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Static three-dimensional topological solitons in
fluid chiral ferromagnets and colloids
Paul J. Ackerman1,2 and Ivan I. Smalyukh1,2,3,4*

Three-dimensional (3D) topological solitons are continuous but topologically nontrivial field configurations localized in 3D
space and embedded in a uniform far-field background, that behave like particles and cannot be transformed to a uniform
state through smooth deformations. Many topologically nontrivial 3D solitonic fields have been proposed. Yet, according to
the Hobart–Derrick theorem, physical systems cannot host them, except for nonlinear theories with higher-order derivatives
such as the Skyrme–Faddeev model. Experimental discovery of such solitons is hindered by the need for spatial imaging of
the 3D fields, which is di�cult in high-energy physics and cosmology. Here we experimentally realize and numerically model
stationary topological solitons in a fluid chiral ferromagnet formed by colloidal dispersions of magnetic nanoplates. Such
solitons have closed-loop preimages—3D regions with a single orientation of the magnetization field. We discuss localized
structures with di�erent linking of preimages quantified by topological Hopf invariants. The chirality is found to help in
overcoming the constraints of the Hobart–Derrick theorem, like in two-dimensional ferromagnetic solitons, dubbed ‘baby
skyrmions’. Our experimental platform may lead to solitonic condensed matter phases and technological applications.

S tarting fromGauss andKelvin, knotted fields with particle-like
properties have long attracted the interest of mathematicians
and physicists alike1,2. Hopf demonstrated that three-

dimensional (3D) space can be smoothly filled with inter-
linked circles or torus knots3, and Heisenberg considered such
configurations in discussing the nature of countable particles in
continuous fields, which could arise as 3D solitons4. However,
according to the Hobart–Derrick theorem5,6, such 3D solitons
cannot be stable in physical systems, with the exception of
nonlinear theories7–9. After decades of theoretical research, 3D
knotted solitons—often called ‘hopfions’—arise in many branches
of science, including hydrodynamics, optics, cosmology, condensed
matter, particle, nuclear and atomic physics1,10–17. However,
their structure, topology and stability are rarely accessible to
experimentation10–12. In this work, we study static 3D solitons in
the magnetization and molecular alignment fields of monodomain
chiral ferromagnetic liquid crystal colloids (CFLCCs) comprising
magnetic nanoplates with spontaneous long-range ferromagnetic
ordering in a nematic fluid host18,19. CFLCCs provide an advantage
of hosting such solitonic structures with dimensions in the
micrometre range, so that they can be probed through direct
3D optical imaging. Reconstructed experimental 3D solitonic
field configurations closely agree with predictions of numerical
modelling based on free energy minimization. By analysing the
3D structure of spatially localized fields, we identify and classify
topological solitons with different Hopf invariants. We discuss the
role of chirality in stabilizing them, as well as how CFLCCs can
serve as model systems in the studies of structure, topology and
dynamics of the 3D solitons. Finally, we discuss how fluid chiral
ferromagnets can serve as a test bed for probing the structure and
stability of topological solitons and how the experimental platform
we have introduced may lead to solitonic condensed matter phases
and technological applications.

Despite being merely theoretical predictions just over a decade
ago20–25, two-dimensional (2D) ferromagnetic solitons (Fig. 1a),
often called ‘baby skyrmions’, attract a great deal of current
fundamental research interest, and form a basis for skyrmionics
and other emerging technologies. Embedded in a uniform far-field
background, the vector field m(r) of such a magnetic skyrmion is
continuous and spatially localized, but topologically nontrivial, so
that it cannot be eliminated through smooth deformations25. Local
orientations ofm(r) of a ferromagnet can be uniquely described by
points on a 2Dunit sphere S2 (inset of Fig. 1a).Mappingm(r) of a 2D
skyrmion (Fig. 1a) fully covers S2, consistent with the topologically
protected nature of this 2D soliton25. To showhowone can forma 3D
topological soliton, the hopfion, we recall the concept of ‘preimage’,
the spatial region of the ferromagnet’s 3D space with a single
m(r)-orientation corresponding to a point on S2 (Fig. 1b)1,2. For
hopfions, preimages of all points on S2 are closed loops, including
the preimage of the north-pole point corresponding to a uniform
far-field, saym0= (0,0,1), which closes into a loop through infinity
(Fig. 1c). Much like in the famous mathematical Hopf fibration1,3,
the 3D space within a hopfion with finite dimensions is smoothly
filled with closed loops of preimages that reside on nested tori
(Fig. 1d). Since the hopfions smoothly embed into the uniform
backgroundm0, their solitonicm(r) in the 3D space is ‘compactified’
to a 3D sphere S3 and the field topology is uniquely characterized
by the S3 → S2 maps and the homotopy group π3(S2) = Z.
The topological Hopf invariant Q of hopfions is interpreted as
a linking number, because preimages of any two distinct points
on S2 are linked exactly Q times (Fig. 1c). To unambiguously
identify topological solitons, we first use three-photon excitation
fluorescence polarizing microscopy (3PEF-PM)10,11 to demonstrate
an excellent agreement between the experimental and computer-
simulated solitonic structures (Fig. 2). We then develop an
equivalent of the mathematical Hopf map (Fig. 1d) that relates the
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Figure 1 | 2D and 3D topological solitons. a, An example of a 2D
topological soliton, called a ‘baby skyrmion’, with continuousm(r) twisting
by π from its centre in all radial directions, as shown using cones. Mapping
ofm(r)-orientations from the skyrmion’s cross-section onto S2 covers it
once. b, A schematic illustrating the ‘preimage’ of a point on S2 (shown
using a green cone) as a 3D spatial region of the ferromagnet with the
corresponding constant orientation ofm(r), which we highlight by a green
isosurface. c, Linking of the hopfion’s circle-like preimages that reside on
nested tori in the sample’s 3D space and correspond to colour-coded points
(cones) on S2. d, An illustration of a Hopf map of closed-loop preimages of
a 3D topological soliton embedded in a uniform far-fieldm0 onto the S2

order parameter space of a ferromagnet.

inter-linked closed-loop preimages with all distinct points on S2
for both experimental and theoretical 3D configurations of m(r)
(Figs 3 and 4).

To be realized in chiral ferromagnets, static hopfions should
emerge as local or global minima of free energy26, which can be
expressed as

F=
∫

dr[A(∇m)2+Dm · (∇×m)] (1)

where coefficients A and D describe the strengths of exchange
energy and the Dzyaloshinskii–Moriya coupling21,25,26. For CFLCCs
with intrinsic helical pitch p and m(r) describing the coupled
molecular alignment and magnetization fields19,27–31

FCFLCC =

∫
dr
{K11

2
(∇ ·m)2+

K22

2
[m · (∇×m)]2

+
K33

2
[m× (∇×m)]2+q0K22m · (∇×m)

}
(2)

which reduces to equation (1) within the K=K11=K22=K33 one-
constant approximation for A= K/2, D= Kq0, and q0 = 2π/p.
We note that the response of the colloidal fluid ferromagnets to
strong external stimuli may require considering the finite strength
of coupling between the molecular alignment and magnetization
fields29,31, but onlyweak or no external stimuli are used in the current
work, so that m(r) describes the collinear orientation patterns of
both of these fields. Numerical minimization (see Methods) of both
F and FCFLCC yields minima corresponding to the 3D topological
solitons (Figs 3 and 4). Most of the numerical results presented

in this work are based on using equation (2) and the actual
material parameters of our CFLCCs presented in Supplementary
Table 1, although we find that all studied 3D solitons can be also
stabilized when applying the one-elastic-constant approximation
K= (K11+K22+K33)/3 and using equation (1). To construct pre-
images within such 3D solitons, we calculate a magnitude of the
difference between a unit vector defining a target point on S2 and the
solitonic m(r). An isosurface of a small value in the ensuing scalar
field then encloses a 3D volume of the closed-loop preimage within
the CFLCC (Figs 3 and 4).

We use CFLCCs formed by long-range ordered colloidal
dispersions of ferromagnetic nanoplates in a chiral nematic host
(see Methods)19, in which the unit vector field m(r) describes a
spatial pattern of orientation of magnetization M and individual
magneticmoments of nanoplates that follow the average orientation
direction of rod-like nematic molecules. The confining surfaces
of CFLCC samples are treated for strong perpendicular boundary
conditions to alignm0= (0,0,1). When sample thickness d≈p, the
solitons occur spontaneously, albeit their appearance can be guided
by laser tweezers (Supplementary Fig. 1). 3D imaging of preimages
within the solitons is based on polarized excitation through three-
photon absorption and the ensuing orientation-dependent self-
fluorescence of rod-like nematic molecules (Fig. 2) of the CFLCC
that follow m(r), allowing us to simultaneously reconstruct pairs
of preimages corresponding to the orientations m and −m (see
Methods and Figs 3 and 4). To assign the individual preimages to
the corresponding m-orientations, we use the facile polar response
of CFLCCs (Fig. 3c and Supplementary Figs 1–4). Polarizing optical
micrographs obtained with the sample between crossed polarizers
and with m0 along the optical axis of a microscope readily reveal
CFLCC solitons and their polar response because the localized
twisted m(r) departs from m0 and alters the polarization of light,
revealing the hopfion as a bright doughnut-like feature (Fig. 3c).
A magnetic field B applied perpendicular to the sample lateral
plane and anti-parallel to m0 forces the soliton to grow, with outer
diameter increasing and the inner region collapsing. For B parallel
tom0, the soliton’s outer diameter decreases and the inner diameter
increases (Fig. 3c). Since the coupling of B andM is described by a
free energy termFmagnetic=−

∫
dr(B ·M) added to equations (1) and

(2), this observation allows removal of them versus−m ambiguity
and the determination ofm0. Experimental preimages closelymatch
their theoretical counterparts (Figs 3 and 4) and have shapes of
closed loops that all wind around each other the same integer
number of times. The topological Hopf invariant of these solitons
is the linking number Q=6C/2 of preimages of any two distinct
points on the target S2, where the sign of crossings C=±1 depends
on the circulations of the preimages2. By choosing the circulation
of the preimage of the north pole on S2 to be alongm0 through the
hopfion’s centre, we consistently define the circulations of all other
preimages while smoothly exploring S2. Examples of the circulations
and crossings used to determine the Hopf invariant are shown in
the bottom-left inset of Fig. 3a. The linking number determined for
all pairs of preimages within the same soliton is conserved, yielding
Q (Fig. 3 and Supplementary Movie 1). This linking cannot change
without a breakdown of the m(r) continuum through melting of
the CFLCC or generation of singular defects. Thus, any changes of
Q require overcoming free energy barriers which, along with the
medium’s tendency to twist m(r), help to stabilize such topological
solitons with Q 6=0.

Interestingly, we find Q = −1 and Q = 0 3D solitons in
monodomain m0 = (0,0,1) in the very same CFLCC sample as
their Q= 1 counterparts (Fig. 4 and Supplementary Figs 1,5,6 and
SupplementaryMovies 2,3). Theoreticalm(r)-configurationsmatch
experiments (Figs 3 and 4) and reveal that the Q= 0 soliton has
closed-loop preimages for a majority of points on S2, except for
the vicinity of its south pole, differing from the Q=±1 hopfions
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Figure 2 | 3D imaging of topological solitons using 3PEF-PM. a–i, Cross-sectional 3PEF-PM images of 3D solitons with Q=0 (a–c), Q= 1 (d–f), and
Q=−1 (g–i). For each panel, the images on the left were obtained experimentally and the images on the right were computer-simulated. For each panel,
the top images are cross-sections orthogonal tom0 passing through the midplanes of the solitonic structures, whereas the bottom images are vertical
cross-sections of the samples parallel tom0 and passing through the central axes of the 3D solitons. The polarization states of 3PEF-PM excitation light
were circular for images shown in (c,f,i) and linear for images in (a,b,d,e,g,h), as marked in the top-right corners of the experimental images.

with such preimages for the entire S2 (compare Supplementary
Movies 1–3). In a magnetic field B ‖m0, which tends to align
m(r) in the direction of the far-field background18,19,29, the Q=±1
solitons persist up toB∼3mT, then disappear abruptly in a complex
kinetic process involving singular defects. TheQ=0 solitons shrink
and disappear through unwinding of m(r) at lower fields <2mT,
consistent with being homeomorphic to a uniform state. This
observation suggests that although nonzeroQ is not required for the
stability of 3D solitons, the topology of Q 6= 0 solitons enhances it.
Both the CFLCC and a Hopf link of any two preimages of a hopfion
are chiral, so that taking a mirror image negates the linking number
and Q, while also transforming a left-handed CFLCC into its right-
handed counterpart, as we tested using chiral additives to induce
left and right handedness (for consistency, we present all results for
a left-handed CFLCC).

To further understand the stability of 3D solitons, we first recall
that Hobart and Derrick demonstrated the absence of nontrivial
static solitons with finite energy for Hamiltonians with only the
first term in equation (1)5,6. Indeed, consistent with the Hobart–
Derrick theorem5,6, we numerically find no minima of free energy
without including the Dzyaloshinskii–Moriya term in equations
(1) and (2) (that is, for p=∞). Experimentally, no 3D solitons
could be found in non-chiral counterparts of CFLCCs at otherwise
identical conditions. Thus, the soliton stability in confined CFLCCs
benefits from embedding energetically favourable twist into the
uniform unwound background of m0. At d/p≈1 (Fig. 5), the soli-
tons spontaneously occur to locally relieve frustration due to the
incompatibility of the perpendicular surface boundary conditions
and the tendency of CFLCCs to twist m(r). For experimental pa-
rameters, theHamiltonians given by equations (1) and (2) both yield

3D solitons with the same topology, albeit with minor structural
differences and for slightly different d/p (Supplementary Fig. 7).
A quantitative analysis of twist handedness28H=−n · (∇×n) not
only reveals how chirality tends to stabilize the twisted solitons with
finite dimensions comparable to p, but also the unexpected reversal
ofH (Fig. 5a and Supplementary Figs 8,9). For example, within the
Q= 1 hopfion, in addition to the large localized regions of twist
matching the intrinsic twist handedness of the CFLCC, we also
find small regions of opposite H (Fig. 5a) with free energy density
larger than that of an unwound state (Fig. 5b). Theoretical ansatzs
of hopfions used in many branches of physics exhibit reversal of
H as well (Supplementary Fig. 10). Differing from the twisted 2D
skyrmions (Fig. 1a), hopfions appear to require reversal of H to
match their internal structure with the uniform m0, much like 3D
packing of double twist tubes in cholesteric blue phases requires
singular line defects to fill the 3D space27.

The emergence of 3D solitons within the minimization of
both equations (1) and (2) (Supplementary Fig. 7) at slightly
different d/p shows that CFLCC properties can be pre-designed
to enhance the hopfion stability. Although the volume fraction
of ferromagnetic nanoplates in the CFLCCs studied here is low,
and demagnetizing field effects are negligible, such effects may
be important in concentrated dispersions29, potentially further
stabilizing topological solitons. Many-body elastic interactions
between individual hopfions in the presence of a lateral confinement
lead to hexagonal arrays embedded in a uniform m0 (Fig. 5c).
The 2D hexagonal close packing of the doughnut-like north-
pole preimages within the corresponding computer-simulated array
(Fig. 5d) resembles that of hard-particle colloidal crystals, consistent
with the particle-like nature of the topological solitons. Similar to
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Figure 3 | Topological solitons with Q= 1. a,b, Computer-simulated and experimental preimages, respectively, of two diametrically opposite points on S2

marked by cones in the top-right inset of a. The bottom-right inset in a shows signs of the crossings and circulations that determine linking of preimages.
The inset in b is a polarizing optical micrograph of the hopfion. c, Polarizing optical micrographs showing the polar response of CFLCC solitons, which
expand (middle micrograph) and shrink (right) as compared to their zero-field equilibrium size (left) when the magnetic field is opposite or alongm0,
respectively. d,e, Cross-sections of the hopfion structure taken in the plane orthogonal tom0 (d) and in the vertical plane parallel tom0 (e), with the vector
field shown using cones coloured according to the corresponding S2 points. f, Linking of preimages of the two representative points on S2. g, Linking of
preimages of five representative points on S2, including preimages of the south and north poles (the latter corresponds tom0 and is shown bisected for
clarity). h, Preimages of points on S2 for constant polar but varying azimuthalm(r)-orientations that form a torus. i, Experimental preimages of north- and
south-pole points on S2 depicted using cones in the top-right inset, with the corresponding computer-simulated preimages shown in the bottom-left inset.
j, Experimental preimages of 40 points on S2 for di�erent azimuthal orientations of in-planem(r) depicted using cones in the top-right inset; the
bottom-left inset shows the corresponding 40 computer-simulated preimages tiling into a torus surface.

individual topological solitons (Fig. 3c), their arrays also exhibit
a polar response to external fields (Fig. 5e,f) and can be stable
even when the initially uniform background around the hopfions
is switched (Fig. 5f). Such switching of CFLCCs with arrays of

3D solitons may be of interest for photonics applications. Self-
assembly of hopfions may result in 2D and 3D solitonic condensed
matter phases27, analogues of the so-called ‘A-phase’ formed by 2D
skyrmions20–25, which calls for a detailed study of the phase diagrams
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Figure 4 | Comparison of Q=− 1 and Q= 0 solitons. a,b, Experimental and computer-simulated preimages, respectively, of a Q=−1 topological soliton
for two diametrically opposite points on S2 marked by cones in the bottom-right inset of a. The top-right inset of a shows a polarizing optical micrograph
of a Q=−1 soliton. The bottom-right inset in b shows signs of the crossings and circulations that determine the linking of preimages. c, A vertical
cross-section of the computer-simulated axially symmetricm(r)-structure of the Q=−1 soliton shown along with the two 3D linked isosurfaces
corresponding to the two representative points on S2 (inset). d, Experimental preimages of north- and south-pole points on S2 shown using cones in the
top-right inset for the Q=−1 soliton, with the corresponding computer-simulated preimages shown in the bottom-left inset. e, Experimental preimages
of 40 points on S2 for di�erent azimuthal orientations of in-planem(r) depicted using cones in the top-right inset; the bottom-left inset shows the
corresponding 40 computer-simulated preimages tiling into a torus surface for such a Q=−1 soliton. f,g, Experimental and computer-simulated
preimages, respectively, of a Q=0 soliton for two diametrically opposite points on S2 (bottom-right inset). The top-right inset of f shows a polarizing
optical micrograph of a Q=0 soliton. The bottom-right inset in g shows signs of the crossings and circulations that reveal no linking of preimages.
h, A vertical cross-section of the computer-simulated axially symmetricm(r) of the Q=0 soliton shown along with the two 3D unlinked closed-loop
isosurfaces corresponding to the two representative points on S2 (inset). Them(r) in both c and h are shown using cones coloured according to the
corresponding points on S2. i, Experimental preimages of the points on S2 shown using cones in the top-right inset, with the corresponding
computer-simulated preimages of such a Q=0 soliton shown in the bottom-left inset; note that there are no south-pole preimages in either the
experimental or computer-simulatedm(r) of this soliton, while the corresponding north-pole preimages closely match each other. j, Experimental
preimages of 40 points on S2 for di�erent azimuthal orientations of in-planem(r) depicted using cones in the top-right inset; the bottom-left inset shows
the corresponding 40 computer-simulated preimages for such a Q=0 soliton tiling into a torus surface.

430

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATUREMATERIALS | VOL 16 | APRIL 2017 | www.nature.com/naturematerials

http://dx.doi.org/10.1038/nmat4826
www.nature.com/naturematerials


NATUREMATERIALS DOI: 10.1038/NMAT4826 ARTICLES

m0 m0

m0

a

m0

B

60 µm

B

S2

−1.0
1

2

3

4

5

6

7

−0.5

0.0

0.5

1.0
f/f0

b

c

e f

d

/q
0 

Figure 5 | Twist handedness, free energy density self-assembly and facile switching of hexagonal arrays for Q= 1 topological solitons. a, 3D isosurfaces
depicting twist handednessH within the soliton, with the colour scale on the right. b, Isosurfaces of free energy density f within the soliton normalized by
that of an unwound CFLCC (f0=2π2K22/p2), with the colour scale on the right. The free energy density was calculated using equation (2) (without
performing integration over volume FCFLCC=

∫
fdr) for an energy-minimizing soliton structure at d/p= 1.2 and parameters of 5CB-based CFLCC

(Supplementary Table 1). The free energy of the array of hopfions is≈2% lower than that of the uniform unwound state. c, Polarizing optical micrograph of
a 2D array of Q= 1 solitons. d, A computer-simulated array of Q= 1 hopfions shown using three representative preimages within a hexagonal array with
lattice parameters corresponding to the experimental counterpart shown in c. e,f, Polarizing optical micrographs of a 2D array of Q= 1 solitons shown in c,
but at fields≈2mT applied in the directions marked in the top-left of corresponding images.

and stability of 2D and 3D lattices of hopfions with and without
additional defects, both with applied fields and without them.

The discovery of topological solitons in CFLCCs will impinge on
their realization in other systems with chiral interactions, including
chiral liquid crystals, non-centrosymmetric materials with spin–
orbit interactions, non-centrosymmetric ferroelectrics, and gauge
field theories with Chern–Simons terms, well beyond condensed
matter20. Although all experimental and numerical studies reported
above were done for CFLCCs, interestingly, minimization of the free
energy given by equation (1) predicts the existence of 3D topological
solitons in typical solid non-centrosymmetric ferromagnets with
values of the exchange energy and Dzyaloshinskii–Moriya coupling
coefficients A and D provided in Supplementary Table 1 and
for thin ferromagnetic films of thickness d ≈ 4πA/D. Induced
anisotropy and other effects specific to different solid ferromagnets
can enhance or reduce the hopfion stability and will need to be
accounted for in any future detailed numerical studies of 3D solitons
in solid nanolayers. Also, our modelling based on minimization of
the functional given by equation (1) assumes strong perpendicular
boundary conditions that define the orientation of m0, similar to
the case of studied CFLCC samples, albeit achieving this for solid
ferromagnets may require either localizing the induced anisotropy
to surfaces of nanolayers of non-centrosymmetric magnets or using

other strategies. Furthermore, all hopfions discussed here, as well
as several other 3D solitons, also emerge in chiral liquid crystals,
and will be reported elsewhere. Since the two diametrically opposite
points on the S2 order parameter space of ferromagnets correspond
to a single point on the order parameter space (RP2) of nonpolar
nematic liquid crystals, with a preimage in the form of two linked
loops, a direct comparison of nematic and ferromagnetic hopfions
will provide an experimental platform for probing the role of field
polarity in the topology of knotted solitons.

To conclude, we experimentally realized and numerically
modelled 3D solitons with different Hopf invariants in fluid chiral
ferromagnets, demonstrating nonsingular localized structures with
unlinked and differently linked preimages. We showed that the
stability of these static solitons can be attributed to the energetically
favourable twist that they introduce into a frustrated confined
CFLCC system for Q= 0 and, additionally, to the energy barriers
to change the pre-existing preimage linking required to alter the
topology of Q 6= 0 fields. CFLCCs can serve as a test bed for
experimentally probing the topology and stability of hopfions,
impacting fields as diverse as particle physics and cosmology. Since
only elementary Q=±1 topological solitons have been found, our
study poses a challenge of realizing hopfions with large values of the
Hopf invariant, and also in solid-state chiral ferromagnets, where
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they can give rise to 3D solitonic analogues of skyrmionics24,25.
CFLCCs can also allow probing of the interplay between the
nonsingular π3(S2)=Z solitons realized in the present study and
various structures with singular defects, such as the π2(S2)= Z
point defects that we studied recently19. Finally, the complex 3D
patterns of orientations of anisotropic platelet-shaped colloidal
nanoparticles within the topological solitons studied in this work
could potentially be extended to plasmonic, semiconductor, and
other kinds of nanoparticles, and thus could provide a new means
of forming composite materials with unusual physical behaviour
and properties.

Methods
Methods, including statements of data availability and any
associated accession codes and references, are available in the
online version of this paper.
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Methods
Preparation of CFLCCs with topological solitons. Nematic pentylcyanobiphenyl
(5CB) or ZLI-2806 (both from EM Chemicals) was doped with barium hexaferrite
ferromagnetic nanoplates with thickness 10 nm, diameter 195 nm, and magnetic
moments∼2.2× 10−17 Am2 perpendicular to their large-area faces18,19. Strong
perpendicular boundary conditions for the nematic molecules at nanoplate
surfaces19 ensure co-alignment of their orderly orientations and the dipole
moments of particles alongm(r). Left-handed chiral dopant cholesteryl
pelargonate (Sigma-Aldrich) or right-handed CB-15 (EM Chemicals) was added to
the dispersion at a weight fraction Cdopant=1/(hHTPp) to define p of the ensuing
CFLCC, where hHTP is the separately measured helical twisting power
(Supplementary Table 2)19. A mixture of 5CB (69%) with 12% of RM-82 and 18%
of RM-257 reactive diacrylate nematics and 1% Irgacure 184 photoinitiator (CIBA
Specialty Chemicals)30 was doped with ferromagnetic nanoplates and the chiral
agent to obtain partially polymerizable CFLCCs with desired value of p. Glass
substrates were treated with polyimide SE1211 (Nissan Chemicals) by spin coating
at 2,700 r.p.m. for 30 s and then baking (5min at 90 ◦C followed by 1 h at 180 ◦C) to
set strong perpendicular boundary conditions form(r). CFLCC cells with d in the
range 7–75 µm were produced using glass spacers of corresponding diameter. The
hopfions occurred spontaneously after quenching the CFLCC from an isotropic
phase or were generated with optical tweezers by utilizing an ytterbium-doped fibre
laser (YLR-10-1064, IPG Photonics, operating at 1,064 nm) and a phase-only
spatial light modulator (P512-1064, Boulder Nonlinear Systems)30. We
laser-generated 3D solitons in a uniform unwound backgroundm0 by moving the
laser focus of the holographic optical trap along a circular trajectory within the cell
midplane. By limiting the laser power to 50mW, and controlling the winding
direction and depth of the circular laser beam motion, we pre-selected generation
of solitons with Q=0 and Q=±1. The 3D solitons could also be generated more
randomly upon local laser-induced heating of the CFLCC to an isotropic phase and
subsequent temperature quenching.

3D nonlinear optical imaging of preimages. Imaging ofm(r) within solitons was
performed using a 3PEF-PM set-up built around a BX-81 inverted microscope
(Olympus)30. Self-fluorescence from nematic molecules (Fig. 2) was detected in the
range 400–450 nm and excited through three-photon absorption using a
Ti-Sapphire oscillator (Chameleon Ultra II, Coherent) operating at 870 nm with
140 fs pulses at a repetition rate of 80MHz. The 3PEF-PM signal was epi-detected
with a photomultiplier tube (H5784-20, Hamamatsu). Beam defocusing and
polarization changes due to birefringence of the CFLCC were mitigated through an
order-of-magnitude reduction of the effective birefringence upon partial
polymerization of the nematic host and replacement of the unpolymerized
component of the system with immersion oil30. We used a 50× dry objective with
numerical aperture NA= 0.5 and an oil-immersion 100× objective with
NA= 1.4. We scanned the excitation beam through the sample volume and
recorded the fluorescence signal as a function of coordinates. The linear
polarization of the beam was controlled using a half-wave retardation plate to
obtain multiple images with the 3PEF-PM intensity scaling as∝cos6 β (we used no
polarizers in the detection channel), where β is the angle betweenm(r) and the
controlled excitation beam polarization. To eliminate the ambiguity between two
oppositem(r) tilts, additional cross-sectional images were obtained at orientations
of the cell normal tilted by±2◦ with respect to the microscope axis for linear
polarizations of excitation laser light parallel or perpendicular to the plane of a
corresponding 3PEF-PM vertical cross-section. Them(r) tilt ambiguity was
eliminated based on∝cos6 β scaling and the spatial changes of the 3PEF-PM
signal corresponding to the±2◦ tilts. To further narrow the angular sector of
m-orientations corresponding to preimages of points on S2 with target azimuthal
angles φ, we obtained 3D images with azimuthal orientation of the linear
polarization of excitation beam at ϕ and ϕ±3◦. These 3PEF-PM images were first
smoothed and then used in a differential analysis to improve orientational
resolution to better than±3◦. Polarized 3D imaging yields two preimages at once,
due to the nonpolar nature of ordering of nematic molecules within the CFLCC,
corresponding to diametrically opposite points on S2. The preimages were then
assigned to orientationsm or−m based on the polar magnetic response (Fig. 3c)
and continuity ofm(r) within the 3D solitons.

Numerical modelling of solitons and preimages. Theoreticalm(r)-structures
were obtained through numerical minimization of equations (1) and (2) using
experimental material parameters (Supplementary Table 1). The numerical
relaxation method utilized large 3D grids19 and both analytical ansatzs32
(Supplementary Fig. 10) and randomm(r) mimicking a disordered phase to define

the initial conditions. The structures corresponding to free energy minima were
used to generate preimages of points on S2. The angular sectors of
m(r)-orientations corresponding to preimages derived from the theoretical
free-energy-minimizing solitons were chosen to be comparable to their
counterparts in preimages reconstructed from experiments.

Computer simulations of the minimum-energy (including local and global
minima)m(r)-configurations were performed using a relaxation routine. We
assume that the coupling between the nematic director n (average molecular
orientation direction) and the magnetization fieldM(r) described by a unit vector
m(r) and given by a free energy term Fcoupl=−1/2

∫
γµ0(n ·m)2dV is infinitely

strong, which is appropriate because of the large coupling coefficient γ 19,31. We also
assume that the surface anchoring free energy term Fsurf=−1/2

∫
W (m ·ns)

2ds
ensures strong homeotropic boundary conditions and alignment ofm(r) at the
confining surfaces along the surface normal ns because of the large surface
anchoring energy coefficientW , so that the surface free energy does not need to be
included in the free energy minimization problem10,19,33. Disregarding higher-order
diamagnetic coupling terms, we supplement the free energy of the CFLCC system
given by equations (1) and (2) of the main text with the magnetic field coupling
term19 in the form Fmagnetic=−

∫
dr(B ·M) and minimize it to obtain different 3D

solitonic structures ofm(r)19. In numerical modelling, the Frank elastic constants
K11, K22 and K33, which describe the energetic cost of splay, twist and bend
deformations, respectively, are based on literature data for the two nematic hosts
used (Supplementary Table 1). The magnetizationM is dependent on the
concentration of nanoplates and is adjusted in the calculations, along with the cell
thickness to pitch ratio d/p, to match experimental conditions. Our numerical
relaxation routine obtains spatial derivatives ofm(r) on a computational grid using
a second-order finite difference scheme. Typically, periodic boundaries are
implemented along lateral directions, while fixed homeotropic boundary
conditions are applied at substrate surfaces to define the far-fieldm0= (0,0,1). In
some of the simulations, the vertical conditionsm0= (0,0,1) were also enforced at
the lateral edges of the 3D simulation box (Supplementary Fig. 3c). At each time
step1t , the functional derivatives given by the Lagrange equation δF/δmi=0 and
the resulting elementary displacement δmi=−1t(δF)/(δmi) were computed,
where the subscript i denotes orientations along the x , y , and z axes10,19,33. The
maximum stable time step used in the relaxation routine is determined as
1t= (min(hi)

2)/(2max(K )), where min(hi) is the smallest computational grid
spacing and max(K ) is the largest (or average in the case of the one-constant
approximation) elastic constant. The steady-state stopping condition is determined
by monitoring the change with respect to time of the spatially averaged functional
derivative. When this value asymptotically approaches zero, the system is assumed
to be in equilibrium and relaxation is complete. Topologically, the same structures
were obtained when starting minimization from initial conditions in the form of a
randomm(r), and also from the analytical ansatz of the hopfion field
configurations (Supplementary Fig. 10) taken from literature32.

The 3D spatial discretization is performed on fairly large grids, such as the
112× 112× 32 grid, which is important to ensure that the minimum-energym(r)
is indeed a localized structure in equilibrium with the surrounding untwisted
CFLCC and that the periodic boundary conditions do not introduce artefacts
influencing its stability. Using the grid spacing of hx=hy=hz=1µm and 32 grid
points across the cell implies an effective sample thickness d=32µm, comparable
to that used in experiments. To speed up the relaxation of field configurations to
local or global energy minima, the minimization was also performed with a
relaxation method for a 2D grid of equally spaced points that was rotated to obtain
a volume of equally spaced voxels on a 3D grid. Grid spacing in this case was equal
in all directions and discretized into 192× 192× 64 points in the x , y and z
directions, respectively. The free-energy-minimizing computer-simulated field
configurations obtained using different grids and discretization approaches were
analysed and compared to each other and to experiments with the generation of 3D
isosurfaces, showing that the structures we obtain are independent of the type of
grid discretization.

Data availability. All relevant data are available from the authors.
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