefore, the defect playing a
key role is the boojum at the north pole of the upper particle,
resulting in a dipolar director deformation. The dipolar multipole
is still present in this region, even at lower α. The quadrupolar
coefficient qx21 is strongest and negative for homeotropic bottom
particles, where the Saturn ring is the sole defect, and becomes
weaker upon decreasing α. At α= 40° negative contribution
vanishes and strong positive quadrupole moment emerges for
spherical colloids with nearly tangential anchoring at α= 20°,
where two boojums emerge at both poles. The transition between
a positive- and negative-quadrupole moments can be understood
by comparison with Fig. 1. An octupole moment qx31 is always
positive and strongest for large upper spheres and conic

anchoring angles near α ~ 90°. This composite colloid has the
Saturn ring on the lower colloids equator, and a strong boojum
on the upper particle’s north pole (Figs. 4, 5a), whereas the role of
neck defect in defining multipoles often can be negligible. The
hexadecapole moment qx41 is positive and has similar strength and
pattern at all angles α. The hexadecapolar contribution of the
homeotropic spherical particle emerges because the lower particle
is off-centered within the simulation cell, which affects the high
multipoles. The hexadecapolar coefficient is present also at angles
other than α= 90°. The best candidates for “pure” hexadecapolar
elastic colloids are spheres with conic anchoring, which preserves
the Saturn ring, but also induce boojums at the poles, which is in
good agreement with the recent experiments31. The high-order
32-polar coefficient qx51 is generally weak. It is the strongest for
composites with larger upper sphere and high-anchoring angle,
which produces the Saturn ring on the lower particle and boojum

0

a b

c d

1/5

2/5

r b 
(r

a)
r b 

(r
a)

3/5

4/5

1

0

1/5

� = 40° � = 20°

� = 60°� = 90°

2/5

3/5

4/5

1

–1 –4/5 –3/5 –2/5 –1/5 0

db (ra)

1/5 2/5 3/5 4/5 1 –1 –4/5 –3/5 –2/5 –1/5 0

db (ra)

1/5 2/5 3/5 4/5 1

Fig. 5 Gourd-like colloids and corresponding director field structures. Upper sphere has planar degenerate anchoring and lower sphere has tilted anchoring
with various angles α. Pyramid-like diagrams show composite colloidal particles (yellow isosurfaces) with variable radius rb and position db of the upper
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at the north pole. The 64-polar coefficient qx61 appears to be most
prominent for spherical particles with homeotropic boundary
conditions. As in case of the hexadecapole, it is related to the
strong dipole and quadrupole. Besides the simple homeotropic
sphere, the 64-polar contribution is maximized for composites
with large upper sphere and moderate anchoring angle α, which
provides a boojum at the upper particle, a neck defect, a Saturn
ring at the equator of the lower particle and boojum at the lower
particle (Fig. 3).

By tuning the geometry and anchoring on the composite particle
with two dissimilar spheres one can maximize certain multipole
moments and suppress the others. For example, a homeotropic
particle with dimensions near rb/ra= 4/5, db/ra=−2/5 acts as a
strong dipole. Expectedly, colloidal spheres with homeotropic or
nearly tangential anchoring exhibit a strong quadrupolar moment.
An octupole moment is maximized for composite particles, which
consists of a large upper sphere with tangential anchoring touching
the lower sphere with homeotropic boundary conditions (Fig. 4). A
hexadecapole moment is the strongest for single spherical particles
with conic anchoring at α= 40°.

The comprehensive multipolar analysis presented in Fig. 6
shows that different leading-order multipoles can be created
simply by engineering distributions of director field, closely
mimicking the corresponding analytical ansatzes (Fig. 1). Clearly,
to have a desired leading order 2l-pole with m= 1 and structure
axially symmetric with respect to n0, the director tilt (and the sign
of nx) must change 2l-times when one circumnavigates around
the colloidal object once (Fig. 1), with additionally the structure
being symmetric with respect to a plane orthogonal to n0 for all
even-order multipoles. With color presentations of director tilt
(Fig. 1), it suffices to count the yellow-blue changes of colors to
assure that this is the case. Our findings also reveal how higher-
order multipole can be expressed by introducing additional
defects, either boojums or disclination rings. For the case of
dissimilar dimer particles, our analysis shows that a structure with
one boojum tends to exhibit a leading-order dipole moment
(l= 1, 2l= 2), whereas presence of a Saturn ring tends to yield a
quadrupole (l= 2, 2l= 4) (see Fig. 1). The octupole (2l= 8) is
produced by combining the boojum (2l= 2) and the Saturn
ring (2l= 4) (Fig. 4): 2 × 4= 8, while hexadecapole (2l= 16)
can be thought of as a superposition of two quadrupoles (2l= 4):
4 × 4= 16 or comprising a quadrupole (2l= 4) and two boojums
(2l= 2): 2 × 4 × 2= 16. These examples yield one recipe to
generate an arbitrary high-order multipole M (M-pole) by the
dissimilar dimer particles

M ¼ 2i ´ 4j; ð5Þ

where i is the number of boojums and j is the number of Saturn
ring defects. Here, we consider defects solely as building blocks of
director structures at which the vectorized x-component of the
director changes its sign (Fig. 1). Also, we disregard the fact that,
in general, beside boojums and Saturn rings, point defects (e.g.,
such as hyperbolic hedgehog) can form in nematic colloids, for
which one would expect that they break symmetry in multipoles
in analogous way as boojums. Finally, the detailed numerical
exploration of strengths of multipole moments (Fig. 6) and the
experimental example shown in Fig. 3 also show that for desired
multipoles to dominate also geometric parameters and boundary
conditions need to be optimized to reduce the other competing
multipole moments. The symbols like circles and diamonds in
Fig. 6 mark regions in the parameter space of colloidal dimers
where such pure or dominant leading-order multipoles can be
achieved.

Elastic multipoles at composite colloids of similar spheres.
Dimer particles studied above are examples from a large family of
colloidal objects that can be used to induce desired elastic mul-
tipoles. As another experimentally accessible example, we study
composite colloidal inclusions consisting of spherical constituents
with similar size and boundary conditions. We use epoxy-based
spherical SPMBs to fabricate dimers, trimers, tetramers, and so
on, all consisting of similar spherical particles, in order to
demonstrate how they induce director structures corresponding
to various higher-order elastic multipoles. SPMBs define planar
boundary conditions for LC molecules as revealed by polarizing
optical microscopy textures (Fig. 7a, b). Embedded magnetic
nanoparticles allow for a facile control of SPMBs with a magnetic
field. To form composite linear particles consisting of two or
more SPMBs, individual SPMBs were placed nearby each other
using laser tweezers and LC was locally melted, again with
tweezers, to the isotropic state. While in the melted isotropic area,
particles where arranged into the linear chains of two or more
touching particles using laser tweezers, and then chains were
aligned parallel to the cell’s rubbing direction using holonomic
magnetic control (Fig. 7c, d). They irreversibly formed dimers,
trimers, or tetramers. After the locally melted LC was quenched
from isotropic back to the nematic state, the magnetic field
holding particle chains was removed, leaving chains stable and
oriented along n0. The alternation of director tilt at particle
surfaces with respect to n0 revealed by different modes of
microscopy is consistent with that in the ansatzes of sources of
high-order elastic multipoles (compare Fig. 7h, l and Fig. 1). We
also employed the polarimetric imaging (Methods) of director
distortions around colloidal particles (Fig. 7m–o), results of which
were consistent with polarizing micrographs and numerically
calculated director structures. While a single SPMB induces an
elastic quadrupole, a pair of SPMBs in a chain oriented along n0
has a strong elastic hexadecapole moment (compare Figs. 7h, and
1 for l= 4), which can be the strongest leading-order elastic
multipole for certain parameters. Similarly, a chain of three
particles can have a strongly pronounced 64-pole (compare
Figs. 7l, and1 for l= 6).

High-order multipoles can be also achieved by chains of
irreversibly bound spherical particles with conic or homeotropic
anchoring on their surfaces. We use numerical calculations to
probe the geometric and boundary conditions parameter space
for such particles (Fig. 8) and the ensuing strengths of elastic
multipole moments. Defect configurations and n(r) structures
depend on the conic anchoring angle. Within the composite
particles, each homeotropic sphere generates a Saturn ring defect
around its equator (Fig. 8a). However, when α is diminished,
defects arise at the neck of the particle and at each free pole
(Fig. 8a). With decreasing α further, obtaining tangential
anchoring, a Saturn ring vanishes and only neck defects and
boojums remain. In the language of elastic multipoles this means
that the single spherical particle transitions from negative
quadrupole (i.e., with a negative multipole coefficient qx21) to
2 × 4 × 2= 16 pole and then to the positive quadrupole31. A
chain-like particle comprising two spheres transitions from a
hexadecapole with a negative multipole moment (4 × 4=16) for
homeotropic anchoring to 2 × 4 × 4 × 2= 64-pole and then to a
hexadecapole with a positive-multipole moment (2 × 4 × 2= 16)
for tangential anchoring. Chain particles from three spheres could
induce strong −64-pole, 256-pole, and +64-pole, while the
particle comprised of four spheres can effectively act as −256-
pole, 1024-pole, and +256-pole, depending on boundary
conditions. To summarize, with parameters for the desired
leading-order multipoles optimized, colloidal oligomer chain
particles with N similar spheres can act as −4N-pole in the case of
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homeotropic anchoring, 2 × 4N × 2-pole for moderate conic
anchoring and as 2 × 4N−1 × 2-pole when anchoring is tangential.
We note that neck defects at moderate α are inconsequential for
defining the strongest leading-order multipoles, because they
cause only weak or no deformations, though they can affect the
strength of higher-order multipoles.

Graphs in Fig. 8b show spherical multipole coefficients qxl1 for
chain composite colloids with various α. These coefficients were
calculated such that the center of the interpolation sphere
coincides with geometrical center of the symmetric chain

composite colloids. Generally, particles show no or weak dipolar
moment, except for homeotropic particle with four spheres, for
which Saturn rings move upwards towards the necks and pole
(Fig. 8a). Multipole moments with odd l tend to be zero due to
particle (and consequently n(r)) symmetry (Fig. 8b). Particles
with only one sphere tend to show the strongest quadrupole
moment qx21. A sphere with homeotropic anchoring forms an
elastic quadrupole with a negative magnitude, whereas the sphere
with tangential anchoring is an elastic quadrupole with a positive
magnitude (Fig. 8b). Interestingly, chain colloids of arbitrary
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number of spheres with α= 40° show no quadrupole moment.
Colloidal particles with one sphere exhibit a strong positive
hexadecapole moment qx41, which extends to multiple sphere
particles, with conic anchoring angle below α= 40°. For example,
a blue rhomb (Fig. 8a) marks one particle with α= 40°; one can
see that the corresponding hexadecapolar moment is at
maximum while all the other elastic multipoles lower than the
hexadecapole are not present (Fig. 8b). When the anchoring angle
exceeds α= 40°, particles with multiple spheres transition into
having negative hexadecapole moments. Chain composite
particles can have both positive and negative 64-pole moment,
whereas structures in between have none. It appears to be the
strongest for spherical particles with large α and composites of
two or three spheres with low α, as in the composite particles
observed in experiments (Fig. 7). Both 256- and 1024-pole (qx81
and qx10 1) appear to be small, though reaching both positive and
negative values as the geometric and surface anchoring
parameters are varied. An interesting observation is that a sphere
with homeotropic or tangential anchoring can act as strong elastic
quadrupoles with opposite signs of moments. Conversely, spheres
with conic anchoring at α= 40° exhibit a pure hexadecapole due
to the superposition of opposite-charged quadrupole moments.
64-polar contribution is not significantly strong in general,
however it is a prominently expressed multipole for a particle
consisting of two spheres with α= 40°.

Presented results for composite chain particles with up to two
spheres are in a good agreement with predictions posed on the
basis of arbitrary multipole creation principle discussed above
(Eq. (5)). However, colloidal composites comprising three and
especially four spheres are more complex. The apparent
mismatch arises because the particles are long with respect to
the typical range of deformation in the nematic LC, objects
extended along n0. Consequently, the corresponding distortions
in n(r) do not resemble pure analytic multipoles (Fig. 1), but
rather decompose into large number of multipoles. The problem
could be mitigated by using oblate spheroids instead of spheres as
building blocks of the chain colloids, putting the induced
topological defects closer together, so that the alternation of
director tilt could more closely mimic the corresponding ansatzes
(Fig. 1).

Discussion
Our experimental results and numerical calculations show that
one can design colloidal particles with different elastic multipoles,
including the higher-order ones, by changing the shape and
boundary conditions of constituent particles. For example, using
dimer particles with different size and surface anchoring of
constituent lobes (Fig. 3), we could design colloidal particles with
enhanced 64-pole (a green circle in Fig. 6). Numerically calcu-
lated director fields (Fig. 5) and diagram (Fig. 6) for strength of
multipole moments of such dimer particles provide insights for
designing colloids with enhanced desired multipoles, showing
how strongly pronounced multipoles of different order can be
preselected by varying boundary conditions and particle geo-
metry. Following a similar strategy, we also designed a colloidal
dimer with octupolar-like configuration of n(r) (Fig. 4) and the
enhanced elastic octupolar moment (a blue circle in Fig. 6). It is
interesting that the same arrangement of two constituent particles
can also allow for defining n(r) with enhanced dipolar moment (a
red circle in Fig. 6) under different conditions (Fig. 4d, h). The
calculated multipolar moment diagram includes also configura-
tions with dominant or “pure” elastic multipoles as quadrupolar,
octupolar and hexadecapolar (with the latter marked by a green
diamond in Fig. 6). As one can see from a diagram, the hex-
adecapolar elastic moment is pronounced to a smaller or larger

extent in all configurations, and that the conditions for it to be a
leading-order multipole can be created in multiple ways.

Composite particles with different higher order elastic multi-
poles can be also designed using colloidal oligomers formed by
similar connected spheres (Fig. 7), which is consistent with the
results of numerical calculations (Fig. 8). For example, a dimer of
two particles with tangential surface anchoring, which each
separately have a leading quadrupolar elastic moment, together
give a rise to strongly enhanced hexadecapolar moment (marked
by a red circle in Fig. 8). Three particles show the configuration of
n(r) with the director tilt reversals characteristic for a 64-pole
with detectable corresponding elastic moment (Fig. 1).

The presented strategies allow for the design of colloids with a
variety of elastic multipoles, including high leading-order multi-
poles like hexadecapoles and also “mixed” multipoles with
strongly pronounced multipoles of different order. While having
“pure” elastic multipoles is fundamentally interesting and has the
advantage that they can be used for designing colloidal self-
assemblies on the basis of corresponding well known interaction
potentials, nematic colloids with “mixed” multipoles can cover
even larger diversity of anisotropic elastic interactions (Fig. 3).
The strategies described in this work, which involve dimers, tri-
mers, and oligomers of similar or dissimilar colloidal spheres,
are just examples showing how the uniform alignment of the
nematic host can be locally perturbed to mimic the corresponding
ansatzes of elastic multipoles (Fig. 1). However, similar
multipolar director distortions can be also achieved using
colloidal objects with complex shapes obtained by means of
photolithography18,21,42 and two-photon-polymerization43,44. On
the other hand, the concept of controlling surface anchoring on
spherical constituents of composite colloidal objects that we
present here can be extended to patchy particles7–9,45, where
different patches can exhibit different boundary conditions, and
particles with controlled surface topography46, surface char-
ging47, and chemical functionalization15. In nematic hosts, these
highly tunable multipolar elastic interactions can be further
enriched by weakly screened electrostatic monopole-like48 and
magnetic dipolar49,50 interactions in cases of charged or magnetic
particles. The ability of describing elastic, electrostatic, and
magnetic interactions as multipoles of different nature and order
is a useful platform for designing LC colloidal composites.
Interestingly, in this respect the electrostatic monopoles in LCs
have been studied48, but designing higher order electrostatic
multipoles appears to be challenging so far. Differently, magnetic
monopoles are considered impossible while dipoles can be easily
obtained by using magnetically monodomain particles49,50.
Elastic dipoles, quadrupoles, and hexadecapoles have been stu-
died previously15, and now the spectrum of accessible elastic
multipoles is significantly broadened by this work. We envisage
that this “zoo” of multipoles of different nature and order, which
now by far exceeds the diversity of chemical elements similarly
described by use of spherical harmonics15, will be useful in “on
demand” designing and realizing composite materials with
desired structure and composition. In the case when nematic
colloids have mixed multipoles with comparable strengths,
although lower-order multipoles within them will define the
behavior at large distance due to the inverse power type of scaling
of elastic potential, the higher order multipoles can still sig-
nificantly influence the behavior of elastic colloids at short center-
to-center distances, which is where the details of self-assembled
colloidal superstructures are defined. Although the confinement
of LC colloids into thin glass cells with strong or finite boundary
conditions, these confinement effects are expected to influence
the range and strength of colloidal interactions again similar to
that between electrostatic charge distributions in proximity of
surfaces with various charging and boundary conditions, which
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again could be modeled by invoking elastic analogs of image
charges35,36.

Elastic multipoles are in general tensorial quantites, which
might lead to interesting approaches for their hybridization,
analogously to hybridization of atomic orbitals. The colloidal
particles used in this work are rotationally symmetric (along the
z-axis) and also impose rotationally symmetric anchoring profile,
which results in the fact that all multipole coefficients of these
particles are scalars (i.e., single numbers). However, in full defi-
nition, elastic multipoles (coefficients) are tensorial quantities
with tensor rank related to the order of the multipoles26. Such
generalized elastic multipoles can be realized by breaking sym-
metries of the nematic distortion field around colloidal particles,
for example by designing particle geometry or imposed surface
anchoring pattern (i.e., patchy particles). Thus, if having con-
trollably realized such tensorial elastic multipoles, one could open
routes for hybridization of multipoles, directly affecting also the
interparticle interactions and self-assembly.

While it is natural to think about building of the nematic
colloid and atom analogy and pursuing colloidal assemblies that
resemble small molecules, polymers, and crystals, the high-order
elastic multipoles do not have direct analogs in atomic systems.
Since one characteristic feature that they exhibit is the large
number of alternating attractive-repulsive sectors in the pair
interaction potentials, we foresee that self-assembly of such par-
ticles may result in new forms of the colloidal analogs of spin
glasses, where a large variety of structures with comparable
energies can occur51. For example, at a given center-to-center
distance, the pair interaction energy between two colloidal 64-
poles (Fig. 3) has 12 local/global minima corresponding to the
sectors of attraction, whereas only four nearest-neighbor sites can
be occupied in a two-dimensional plane simultaneously, giving
the origins to multiple accessible states of the colloidal system, all
with comparable energies. This rich energetic landscape may
allow for forming colloidal assemblies with multiple states of
comparable energy, as in the colloidal spin ice systems51 in both
two and three dimensions. Many-body and kinetic effects may
become important in these defining assemblies and physical
behavior and will be of great interest to explore in future studies.

Methodologically, our work is based on a combination of
experiments and numerical modeling, where experimentally wet
chemistry is used to variably create gourd-shaped particles and a
combination of optical microscopy techniques is used to deter-
mine their multipolar properties, whereas numerical modeling is
based on phenomenological free energy minimization approach to
calculate the ordering fields, and is then complemented by mul-
tipolar expansion algorithm into spherical harmonics. This
approach can be effectively extended to other potential strategies
of designing elastic multipoles discussed above, as well as sup-
plemented by adding magnetic and electrostatic interactions48–50.
Since the colloidal objects can have different compositions,
including constituents made of noble metals49, magnetic
materials46,49,50,52, semiconductor nanoparticles47,48, and dielec-
tric objects17,18,21,24,31,42–44 (with means of defining boundary
conditions for n(r) on such colloidal objects already
demonstrated17,18,21,24,31,42–50,52,53), we envisage that properties
of the ensuing colloidal composite metamaterials can be pre-
engineered by expanding the above described design toolkit to
account for collective behavior of such assemblies enriched by
plasmonic resonances32–34, plasmon–exciton interactions54,55, etc.

To conclude, this work demonstrates realization of colloidal
atoms from high-order multipoles based on geometrical and
topological design of distortion fields in nematic colloidal fluids.
The high-order multipolar colloidal objects are realized from
elastic multipoles in the orientational director fields of nematic
fluid that also can transfer interparticle interactions of multipolar

symmetry. We show realization of colloids with dipolar, quad-
rupolar, octupolar, hexadecapolar, 32-polar, and even 64-polar
multipole components, that we show not only can be controllably
varied, but also designed by controlling particle shape and surface
anchoring boundary conditions. Interestingly, we are also able to
identify regimes, i.e., colloids with distinct geometrical and sur-
face parameters, of “pure” or leading-order multipoles, where a
single-multipole dominates and leads the structure, and “non-
pure” or “mixed” multipoles, where various combinations of
different multipoles are present on a single particle and determine
the system.

More generally, this work is a contribution towards developing
a novel, colloidal, matter that rather uniquely can go beyond the
interaction types that are possible in the set of known atoms as
determined by their orbitals. We show design of high-order
multipoles, such as hexadecapole, 32-pole and even 64-pole, that
can be mapped to atomic orbitals (subshells) of l= 4–6, respec-
tively, which do not have direct analogs in atomic and molecular
systems. At this stage, our work is primarily centered around
demonstrating the capabilities to realize individual particles—
colloidal atoms, and basic interactions. In this work, the inter-
action range of high-order multipoles is also limited by relatively
short range decay of high-order multipoles, but we believe that it
is exactly by combining geometrical and topological approaches,
that one could possibly open a field to beyond-atomic matter with
novel material properties.

Our work shows that, similar to how we often think about
high-order multipolar charge distributions in electrostatics, where
high-order multipoles emerge from superposition of the lower-
order ones when lower-order multipoles mutually cancel, high-
order elastic multipoles can be designed by superimposing the
lower-order ones and tuning conditions for cancelation of mul-
tipoles up to the desired leading-order one. The illustrative
examples of this are composite colloidal particles, where each of
them individually would induce a lower-order multipole, dimers,
trimers, tetramers, and oligomers of such particles can prompt
creation of high-order multipoles under proper conditions (e.g., a
dimer of colloidal quadrupoles can be arranged so that all lower-
order multipoles but hexadecapolar cancel, making an elastic
hexadecapole). These insights offer simple but powerful means
for designing self-assembled colloidal composites.

Methods
Materials. We used a room temperature nematic LC 4-cyano-4′-pentylbiphenyl
(5CB, from Frinton Laboratories, Inc.) or nematic mixture E7 (EM Industries) as a
colloidal host medium. To define localized director distortions in LC, mimicking
symmetry of point sources of various multipoles (Fig. 1), we used a series of
different colloidal particles. Gourd-shaped polystyrene dimer particles with two
lobes of different diameter 2ra ≈ 2.5 μm and 2rb ≈ 1.25 μm (Figs. 2, 3) were syn-
thesized using a modified seeded polymerization technique39–41 and first dispersed
in ethanol before introducing them into the nematic host. LC molecules aligned
tangentially at the surface of the small lobe and exhibited a conic alignment at the
surface of the large lobe. To have a tangential alignment of LC molecules at the
particle’s surface, we used SPMBs (Dynabead M450, Invitrogen) with a nominal
diameter of ≈4.5 μm, which contained ferromagnetic nanoparticles embedded into
a highly cross-linked epoxy46,52. Alternatively, polystyrene spheres DC-05 (Thermo
Fisher Scientific, Inc.) with a diameter of ≈5.3 µm also exhibited tangential
boundary conditions. Glass particles (Thermo Fisher Scientific, Inc.) with a dia-
meter of ≈5.1 µm treated with an aqueous solution (0.05 wt%) of N,N-dimethyl-N-
octadecyl-3-aminopropyl-trimethoxysilyl chloride (DMOAP) exhibited perpendi-
cular surface anchoring boundary conditions. All colloidal particles were dispersed
in a LC host either via mechanical mixing or solvent exchange, producing dilute
colloidal dispersions. After ~5 min sonication to break apart pre-existing aggre-
gates, these colloidal dispersions in the LC state were filled in-between two glass
plates spaced by glass spacers setting the gap thickness d ≈ 15–60 μm. Planar
surface boundary conditions at confining substrates were set by unidirectionally
rubbed thin films of spin-coated and cross-linked polyimide PI2555 (HD Micro-
System)31. The polar surface anchoring energy coefficient was estimated to be
~10−4 J m−2 for both the confining substrates and colloidal particles immersed
within the LC, defining the strong boundary conditions on the corresponding
surfaces. To minimize spherical aberrations in experiments involving high
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numerical aperture (NA) immersion oil objectives, one of the used cell substrates
was 0.15–0.17 mm thick, as needed for high-resolution imaging.

Experimental techniques. An experimental setup assembled around an inverted
Olympus IX81 microscope was used for optical bright-field and polarizing
microscopy observations with a 100× (NA= 1.4) oil objective. To study distortions
of the director field caused in a uniform nematic LC background by colloids, we
also utilized a polarimetric imaging setup integrated with the same optical
microscope. Optical manipulations and assisted assembly of colloidal particles were
realized with a holographic optical trapping system56,57 operating at a wavelength
of λ= 1064 nm and integrated with our optical microscope. Rotational manip-
ulation of magnetically functionalized colloids was achieved using an in-house
custom built holonomic magnetic manipulation system integrated within the same
setup46. Translational and rotational motion of colloidal particles was recorded
using a charge-coupled device (CCD) camera (Flea, PointGrey) at a rate of 15
frames per second and the exact spatial positions and orientations of colloidal
particles as a function of time were then determined from captured sequences of
images using motion tracking plugins of the ImageJ (National Institute of Health)
analyzing software.

Numerical modeling procedures. Elastic multipoles in our study were formed
using dimers or assembly of spherical particles with the same or different
anchoring and dimensions. In numerical modeling of gourd-shaped colloidal
particles comprised of two dissimilar spheres (Fig. 2), the radius ra and position da
of the lower larger sphere were kept constant, whereby the radius rb and position db
of the upper smaller or equal sphere were varied to achieve different structures. The
anchoring on spheres was defined as strong and planar degenerate on the upper
sphere and as conic degenerate on the lower sphere (Fig. 2). Both planar degenerate
and conic degenerate anchoring impose distortions of n(r), which in the studied
equilibrium structures are rotationally symmetric with respect to the z-axis.

The total free energy F was minimized numerically by using an explicit Euler
relaxation finite difference scheme on a cubic mesh58. Material parameters of
typical nematic LCs were used in the calculations58: L= 4 × 10−11 N, A=
−0.172 × 106 J m−3, B=−2.12 × 106 J m−3, C= 1.73 × 106 J m−3. Simulations
were performed on a square grid consisting of 400 × 400 × 400 simulation points.
For gourd-shaped dimers, composite colloids consist of two spheres, the bottom
one has 100 points in diameter, whereas the upper sphere has from 20 to 100
points in diameter and is gradually moved upwards in steps of 10 points to mimic a
broad range of shapes of dimer particles that can be obtained in experiments39–41.
The composite colloids consisting of different number of equally sized spheres have
50 points in diameter. We assume fixed homeotropic anchoring on the cell surfaces
and strong conic, homeotropic or planar degenerate anchoring on the composite
colloids. The strong boundary conditions were chosen to achieve optimal matching
between calculated and measured polarization micrographs and the corresponding
director structures.

Multipole expansion was numerically performed with Gauss–Legendre
algorithm, which was implemented via the numerical library SHTns59,60. Several
optimizations were used to achieve maximum efficiency59, including the fast
Fourier transform from the library Fastest Fourier transform in the West61,62 to
improve accuracy and speed. The main advantage of this library is the efficient on-
the-fly computation of the Legendre-associated functions. Also, the algorithms
implemented in SHTns are of high order accuracy O(N3), where N is the number of
calculation points59.

An important method for studies of nematic structures is the Landau-de
Gennes (LdG) free energy approach38. It is based on the full tensorial order
parameter field Qij, which incorporates the orientation of the director n, orientation
of the possible biaxial ordering relative to the director, scalar degree of order S and
biaxiality P. LdG modeling is a phenomenological approach which uses a tensor
order parameter to construct a free energy functional F, which is also able to fully
characterize the defect regions. We use one elastic constant approximation for the
LdG free energy, which reads

F ¼ R
LC

A
2 QijQji þ B

3QijQjkQki þ C
4 QijQji

� �2
� �

dV þ R
LC

L
2
∂Qij

∂xk

∂Qij

∂xk

n o
dV

þR
Surf

W
2 Qij � Q 0ð Þ

ij

� �
Qij � Q 0ð Þ

ij

� �n o
dS;

ð6Þ

where LC denotes the integration over the bulk of LC and Surf over the surface of
colloidal particles. The first-term accounts for the variation of the nematic degree of
order; A, B, and C are material parameters. The second-term penalizes elastic
distortions in the nematic state, where L is the elastic constant. The final term in F is
surface free energy, which accounts for the LC interaction with the surface of the
colloidal particle, where W is the anchoring strength and we assume anchoring

along preferred direction imposed by the leading eigen-pair of Q 0ð Þ
ij (i.e., with largest

eigenvalue)63. The preferred direction of anchoring is set according to the anchoring
type; note that the surface free energy in Eq. (6) imposes uniform anchoring along
some distinct direction bot not degenerate (such as degenerate planar or conic).
Nevertheless, in the work shown, the experimentally realized multipolar particles
always exhibited rotational symmetry about the undistorted n0, which makes the use
of such uniform surface free energy appropriate and sufficient.

Nematic elastic multipoles. Nematic elastic multipoles are commonly known
today and used in the literature as approximations for elastic distortion profiles of
nematic orientational fields that surround colloidal particles. Nematic orientational
fields can be calculated analytically only for selected, typically rather simple sys-
tems; however, in most cases the general solution cannot be obtained. In colloids,
the key problem usually arises in the proximity of particle surfaces, where strong
spatial gradients emerge in the nematic orientational fields, which is though dif-
ferent to typically small gradients away from particles. Therefore, to obtain ana-
lytical insight into nematic fields, the full Euler–Lagrange equations were simplified
under selected assumptions (linearized) to be analytically solvable, eventually in the
far-field in terms of elastic multipoles22,26,28,64.

The expansion to nematic elastic multipoles relies on the crucial assumption of
roughly uniform director field n(r)≈(nx, ny, 1), with small nx, ny≪1, where note
that by definition, n, is to be a unit vector field. Typically, such assumption can be
justified at sufficiently large distances from colloidal particles (such as order of
magnitude one particle radius away from the particle surface or can be even less).
An additional assumption is also that the nematic elastic modes (i.e. elastic free
energy) are described with one single elastic constant. Taking such approximations,
the full nematic elastic free energy can be simplified to the harmonic free energy

fE ¼ 1
2K

P
μ¼x;y

∇nμ
� �2

, where we use notation nμ (μ= x, y) for components

perpendicular to far field direction. The corresponding Euler–Lagrange equations
are Laplace equations: ∇2nμ ¼ 0. The solution of Laplace equations is now sought
in terms of series of multipoles.

The elastic multipoles can be introduced via spherical multipole moments or by
using Green function22, where the two approaches can be directly mapped one into
another. For our work and analysis of results, it is convenient to use spherical
harmonics as they can be readily determined by an expansion of the nematic
director on a sphere that encloses the considered multipolar colloidal particles.
Laplace equations for nμ are separable in spherical coordinates and can be
analytically solved, with their general solutions written as a sum of multipolar

contributions nμ r; θ; ϕð Þ ¼ P1
l¼0

Pþl

m¼�l
qμlm

Rlþ1
eff
rlþ1 Ym

l θ;ϕð Þ, where θ is polar and φ

azimuth angle, qμlm are spherical multipole moments coefficients and Ym
l θ;φð Þ are

spherical harmonics. In order to extract distinct coefficient of selected multipole
moment the orthogonality of spherical harmonics is usedR 2π
0

R π
0Y

m
l θ;φð ÞYk

j θ;φð Þ sin θdθdφ ¼ δljδmk , where δij is the Kronecker symbol.
Note that the radius Reff of the sphere at which the expansion is performed can be
easily taken large enough to satisfy the assumptions nx, ny≪1 and nz≈1.

In homogeneous background field (n0= {0, 0, 1}), the symmetry of elastic
multipolar distortions generated by particles is determined by the symmetry of
colloidal particles and their anchoring. In this work we have considered only
particles invariant with respect to rotations about z-axis, which have no azimuthal
contribution to n(r), hence the director field imposed by a selected particle should
be invariant with respect to rotations about n0. This constraint sets monopole
coefficient Aμ= 0 and furthermore, implies that qμlm , with m= ±1 are the only
nonvanishing coefficients in the expansion (Eq. (4)) of the Cartesian director field
components nμ.

The Laplace equation has no inherent length scale; therefore, also no inherent
length scale is present in the multipolar expansion as solution of the Laplace
equation for the nematic director components. Nevertheless, clearly, already from
the perspective of the dimensional analysis, multipoles have units of powers of a
certain length scale. In our case of nematic elastic multipoles, we introduce this
certain length scale as Reff (e.g., as introduced in Eq. (4)), thus making the elastic
multipolar coefficients qμlm dimensionless to allow for comparison of the
magnitudes of different multipoles. In colloidal systems, this certain length scale is
naturally related to the particle size, which for spherical particles is the radius.
However, for more complex shaped particles, like our gourd particles, it is less clear
how to select this scale Reff, especially if wanting to effectively compare multipole
coefficients of particles of somewhat different shapes. Therefore, some selection has
to be made according to the leading geometrical elements (shape) of the particles.

Calculation of spherical multipole coefficients. The calculation of spherical
multipole coefficients (Eq. (4)) is performed with forward spherical harmonic
transformation59,60. The calculations were performed numerically using numerical
library (SHTns), in two consecutive steps. In the first step, the integral over φ is
performed by calculating the Fourier transform

qμm θð Þ ¼
Z 2π

0
nμ θ;φð Þe�imφdφ; ð7Þ

and in the second step we calculate the Legendre transform

qμlm ¼ rlþ1

Rlþ1
eff

Z π

0
qμm θð ÞPm

l cos θð Þ sin θdθ: ð8Þ

The SHTns library uses for the forward spherical harmonic transform data
written in spherical coordinates on a sphere, specifically, on nodes of a sphere with
discretized latitude θi and longitude φi, which are equally spaced along longitudinal
coordinate and Gaussian along the latitude. Such distribution of numerical nodes
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(points) gives more balanced representation of a waist region of the sphere in
comparison to the poles as if using, e.g., regular grids.

The director field nμ used for determining spherical multipole coefficients is
obtained from numerical calculations based on free energy minimization and is
calculated on discrete points of a cubic mesh, which do not match with points on
the sphere. Therefore, we perform trilinear interpolation of the tensor order
parameter Qij, to get Qij at arbitrary point in space

Qij x; y; zð Þ ¼ 1� x½ � 1� y½ � 1� z½ �Qij 0; 0; 0ð Þ þ x 1� y½ � 1� z½ �Qij 1; 0; 0ð Þ
þ 1� x½ �y 1� z½ �Qij 0; 1; 0ð Þ þ xy 1� z½ �Qij 1; 1; 0ð Þ
þ 1� x½ � 1� y½ �zQij 0; 0; 1ð Þ þ x 1� y½ �zQij 1; 0; 1ð Þ
þ 1� x½ �yzQij 0; 1; 1ð Þ þ xyzQij 1; 1; 1ð Þ:

ð9Þ

where (x, y, z) with x, y, z∈[0,1] denotes a location within a selected cube of eight
neighboring points of a square lattice; each point is in the corner of the cube and
the corners are labeled with vector of 0 and 1.

Performing the calculation of spherical multipole coefficients on the discrete
grid, the integral (Eq. (7)) reduces to the discrete Fourier transform and the use of
the Gauss–Legendre quadrature replaces the integral (Eq. (8)) with the sum

qμlm ¼ rlþ1

Rlþ1
eff

XNθ

j¼1

qμm θj

� �
Pm
l cos θj
� �

wj; ð10Þ

where θj and wj are Gauss node angles and Gauss node weights, respectively, and
Nθ is the number of discrete points in latitude.

The radius of the interpolation sphere must be chosen such that the distortions
from homogeneous alignment nμ are rather small compared to nz ≈ 1. We perform
the multipole analysis by setting the magnitude of the maximum allowed
transversal director field component to be nx= 0.1 on the entire interpolation
sphere (see also Fig. 2), where we determine the appropriate interpolation sphere
radius ri with bisection.

For the effective size of the particles, we take that the effective radius to be half
the length of the particle’s dimension in z direction, which can be written (using
parameters from Fig. 2) as Reff= (2ra+ db+ rb)/2. Note, that we tested various

possible selections for the effective radius and for the systems shown, this selection
gives most reasonable results; especially, such selection of Reff accounts rather well
for the changes in the geometry of our particles and makes the multipole
coefficients comparable in magnitude. Finally, selecting the effective radius, it also
defines the center of the composite colloid, which we call the geometrical center
and is depicted with a red dot in Fig. 2.

Important parameter in the calculation of the multipolar coefficients is also the
position of the interpolation sphere di, i.e., the actual location of the multipoles.
Note that if the distortions of n(r) are symmetric up–down along n0 (in our case
along z-axis), the location of the multipole is clearly at the mirror plane. Also, if the
distortions are rotationally symmetric around n0, the location of the multipole is
along the rotational axis. However, the location of the multipoles and,
correspondingly, the choice of the interpolation sphere position become less clear if
the distortion (and particle) are asymmetric. In this work we take the interpolation
sphere to be centered in the geometric center, which we analyze in more details by
varying the center of the interpolation sphere as shown in Fig. 9.

Figure 9a–f shows the spherical multipole coefficients qxl1 as a function of the
interpolation sphere position di. As first example, we present a spherical particle with
homeotropic anchoring on the surface (Fig. 9a), which has the director structure of an
elastic quadrupole, commonly known as the Saturn ring configuration. Figure 9b
shows that dipole moment is zero, quadrupole is constant regardless of di, whereas all
higher multipole moments are present nonetheless with their magnitudes dependent
on di. Notably, if the center of the interpolation sphere coincides with the geometrical
center of the colloidal particle, the multipole coefficients have an extreme or zero,
which actually one would expect, and supports the relevance of the geometrical center
as the location of the multipoles. Note that higher multipole moments emerge
primarily because the particle is positioned away from the center of the simulation
box (in which we calculate the Q tensor profile) and the confinement distorts the
exact quadrupolar symmetry of n(r). As second example, a spherical particle with
conic degenerate anchoring is presented (Fig. 9c, d). The quadrupole coefficient is
observed to be constant for all di; however, other higher multipole coefficients emerge
as well and are again dependent on the interpolation sphere position. But,
interestingly, again, when the center of the interpolation sphere coincides with the
geometrical center of the colloidal sphere at di=−ra, all multipoles higher than
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Fig. 9 Examples of spherical multipole moments of composite nematic colloids. The value of qxl1 was calculated for selected simulated composite nematic
colloids and chain particle comprising of two equal spheres. a Colloidal particle with homeotropic boundary conditions centered at ra below the origin
induces a quadrupolar distortion of n(r), commonly known as a Saturn ring configuration. b Corresponding graph shows constant quadrupole coefficient at
all displacements di, other multipoles have extreme or zero at di=−ra, corresponding to the geometrical center of the spherical colloid. c Spherical colloidal
particle with conic anchoring at angle α= 20° centered at ra below the origin. d Plot shows that quadrupolar coefficient is constant at all di, whereas other
coefficients higher then 16-pole are zero when center of the interpolation sphere coincides with geometrical center di= da. e Composite colloidal particle at
ra below the origin with db= 0, rb= 2ra/5 and conic anchoring at angle α= 60°. f Quadrupolar coefficient is constant regardless the position of the
interaction sphere, whereas higher multipole moments show complex variations even at the geometrical center. Geometrical centers of the composite
colloids are depicted with red dashed line. g Chain colloid with homeotropic anchoring on the surfaces induces two Saturn rings. h The director field shows
strong quadrupolar and hexadecapolar, and weak 64-polar contribution. Higher multipoles are zero in the geometrical center of a composite chain colloid. i
Chain colloid with tangential anchoring induces strong neck defect and two boojums at the poles. j The director field shows strong hexadecapole,
quadrupole and 64-pole, whereas higher multipoles are zero in the geometrical center. The location of the geometrical center of the colloid is depicted with
red dashed line (at di= 0)
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16-pole drop to zero. This again supports the relevance of geometric center as a
reasonable position for the center of the interpolation sphere in determining the
multipole coefficient. Nevertheless, less clearly, Fig. 9e, f shows the multipole
coefficients of a composite colloidal particle with upper sphere radius rb= 2/5ra and at
position db= 0. The quadrupolar moment is constant over all positions of the
interpolation sphere, but higher multipoles emerge as well, and notably without clear
signature at the geometrical center (such as zero value or maximum/minimum). This
result shows that although our use of the geometrical center of particle works well
over a range of regimes of particle shapes and anchoring types, as it corresponds
exactly to the location of the multipoles, in general, it is only a reasonable
approximation. Another example of systems where only geometrical arguments for
finding location of multipole centers will fail are (symmetric) colloids (even spheres)
with different anchoring strengths (and/or anchoring types) on different parts of the
colloidal surface. Overall, this indicates an interesting possible further study, such as if
and how, different multipoles of one particle could possibly emerge at different
mutually shifted locations.

Figure 9g–j shows two chain colloids comprising of two equal spheres joined at
the poles. Figure 9g shows a pair of colloids with homeotropic anchoring. Two
Saturn rings emerge at the waist/equator of each sphere, creating distinct n(r)-
deformations of the hexadecapole with nx > 0 (see Fig. 1). Nevertheless, as shown
by the full analysis (Fig. 9h), the hexadecapolar deformations are also accompanied
by the quadrupolar and weak 64-pole components. Figures 9i, j demonstrates
another case of a colloidal chain, now with tangential anchoring on the spheres.
The nematic profile shows a defect region in the neck of the particle and boojums
at each free pole. The corresponding n(r) resembles the hexadecapole nx < 0 (as
shown in Fig. 1), effectively, somewhat stretched along z-axis, which turns out
excites other (symmetrical along z-axis) multipoles. For this case, the strongest
multipole is the hexadecapole, followed by the quadrupole and 64-pole, whereas
other multipoles are zero in the geometrical center of the composite chain particle,
as conditioned by the symmetry of distortions.

Polarimetric imaging of colloids in LCs. In addition to the standard technique of
polarizing optical microscopy, we used polarimetric imaging of structures around
colloidal particles with measurements of parameters of polarized light emerging
from the sample on a pixel-by-pixel basis. To determine the orientation χ and
ellipticity e of the light’s polarization ellipse after traversing the nematic sample
with a colloidal inclusion (Fig. 10a, b), we used the rotating quarter-wave-plate
(QWP) measurements65. The measurement setup is shown in Fig. 10c, where we
used a narrow band filter with central wavelength at 546 nm after a halogen lamp
as a light source. The light incident on the sample was polarized with a linear
polarizer. In the optical path, the QWP is inserted after the sample and is followed
by an analyzer fixed along x-axis. This setup allows for the measurements of
polarization ellipse parameters of light passing the sample by using intensities of
light transmitted through the system polarizer-sample-QWP-analyzer at different
QWP orientations. The QWP can be rotated by an angle θp with respect to analyzer

direction and Stokes parameters (Fig. 10b) can be found as follows65:

S0 ¼ Z1 � Z3; S1 ¼ 2Z3; S2 ¼ 2Z4; S3 ¼ Z2; ð11Þ
where coefficients Z1, Z2, Z3, and Z4 are given by

Z1 ¼
2
Np

XNp

i¼1

Ii; Z2 ¼
4
Np

XNp

i¼1

Ii sin 2θpi; Z3 ¼
4
Np

XNp

i¼1

Ii cos 4θpi; Z4 ¼
4
Np

XNp

i¼1

Ii sin 4θpi;

ð12Þ
where Np is a number of angels θpi at which the intensity Ii of transmitted light was
measured. We measured the transmitted light intensity at orientations of the QWP
fast axis with respect to an analyzer from θp= 0° to θp= 180° with a step of 22.5°.
Following this procedure, polarization ellipse parameters χ and e can be deter-
mined from expressions tan 2χ ¼ S2=S1 and sin 2e ¼ S3=S0. The intensity of
transmitted light after an analyzer corresponding to each pixel was recorded with a
CCD camera. A large matrix of intensities corresponding to pixels of camera was
recorded for each θp and polarization parameters were calculated for each pixel,
yielding polarimetric images of colloidal particles and distortions around them
(Fig. 7o). As shown using the examples of dimer composite colloidal particles, the
polarimetric imaging results are consistent with polarizing micrographs and
numerically calculated director structures, revealing how different multipoles can
be induced by studied composite colloidal objects.

Data availability
All data are available from the authors upon reasonable request.
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