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Understanding thermal transport in nanofiber networks is essential for their applications in thermal

management, which are used extensively as mechanically sturdy thermal insulation or high thermal

conductivity materials. In this study, using the statistical theory and Fourier’s law of heat

conduction while accounting for both the inter-fiber contact thermal resistance and the intrinsic

thermal resistance of nanofibers, an analytical model is developed to predict the thermal conductiv-

ity of nanofiber networks as a function of their geometric and thermal properties. A scaling relation

between the thermal conductivity and the geometric properties including volume fraction and nano-

fiber length of the network is revealed. This model agrees well with both numerical simulations

and experimental measurements found in the literature. This model may prove useful in analyzing

the experimental results and designing nanofiber networks for both high and low thermal conduc-

tivity applications. Published by AIP Publishing. https://doi.org/10.1063/1.5008582

I. INTRODUCTION

Nanofiber networks of carbon nanotubes (CNTs) or

metallic nanowires (MNWs) have been extensively used to

build thermally and/or electrically conducting and/or insulat-

ing materials. For example, applications are found in highly

conductive thermal interface materials,1 super insulating

aerogels,2 flexible electronics,3 high performance transis-

tors,4 and electrodes of both batteries and fuel cells.5

Nanofiber networks can possess significantly improved

mechanical properties through the interconnected nanofib-

ers.6–8 Similarly, it is straightforward to expect that such

kinds of networks could possess high electrical conductiv-

ity6,9 and high thermal conductivity.10 For example, the ther-

mal conductivity of oil11 and epoxy12 can be enhanced by

approximately 150% after adding 1 vol. % of high thermal

conductivity single-wall CNTs when networks are formed.

Similarly, Wang et al. showed a 10-times enhancement of

thermal conductivity by adding only �0.9 vol. % copper

nanowires into the polyacrylate matrix.1 It is interesting to

note that the enhancement of thermal conductivity using cop-

per nanowires is much larger than that using CNTs, despite

the much lower thermal conductivity of individual copper

nanowires (200–300 W m�1 K�1)13 as compared to that of

single-wall CNTs (�3000 W m�1 K�1).14 This suggests that

the contact resistance between nanofibers (CNTs or MNWs)

might play an important role in the thermal transport through

the networks. In contrary to the networks being used as

highly thermal conductive materials, nanofiber networks

have also been used to build thermal insulation materials.

For example, the thermal conductivity of the random

networks can be as low as �0.1 W m�1 K�1 with 10–20 vol.

% CNTs15,16 or even lower for the CNT aerogel (�0.06 W

m�1 K�1) with 0.3 vol. % CNTs.2 These two extreme cases

of using CNTs for both high and low thermal conductivity

materials indicate that thermal transport in nanofiber net-

works depends on both their thermal properties, such as the

thermal conductivity of a single nanofiber and the contact

resistance of inter-fiber contact and the geometric properties,

such as the volume fraction, the aspect ratio, and the orienta-

tion distribution of nanofibers. Developing a theoretical

model that can be broadly applied to predict the thermal con-

ductivity of nanofiber networks with a large set of physical

variables, including both thermal and geometric properties,

is not only fundamentally important to understand the heat

transfer mechanisms within nanofiber networks, but also crit-

ical to enable many applications of nanofiber networks.

The intrinsic thermal resistance of nanofibers and the

inter-fiber thermal contact resistance together determine the

thermal conductivity of nanofiber networks. Earlier models

focused mainly on the geometric factors such as heat transfer

pathways, the volume fraction, and the aspect ratio of the

nanofibers.17–21 Such models paid very little attention to the

effects of inter-fiber contact resistance. Recently, it was

found that inter-fiber contact resistance has a noticeable

effect on the thermal conductivity of fibrous materials22–24

and CNT networks.25 As a result, most of the modeling

works on the thermal conductivity of CNT networks consider

only heat transfer through contacts but neglect the thermal

resistance along CNTs due to the very high thermal conduc-

tivity of a single CNT. On the other hand, Volkov and

Zhigilei found that when the thermal conductivity of a single

CNT is small, heat conduction through a CNT can stronglya)E-mail: ronggui.yang@colorado.edu
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influence the thermal conductivity of the random CNT net-

works.25 It is well understood now that both the heat conduc-

tion through the nanofibers and inter-fiber contact thermal

resistance need to be taken into account when modeling the

thermal conductivity of nanofiber networks. In addition, the

orientation distributions of the nanofibers in the network

would affect the thermal conductivity of nanofiber net-

works.26 In this paper, we develop a theoretical framework

to analyze the thermal conductivity of nanofiber networks by

considering both the inter-fiber contact thermal resistance

and the intrinsic thermal resistance of nanofibers. The ther-

mal conductivity is predicted as a function of the geometry

parameters such as the volume fraction, nanofiber size, and

the orientation distribution of the nanofibers. The scaling

relationship describing dependence of thermal conductivity

on the geometry parameters is also derived based on the

newly developed model.

II. MODEL

A. Statistical description of a nanofiber network

Figure 1(a) shows a geometric illustration of a three-

dimensional (3D) nanofiber network composed of straight

nanofibers with uniform diameter D and length L. Here, we

define the aspect ratio r ¼ L=D and assume r � 1. The

cross-sectional area of a single nanofiber is A0 ¼ pD2= 4 and

the volume fraction occupied by the nanofibers is assumed to

be Vf . The total cross-sectional area of the network is defined

as Az. Figure 1(b) shows a typical structural element in the

network in which v is the angle formed between two arbi-

trary oriented nanofibers. The average contact number hNci
is defined statistically to count the mean number of contacts

of a nanofiber. The areal number density of the nanofiber

through the cross-section Az is assumed to be ns. As shown

in Fig. 1(c), the polar and azimuthal angles ðh;/Þ are used to

define the orientation of an arbitrary nanofiber. The orienta-

tion distribution function (ODF) Xðh;/Þ describes the proba-

bility of finding the orientation of a nanofiber in the element

of a unit sphere sin hdhd/. The following normalization

condition needs to be satisfied:

ðhmax

hmin

ð/max

/min

X h;/ð Þ sin hd/dh ¼ 1; (1)

where hmin and hmax are the lower and upper limits of h;

/min and /max are the lower and upper limits of /. For sim-

plicity, we assume /min ¼ 0 and /max ¼ p in this study.

The thermal conductivity of nanofiber networks is

closely related to both the average contact number hNci
which describes the connection of a network and the areal

number density ns which characterizes the concentration of

nanofibers. Obviously, hNci and ns are determined by the

parameters such as the nanofiber size, volume fraction Vf ,

and ODF Xðh;/Þ. The hNci is the average of Ncðh;/Þ over

all possible values of ðh;/), where Ncðh;/Þ is defined as the

number of contacts of a nanofiber with orientation distribu-

tion ðh;/). According to the analysis by Pan,27 hNci can be

calculated as

Nch i ¼
8rVf J h;/ð Þ

pþ 4Vf J h;/ð ÞK h;/ð Þ ; (2)

where h�i means the average value and Jðh;/Þ and Kðh;/Þ
represent the mean value of sin v and 1= sin v, respectively

(see the Appendix).27

As shown in Fig. 1(a), the areal number density ns of the

nanofibers penetrating the cross-section Az with direction

h ¼ 0, is the summation over all possible values of � h ¼ 0;ð
0 � / � pÞ,

ns ¼
ðp

0

� h ¼ 0;/ð Þd/; (3)

where � h;/ð Þ is the areal number density of the cross-section

in direction ðh;/Þ (see the Appendix).28 For the structure with

0 � hmin <
p
2
< hmax � p; ns ¼ Vf=2A0, and if the network is

unidirectionally orientated in one direction (e.g., vertical

alignment, hmin ¼ hmax ¼ 0 or p), we have ns ¼ Vf =A0.

B. Heat transfer analysis

In reality, nanofiber networks usually co-exist with gas

or a matrix material, heat transfer through the gas or the

FIG. 1. Schematic of a nanofiber net-

work. (a) A 3D nanofiber network

under a temperature difference with

high temperature Th on the top and

low temperature Tc at the bottom. (b)

Contacts in the nanofiber network. The

heat transfer through the contact

between nanofiber a and nanofiber b is

described by Eq. (8). (c) The orienta-

tion of a single nanofiber in the 3D

space is described by polar and azi-

muthal angles ðh;/Þ.
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matrix material and the infrared thermal radiation can

make important contributions to the effective thermal con-

ductivity of network based materials such as aerogels2,29,30

or composites.1,11 This work focused only on the heat con-

duction through the networks, which aims to guide the net-

work design for thermal management. As shown in Fig.

1(a), a constant temperature gradient rTe is assumed in

the z direction. According to Fourier’s law of heat conduc-

tion, the effective thermal conductivity of the network is

given by

ke ¼ �
Qz

AzrTe
; (4)

where Qz is the total heat flow through Az in the xoy plane.

Qz can also be written as the summation of the heat flow

through every individual nanofiber across Az in the z

direction,

Qz ¼
XnsAz

a¼1
Qa ¼ �nsAz Qah ij j; (5)

where Qah ij j is the ensemble averaged net heat flow through

a single nanofiber, and the negative sign means that the

direction of Qz is negative z. By assuming that all contacts

have the same thermal contact resistance and the heat flows

in or out of the nanofiber through half of the contacts, we

then have

Qah ij j ¼
X

Tbj
>Tai

h Tbj
� Tai

� �* +
¼ k0A0

hNci
2

Bi
hDTabi

L
;

(6)

where h is the thermal conductance of the inter-fiber contact

[Fig. 1(b)], which is the inverse of the thermal contact resis-

tance, ai means the ith contact along nanofiber a, bj means

the jth contact along nanofiber b, DTab
� �

¼ Tai
� Tbj

�� ��D E
is

the average temperature difference in contacts between an

arbitrary pair of nanofibers, Bi ¼ hL=k0A0 is Biot number,

and k0 is the thermal conductivity of the nanofiber.23,24

Substituting Eqs. (4) and (6) into Eq. (5), the following

relationship between the effective thermal conductivity of

the network ke and the thermal conductivity of an individual

nanofiber k0 is obtained,

ke

k0

¼ nsA0

hNci
2

Bi
hDTabi
rTe

1

L
: (7)

Note that in Eq. (7) the value of DTab
� �

=rTe is an unknown

and is determined by the competition between inter-fiber

thermal contact resistance and thermal resistance from the

nanofibers.

In a next step, the efforts are focused on finding

DTab
� �

=rTe from the temperature distribution along the

individual nanofiber and the network. Because the aspect

ratio of the nanofiber is very high, it is reasonable to assume

that the heat transfer along the nanofiber is one-dimensional

(1D). For any of the nanofibers which do not touch the hot

and cold surface, according to the energy balance at the ith

contact along nanofibers a as shown in Fig. 1(b), the follow-

ing equation can be written as:

k0A0

Tai
� Tai�1

DLai�1;i

þ k0A0

Tai
� Taiþ1

DLai;iþ1

þ h Tai
� Tbj

� � ¼ 0; (8)

where Tai
, Tai�1

, and Taiþ1
are the temperature of the contact

i, contact (i� 1Þ, and contact ðiþ 1Þ on nanofiber a, and Tbj

is the temperature of contact j on nanofiber b [Fig. 1(b)],

DLai�1;i
is the distance between contact ði� 1Þ and contact i

on nanofiber a, and DLai;iþ1
is the distance between contact i

and contact ðiþ 1Þ on nanofiber a. In Eq. (8), the first and

the second terms represent the heat flow along the nanofiber,

while the third term is the heat transfer from nanofiber a to

nanofiber b through the contact. Following a similar proce-

dure, the energy balance equations are developed for other

contacts on nanofiber a. As shown in Fig. 1(a), the direction

of the heat flow is from the hot surface to the cold surface.

The general temperature distribution along an individual

nanofiber is that temperature decreases from the end closer

to the top hot surface to the end closer to the bottom cold sur-

face. To make the problem solvable, it is reasonable to

assume that heat flows in the nanofiber from the end closer

to the hot surface and flows out through the other end [this

assumption is validated by our numerical simulations as

shown in Fig. 3(b)]. We have thus assumed a constant aver-

age temperature gradient h dT
dx�

�� ��i ¼ Qah ij j
k0A0

along the nano-

fiber.25 Then

dT

dx�

����
����

* +
M

hDTabi
¼ hNci

2

Bi

L
; (9)

where M means the middle point of a nanofiber.

Combining the assumed constant temperature gradient

along each individual nanofiber with the assumption that a

constant temperature gradient is applied in the z direction,

the temperature distribution along nanofiber a can be

expressed as a function of its z-coordinate,25,31

T zaið Þ ¼ Tc þrTezaM
þ

dT

dx�

����
����

* +
M

zai
� zaMð Þ

cos hj jh i ; (10)

where Tc is the temperature of the network at z ¼ 0, zaM
and

zai
are the z-coordinates of the middle point and ith contact

on nanofiber a, and h is the angle between the direction of a

nanofiber and the direction of macroscopic heat transfer. The

temperature TðzbjÞ of the jth contact on the nanofiber b can

also be obtained, following a similar method. Thus, the aver-

age temperature difference at the contact between nanofibers

a and b can be found using the difference of Taðzai
Þ and

Tbðzbj
Þ

DTab
� �
hHi ¼ rTe � hNci

2

BihDTabi
L

=h cos hj ji; (11)

where hHi is the average center-to-center distance of the two

connected nanofibers in the z direction (see the Appendix),
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Hh i ¼
ðL=2

�L=2

ðL=2

�L=2

dx�adx�b

ð ð
za � zbj jX h;/ð ÞX h;/ð ÞdXadXb

¼

ðL=2

�L=2

ðL=2

�L=2

dx�adx�b

ðhmax

hmin

sin hadha

ðhmax

hmin

sin hb x�a cos ha�x�b cos hb
�� ��dhb

cos hmin � cos hmaxð Þ2
: (12)

Substituting Eq. (11) into Eq. (7), the effective thermal

conductivity normalized by the thermal conductivity of fiber,

ke=k0, is written as

ke

k0

¼ nsA0

BihNci
2h cos hj jiL=hHi þ BihNci

h cos hj ji: (13)

Equation (13) is also valid for two-dimensional (2D) nanofiber

networks. As shown in Fig. 1(c), the 3D network becomes

2D if / ¼ p=2. It can be seen that Eq. (13) is closely related to

the ODF of the networks. Table I lists the parameters for

the 3D random ð 0 � h � p, 0 � / � pÞ and 2D random

0 � h � p;/ ¼ p
2

� �
networks (see the Appendix).

III. MODEL VALIDATION

A. Comparisons with numerical simulations

To validate the analytical model we derived in Sec. II,

numerical simulations for thermal transport in nanofiber net-

works are conducted. To reduce the computational costs, the

2D networks with uniform size (length L and diameter D) of

nanofibers are constructed. The arrangement of the nanofiber

network is realized by generating two random numbers that

determine the start position of each nanofiber inside the sim-

ulation domain, while a third random number is generated

for the distribution angle h according to the orientation distri-

bution function. With the start position and the orientation h,

the end position of the nanofiber can be calculated easily

based on the length of the nanofiber. If the end position of a

nanofiber is outside the simulation domain, the point of inter-

section between the nanofiber and the domain boundary will

be set as the end position of the nanofiber. This process is

repeated until the volume fraction (area fraction in 2D) of

the network is equal to the desired value. Figure 2 shows the

examples of a simulated random network ð0 < h < pÞ and a

network with preferred orientation ð0 < h < p=6Þ, with the

input parameters Vf ¼ 0:04, D ¼ 3 nm, and r ¼ 500. The

domain size (Lh � Lh) of the simulated structures is nondi-

mensionalized by the nanofiber length L.

In the simulation, each individual nanofiber in Fig. 2 is

divided into 1D segments. A control volume heat balance

analysis for each segment is performed by following a simi-

lar procedure used to derive Eq. (8). The top and bottom

boundaries of the simulation domain are set as high tempera-

ture Th and low temperature Tc. The dimensionless tempera-

ture T� ¼ T�Tc

Th�Tc
in the simulations. The left and right

boundaries of the simulation domain are assumed to be adia-

batic. The two ends of nanofibers are assumed to be adiabatic

if not touching another nanofiber. After the temperature dis-

tribution within the nanofiber network is obtained using the

finite volume method (FVM), the effective thermal conduc-

tivity of the network is calculated as

ke ¼

P
fibers k0A0

dT

dx�

����
z¼0

Ad Th � Tcð Þ=Lh
; (14)

where Ad is the cross sectional area of the domain in the heat

transfer direction. More details about the simulation model can

FIG. 2. Examples of the simulated random network (0 < h < p) and pre-

ferred orientation network (0 < h < p=6) in which r ¼ 500 and D ¼ 3 nm.

The size of the computation domains is Lh=L ¼ 5.
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be found in Ref. 32. For all the simulations in this paper, we

keep the number of nanofibers in each simulation domain fixed

to be around 500. The size of the calculation domains Lh=L
ranges from 5 to 12 depending on the volume fraction and the

aspect ratio of nanofibers. Numerical convergence tests are

performed for all simulated cases. The calculated thermal

conductivity for any of the nanofiber networks presented in

this paper is the average result of 50 independent simulations.

Figure 3 compares the effective thermal conductivities

of the 2D networks obtained from the theoretical model [Eq.

(13)] with those from numerical simulations, as a function of

Bi number for different values of the volume fraction and

different orientation distributions. To show the universality

of the theoretical model we developed, the model is com-

pared with the networks with Bi ranging from 10�4 to 104,

where Bi represents the ratio of intrinsic thermal resistance

of the nanofiber and inter-fiber contact resistance. Figure

3(a) shows that the effective thermal conductivity ke of nano-

fiber networks is strongly dependent on the Bi number and

the volume fraction of the nanofibers. For Bi! 0, the ke

decreases following a power law with the change of the ther-

mal resistance of inter-fiber contacts. However, when

Bi!1, the ke becomes a constant which indicates that the

effect of inter-fiber contact resistance vanishes and the ke is

only determined by the thermal resistance of the nanofiber.

The volume fraction of the nanofibers influences ke in the

whole range of Bi values. Figure 3(b) compares the effective

thermal conductivity ke of random nanofiber networks

(0 < h < p) with those of nanofiber networks with preferred

orientation (0 < h < p
6
). When Bi! 0, the effective thermal

conductivity ke of the random nanofiber networks is larger

because of a larger average contact number hNci. However,

as Bi!1, the effective thermal conductivity ke of the net-

works with preferred orientation becomes larger due to the

effect of orientation distribution.

B. Comparisons with experimental data

Figure 4 compares the predictions of the theoretical

model with the experimental data from the literature for

three kinds of nanofiber networks:1,2,33–38 (1) CNT networks

where CNTs have very high intrinsic thermal conductivity

(�103 W m�1 K�1) but poor inter-fiber contact conductance

(10–103 pW K�1).14,15 It is known that k0 for an individual

CNT can range from around 200 to 6000 W m�1 K�1,14

depending on its length, diameter, chirality, tortuosity, and

other factors. Here, k0 ¼ 1000 W m�1 K�1 is chosen for all

the CNT networks (data points 1, 2, and 3 in Fig. 4).

According to Prasher et al.15 and Yamada et al.,34 the inter-

fiber thermal conductance h is �50 pW K�1 for the CNT

with diameter 1.4 nm, and h is �15 000 pW K�1 when the

diameter is 100 nm. Molecular simulations in the litera-

ture39,40 show that inter-fiber thermal conductance has a pos-

itive correlation with the contact area (diameter) of

nanofibers; thus h of point 1(D ¼ 0:93 nm) in Fig. 4 is cho-

sen based on the diameter of the CNT (Table II). (2) Metallic

TABLE I. List of parameters for 3D and 2D random networks.

Geometry Distribution angle, ðh;/Þ ODF, Xðh;/Þ Average contact number,27 hNci Areal number density, ns Center-to-center distance, Hh i h cos hj ji

3D random 0 � h � p, 0 � / � p 1

2p
4rVf

2þ pVf

Vf

2A0

0:1852L 2

p

2D random 0 � h � p, / ¼ p
2

1

p
16prVf

p3 þ 16gVf
; g ¼ ln cot arcsinð1=rÞ=2ð Þ½ 	 4Vf

p2A0

0:2307L 2

p

FIG. 3. (a) The effective thermal conductivity normalized to the thermal

conductivity of the nanofiber, ke=k0 in the random nanofiber networks as a

function of Bi according to Eq. (13) and numerical simulations, respectively.

The input parameters are r ¼ 500 and D ¼ 3 nm. (b) Comparison of the ther-

mal conductivity between random nanofiber networks ð0 < h < pÞ and

nanofiber networks with preferred orientation ð0 < h < p=6Þ as a function

of Bi. The two networks are assumed to have the same volume fraction

Vf ¼ 0:04, same aspect ratio r ¼ 500, and same nanofiber diameter

D ¼ 3 nm. The insets in (b) show the example of simulated temperature dis-

tribution obtained for both the random nanofiber network and a nanofiber

network with preferred orientation. The size of the simulation domain is

Lh=L ¼ 5 and the nanofibers are colored by non-dimensional temperature.
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nanowire networks where silver and copper nanowires (data

points 4, 5, and 6 in Fig. 4) have high thermal conductivities

(�102 W m�1 K�1) and excellent inter-fiber contact conduc-

tance (�105 pW K�1).41 Here, k0 ranges from 200 to 400 W

m�1 K�1 on the basis of the diameter of MNWs.13 (3)

Cellulose nanofiber networks (CNFs) (data points 7 and 8 in

Fig. 4) where nanofibers have low intrinsic thermal conduc-

tivity (�101 W m�1 K�1) and intermediate inter-fiber contact

conductance (�973–1300 pW K�1).37 In CNF networks,

neighboring CNFs are connected by much stronger hydrogen

bonds than the van der Waals interactions in CNT networks.

The molecular dynamics simulations from Diaz et al.37 give

the value of k0 ¼ 5:7 W m�1K�1 and h ¼ 1000 pW K�1.

Details about the experimental data and parameters in the

theoretical model can be found in Table II. Figure 4 shows

that results from the present model agree well with

the experimental results for a broad range of Bi and the

volume fraction. This demonstrates that our model can

capture well the competition effects of both intrinsic

thermal conductance of the nanofiber and inter-fiber con-

tact resistance on the thermal conductivity of nanofiber

networks.

IV. DEPENDENCE ON GEOMETRIC PARAMETERS

To characterize the effects of physical and geometric fac-

tors including the inter-fiber contact resistance, intrinsic ther-

mal resistance of nanofibers, volume fraction, aspect ratio,

and the orientation distribution on the effective thermal con-

ductivity, a new parameter BiT ¼ hNciBi is defined according

to Volkov and Zhigilei.25 Eq. (13) is then reduced to

ke

k0

¼ nsA0

BiT

2h cos hj jiL=hHi þ BiT

cos hj jh i; (15)

where BiT is the ratio of thermal resistance of the nanofiber

L=k0A0 to the total inter-fiber contact resistance 1=h Nch i of all

contacts in a nanofiber network. Unlike Bi which is a local

characteristic number for an individual junction, BiT can be

referred to as a global dimensionless quantity to characterize

the ratio of the intrinsic thermal resistance of nanofibers and the

contact resistance of the contacts in the network. Depending on

the values of BiT , the heat transfer mechanisms in the nanofiber

networks can be divided into different regimes.

(1) When a nanofiber network has a low volume fraction, a

large aspect ratio or a large inter-fiber contact resistance,

BiT 
 1 is satisfied. Equation (15) is then reduced to

ke ¼
nshNcihHi

2
h: (16)

After substituting hNci [Eq. (2)] and hHi [Eq. (12)] into

Eq. (16), we obtain

ke / V2
f L2: (17)

Equation (17) indicates that the thermal conductivity of

the nanofiber network is independent of the thermal con-

ductivity of the single nanofiber and is only determined

by the inter-fiber contact resistance and its geometry

when BiT 
 1. Equation (17) agrees well with the ana-

lytical model and mesoscopic simulation results from

Volkov and Zhigilei42 in which only the heat transfer

through inter-fiber contacts is considered. The above

trends are also validated by the numerical simulations in

Fig. 5. For example, when h ¼ 5:0 pW K�1 [Fig. 5(a),

red line], the quadratic trend ke/ Lb, where b ¼ 2, works

well for both Vf ¼ 0:04 and Vf ¼ 0:2 for aspect ratio r
varying from 100 to 1000. In Fig. 5(b), when Bi
¼ 10�4; ke / Va

f , where a ¼ 2, is seen from the results

FIG. 4. Comparison between the theoretical model and the experimental

data available in the literature. Three kinds of nanofiber networks are

selected: (1) CNT networks, (2) MNW networks, and (3) CNF networks;

Solid and open data points are for experimental data and the model,

respectively.

TABLE II. Details of the experimental data and selected parameters for the theoretical model.

Data Material

Diameter,

DðnmÞ
Length,

L(lm)

Aspect

ratio, r
Volume fraction,

Vf ð%Þ
Thermal conductivity,

k0(W m�1K�1)

Inter-fiber conductance,

h(pW K�1)

Lm

ðlmÞ

1 CNT2 0.93 1.0 1075 0.314 1000 25 /

2 CNT34 100 10 200 10-15.7 1000 1:5� 104 10

3 CNT35 1.4 1.0 360 50.9 1000 50 /

4 MNW1 120 20 160 0.9–1.1 200 3� 105 /

5 MNW38 0:2� 106 10� 103 50 10 400 1:1� 1012 /

6 MNW33 50 200 4000 24.0 300 0:52� 105 /

7 CNF36 10 2 200 64.3 5.4 1000 2

8 CNF37 10 0.1 10 86.2 5.4 1000 2
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of both r ¼ 100 and r ¼ 1000 (red solid and dashed

lines). When the volume fraction or the aspect ratio of the

nanofibers is small, computational simulations can gener-

ate some isolated nanofibers that do not contribute to the

heat transfer of the network. Thus, it is noticed that the

results from our analytical model are larger than the simu-

lations, especially for the cases with high contact conduc-

tance [e.g., Vf ¼ 0:04; h ¼ 500 pW K�1 in Fig. 5(a) and

r ¼ 102; Bi ¼ 100 in Fig. 5(b)].

(2) When the nanofiber network has a high volume fraction

or a small inter-fiber contact resistance, BiT � 1 is satis-

fied. Equation (15) can then be simplified as

ke ¼ nsA0 cos hj jh ik0: (18)

For the vertical aligned network (h cos hj ji ¼ 1:0 and

ns ¼ Vf =A0), Eq. (18) reduces to the series thermal con-

ductivity model, i.e., ke ¼ Vf k0. When the nanofibers in

the network are completely randomly distributed (h cos hj ji
¼ 2=p and ns ¼ Vf=2A0), Eq. (18) can be simplified as

ke ¼ Vf k0=p, which agrees well with the theoretical esti-

mation ke ¼ Vf k0=3 for the 3D random network in Refs.

15 and 43. Because ns / Vf , we now have

ke / Vf : (19)

Equation (19) indicates that the thermal conductivity of

the nanofiber network is proportional to the volume frac-

tion of the nanofibers and is independent of the nanofiber

length. As shown in Fig. 5(a), the ke becomes indepen-

dent of the nanofiber length as r increases from 400 to

1000 when h ¼ 500 pW K�1 (green line). In Fig. 5(b),

by comparing the results for r ¼ 100, Bi ¼ 100 (green

line) with those for r ¼ 1000, Bi ¼ 100 (pink lines), the

linear dependence of ke on Vf is clearly observed.

(3) For the intermediate case BiT � 1, the effective thermal

conductivity can be written as

ke / Va
f Lb; 1 < a < 2; 0 < b < 2: (20)

For example, in Fig. 5(a), when both cases of Vf ¼ 0:04;
h¼500pWK�1(green line) and Vf ¼0:2; h¼50pWK�1(blue

line), the power exponent b decreases as r increases. This is

because as the nanofiber length increases, Bi increases,

which results in non-negligible thermal resistance of the

nanofibers. In Fig. 5(b), as Bi increases from 10�4 to 100, the

power exponent a changes from 2 to 1, for both cases where

r¼100 and r¼1000.

The predictions of the theoretical model and the numeri-

cal simulations have shown the scaling relation ke / Va
f Lb.

However, it is difficult to observe such a scaling relation

from the experimental data in Fig. 4 directly. To verify the

scaling relation with experimental data, in Fig. 6 we rear-

range the experimental data as a function of Vfe which is an

FIG. 5. The effective thermal conductivity of random nanofiber networks

normalized to the thermal conductivity of nanofiber, ke=k0, from the theoret-

ical model (lines) and numerical simulations (symbols) as a function of

aspect ratio, r(100–1000) and Vf (0.04–0.2). The diameters of the nanofibers

are all assumed to be 3 nm. The chosen parameters in the figure are to show

the transition from BiT 
 1 to BiT � 1. (a) ke/ Lb, where b decreases from

2 to 0 with the increase of r; h; and Vf ; (b) ke / Va
f , where a decreases from

2 to 1 with the increase of r; Bi; and Vf .

FIG. 6. Scaling law of thermal conductivity of nanofiber networks as a func-

tion of volume fraction and nanofiber length. The Vfe is an effective volume

fraction defined as Vfe ¼ ðL�Þb
�
Vf , 0 � b� � 1, L� ¼ L=Lm. The relationship

for CNT, MNW, and CNF networks can be written as: (a) CNT networks,

b� ¼ 1; ke / V2
fe. (2) MNW networks, b� ¼ 0; ke / Vfe. (3) CNF networks,

ke / Va�

fe ; 0 < b� < 1, 1 < a� < 2. Note that a� ¼ a; a�b� ¼ b.
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effective volume fraction normalized by the length of the

nanofiber, i.e., Vfe ¼ ðL�Þb
�
Vf , 0 � b� � 1, L� ¼ L=Lm,

where Lm is the maximum length of the nanofibers in the net-

works (Table II). According to Eq. (16), when BiT 
 1, the

diameter and inter-fiber contact resistance also influence the

thermal conductivity of the networks. Thus, only the CNT

networks with the same size are chosen in Fig. 4. Because of

the weak inter-fiber thermal coupling (large inter-fiber ther-

mal contact resistance), ke shows a quadratic dependence on

Vfe in Fig. 6, which agrees well with the conclusion that ke

/ V2
f when BiT 
 1. The lower inter-fiber thermal contact

resistance in random MNW network makes the ke of MNW

networks to be independent of the MNW length. Thus, in

Fig. 6, ke increases as Vfe ðb� ¼ 0Þ increases. For a CNF net-

work, both the thermal resistance of nanofibers and inter-

fiber contact resistances contribute to the effective thermal

resistance ke, which can be written as ke / Va�
fe , where

1 < a� < 2; 0 < b� < 1.

V. CONCLUSIONS

In summary, we have developed a theoretical framework

to analyze the thermal conductivity of nanofiber networks by

considering the competition between heat conduction

through the nanofibers and the inter-fiber contact resistance,

using the statistical description of the nanofiber network and

the Fourier’s law of heat conduction. The physical and geo-

metric factors such as inter-fiber contact thermal resistance,

intrinsic thermal resistance of nanofibers, volume fraction,

aspect ratio, and orientation distribution are taken into con-

sideration. The theoretical model is validated by comparing

with both numerical simulations and experimental data. The

dependence of thermal conductivity on the volume fraction

and nanofiber length is found: (1) when the network has a

low volume fraction, large aspect ratio, or large inter-fiber

contact resistance, i.e., BiT 
 1, the thermal conductivity is

determined by the inter-fiber contact thermal resistance and

shows a quadratic dependence on both the volume fraction

and nanofiber length (ke / V2
f L2); (2) when the network has

a high volume fraction or small inter-fiber contact resistance,

i.e., BiT � 1, the thermal conductivity of the network is

determined by the intrinsic thermal resistance of the nanofib-

ers and shows linear dependence on the volume fraction

(ke / Vf ); (3) For the intermediate cases, i.e., BiT � 1, the

thermal conductivity of the network is determined by both

the inter-fiber contact resistance and intrinsic thermal resis-

tance of the nanofibers ( ke / Va
f Lb, where 1 < a < 2;

0 < b < 2).This model may prove useful in analyzing the

experimental results and designing nanofiber networks for

both high and low thermal conductivity applications.
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APPENDIX A: THREE DIMENSIONAL (3D) NETWORKS

(1) Orientation distribution function X h;/ð Þ
In this work, we assume /min ¼ 0 and /max ¼ p, accord-

ing to Eq. (1), we have

ðhmax

hmin

ðp

0

X h;/ð Þ sin hd/dh ¼ 1: (A1)

The orientation distribution function for 3D networks is

X h;/ð Þ ¼ 1

p cos hmin � cos hmaxð Þ : (A2)

(2) J h;/ð Þ; K h;/ð Þand average contact number Nch i
J h;/ð Þ is the mean value of sin v h;/; h0;/0

� �
, where v is

the angle between the nanofiber with distribution h0;/0
� �

and the nanofiber with distribution h;/ð Þ. The expres-

sion of J h;/ð Þ is27

J h;/ð Þ ¼
ðhmax

hmin

ðp

0

X h0;/0ð Þ sin v h;/; h0;/0
� �

sin h0d/0dh0;

(A3)

where

sin v h;/; h0;/0
� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos h cos h0 þ sin h sin h0 cos /� /0

� �� �2
q

:

(A4)

Because of the independence of h and /,27 we have

J h;/ð Þ ¼ J 0; 0ð Þ

¼
ðhmax

hmin

ðp

0

X h0;/0ð Þ sin v 0; 0; h0;/0
� �

sin h0d/0dh0

(A5)

and

sin v 0; 0; h0;/0
� �

¼ sin h0: (A6)

We can further write J h;/ð Þ as

J h;/ð Þ ¼
ðhmax

hmin

ðp

0

sin h02

p cos hmin � cos hmaxð Þ d/0dh0

¼
�hmin þ hmax þ

1

2
sin 2hmin �

1

2
sin 2hmax

2 cos hmin � cos hmaxð Þ : (A7)

K h;/ð Þ is the mean result of 1

sin v h;/;h0;/0ð Þ, similar to

J h;/ð Þ;27

K h;/ð Þ ¼
ðhmax

hmin

ðp

0

X h0;/0
� �

sin h0

sin v h;/; h0;/0
� � d/0dh0: (A8)

Because h and / are independent of all system parame-

ters, we can have
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K h;/ð Þ ¼ K 0; 0ð Þ ¼
ðhmax

hmin

ðp

0

X h0;/0
� �

sin h0

sin v 0; 0; h0;/0
� � d/0dh0

¼ hmax � hmin

cos hmin � cos hmax
: (A9)

For the 3D random network, hmax ¼ p and hmin ¼ 0, we

have

J h;/ð Þ ¼ p
4
; K h;/ð Þ ¼ p

2
: (A10)

Substituting the expressions of J h;/ð Þ and K h;/ð Þ into

Eq. (2), we have the expression of average contact num-

ber of the 3D random network

Nch i ¼
4rVf

2þ pVf
: (A11)

(3) Areal number density ns

The average number of fiber cut-ends on the plane whose

normal direction is H;Uð Þ can be calculated by the ratio

of the total number of nanofibers traveling across the

mean area of the fiber cut-ends. According to Ref. 28,

� H;Uð Þ ¼ Vf

A0

X H;Uð Þc H;Uð Þ; (A12)

where Vf and A0 are the volume fraction and cross-

section of nanofibers, respectively. Here, c H;Uð Þ is the

statistical average value of cos vj j and can be calculated

as

c H;Uð Þ ¼
ðhmax

hmin

ðp

0

X h;/ð Þ cos v h;/;H;Uð Þ sin hd/dh

¼
ðhmax

hmin

cos hj j sin h
cos hmin � cos hmax

dh: (A13)

Substituting Eqs. (A2) and (A13) into Eq. (A12), we

have

c H;Uð Þ ¼ 1

2
cos hmin þ cos hmaxj j; (A14)

� H;Uð Þ ¼ Vf

2pA0

cos hmin þ cos hmaxj j
cos hmin � cos hmax

; (A15)

when hmin � hmax � p
2

or p
2
� hmin � hmax, and

c H;Uð Þ ¼ 1

2
cos hmin � cos hmaxð Þ; (A16)

� H;Uð Þ ¼ Vf

2pA0

; (A17)

when hmin � p
2
� hmax.

The number density of the nanofiber penetrating the

cross-section Az H ¼ 0; 0 � U � pð Þ is the summation

of all possible values of � H ¼ 0; 0 � U � pð Þ, for the

3D random network, hmin ¼ 0 and hmax ¼ p, then

ns ¼
ðp

0

� 0;Uð ÞdU ¼ Vf

2A0

: (A18)

(4) Average center to center distance Hh i
For the 3D random network

Hh i ¼
ðL=2

�L=2

ðL=2

�L=2

dx�adx�b

ð ð
za � zbj jX h;/ð ÞX h;/ð ÞdXadXb

¼ 1

4

ðL=2

�L=2

ðL=2

�L=2

dx�adx�b

�
ðp

0

ðp

0

x�a cos ha�x�b cos hb
�� ��d coshbd cosha

¼ 5

27
L ¼ 0:1852L: (A19)

APPENDIX B: TWO DIMENSIONAL (2D) NETWORKS

The results of 2D networks are a little different from

those from 3D networks because of the zero thickness of the

2D system. When / ¼ p
2
, the 3D network changes to 2D net-

work. The results for 2D networks can be obtained by

substituting / ¼ p
2

into the equations in Appendix A.

(1) Orientation distribution function X h;/ð Þ
On the basis of the normalization condition

ðhmax

hmin

X h;
p
2

� 	
dh ¼ 1: (B1)

Thus

X h;
p
2

� 	
¼ 1

hmax � hmin
: (B2)

(2) J h;/ð Þ; K h;/ð Þand average contact number Nch i
Substituting Eqs. (B1) and (B2) into Eqs. (A3), (A4), and

(A8), we have the expressions of J h;/ð Þ and K h;/ð Þ in

2D cases

J h;
p
2

� 	
¼ cos hmin � cos hmax

hmax � hmin
; (B3)

K h;
p
2

� 	
¼

ln tan
hmax

2

� 	� 	
� ln tan

hmin

2

� 	� 	
hmax � hmin

: (B4)

For 2D random networks, there is a singular point in Eq.

(B4) when hmin ¼ 0 and hmax ¼ p, so the limits of Eq.

(B4) are set as27

arc sin
1

r

� 	
� h � p� arc sin

1

r

� 	
: (B5)

From Eq. (B5), we can see that the arc sin 1
r

� �
� 0, when

the aspect ratio of the nanofiber is very large (r � 1).

Thus, we have

J h;
p
2

� 	
¼ 2

p
; K h;

p
2

� 	
¼ 2

p
ln cot

arc sin
1

r

� 	
2

0
@

1
A

0
@

1
A
:

(B6)

The average contact number is

085103-9 Zhao et al. J. Appl. Phys. 123, 085103 (2018)



Nch i ¼
16prVf

p3 þ 16gVf
; g ¼ ln cot arcsin 1=rð Þ=2ð Þ½ 	: (B7)

(3) Areal number density ns

For 2D networks ; Eq. (A13) becomes

c H;
p
2

� 	
¼ Vf

A0

ðhmax

hmin

X h;
p
2

� 	
cos v h;

p
2
;H;

p
2

� 	
dh

¼ Vf

A0

ðhmax

hmin

cos hj j
hmax � hmin

dh: (B8)

When hmin � hmax � p
2

or p
2
� hmin � hmax;

c H;
p
2

� 	
¼ Vf

A0

sin hmin � sin hmaxj j
hmax � hmin

; (B9)

� H;
p
2

� 	
¼ Vf

A0

sin hmin � sin hmaxj j
hmax � hminð Þ2

: (B10)

When hmin � p
2
� hmax;

c H;
p
2

� 	
¼ 1� sin hmin

p
2
� hmin

þ 1� sin hmax

hmax �
p
2

; (B11)

� H;
p
2

� 	
¼ Vf

A0 hmax � hminð Þ
1� sin hmin
p
2
� hmin

þ 1� sin hmax

hmax �
p
2

0
@

1
A:

(B12)

For the 2D random network (hmin ¼ 0 and hmax ¼ p),

the area number density cross cross-section Az H ¼ 0;ð
U ¼ p

2
Þ is

ns ¼ � 0;
p
2

� 	
¼ 4Vf

p2A0

: (B13)

(4) Average center to center distance Hh i
For the 2D random network

Hh i ¼
ðL=2

�L=2

ðL=2

�L=2

dx�adx�b

�
ð ð

za � zbj jX h;/ð ÞX h;/ð ÞdXadXb

¼ 1

p2

ðL=2

�L=2

ðL=2

�L=2

dx�adx�b

�
ðp

0

ðp

0

x�a cos ha�x�b cos hb
�� ��dhbdha

¼ 0:2307L: (B14)
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