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Topologically nontrivial field excitations, including solitonic, linked,
and knotted structures, play important roles in physical systems
ranging from classical fluids and liquid crystals, to electromagne-
tism, classic, and quantum field theories. These excitations can
appear spontaneously during symmetry-breaking phase transitions.
For example, in cosmological theories, cosmic strings may have
formed knotted configurations influencing the Early Universe de-
velopment, whereas in liquid crystals transient tangled defect lines
were observed during isotropic–nematic transitions, eventually
relaxing to defect-free states. Knotted and solitonic fields and
defects were also obtained using optical manipulation, complex-
shaped colloids, and frustrated cholesterics. Here we use confine-
ment of nematic liquid crystal by closed surfaces with varied genus
and perpendicular boundary conditions for a robust control of ap-
pearance and stability of such field excitations. Theoretical model-
ing and experiments reveal structure of defect lines as a function of
the surface topology and material and geometric parameters, estab-
lishing a robust means of controlling solitonic, knotted, linked, and
other field excitations.

liquid crystals | defects | topology | knotted fields |
polymer-dispersed liquid crystals

Since the origins of the mathematical knot theory, development
of which was prompted by early models of elementary building

blocks of matter (1), knotted fields and structures arise in proteins
(2), light (3–5), fluids (6–8), liquid crystals (LCs) (9–14), classic
and quantum field theories (15, 16), topological insulators (17),
and other physical systems (18). Such topologically nontrivial field
configurations can be predicted from solutions of nonlinear field
equations, but are rarely accessible to direct experimental visual-
ization. On the other hand, LCs offer complexity in degrees
of freedom and symmetries that allow for probing topologically
analogous phenomena (19, 20) on completely different scales,
such as kinetics of cosmic strings in the Early Universe (21). In this
work, we develop polymer-dispersed nematic drops with nontrivial
surface topology and perpendicular boundary conditions that
prompt stable configurations of defect lines in forms of unknots,
knots, links, 2D skyrmions, and other singular and solitonic
structures that can be selected by controlling geometric and ma-
terial parameters. This enables a robust control of defects in ne-
matic drops of nonzero genus by shaping topology and varying
geometric parameters of confining surfaces as well through the
use of laser-guided temperature quenching of isotropic–nematic
transition within the drops.
Our nematic drops in a polymer matrix have handlebody

shapes with genus g varying from 1 to 5 and the corresponding
Euler characteristics χ = 2(1 − g) from 0 to −8 (22). The closed
confining surfaces impose strong homeotropic (normal) an-
choring on the nematic director n(r) describing average local
orientation of LC molecules, so that n(r) aligns along the inner
normal to a bounding surface S. The surface topology and these
boundary conditions dictate bulk defects of net topological
hedgehog charge m = ±(1 − g) in the nematic domain, which,

to assure the topological charge conservation, compensate the
hedgehog charge of the field on the inner closed confining
surface of the nematic drop given by the Gauss–Bonnet and
Poincaré–Hopf theorems (23). One would therefore simply ex-
pect that the nematic interior of a single torus is topologically
uncharged, g = 2 drop hosts a defect of m = ±1 topological
charge, and so on, where the sign of m depends on the choice of
vector field direction when decorating n(r) to determine the
charge (24). However, the mathematical theorems prescribe no
particular ways in which the topological constraints should be
satisfied. Our study shows that this “flexibility” of satisfying to-
pological constraints, combined with the nematic LCs nature and
ability of hosting both half-integer line defects and point defects,
leads to a large number of topologically nontrivial configurations
that can be selected as stable and metastable structures by con-
trolling material and geometric parameters. Importantly, some of
these field and defect configurations, such as linked and knotted
loops of half-integer defect lines, are topologically different from
what topological theorems predict for vector fields under such
confinement. Moreover, a combination of tuning topology (genus)
and geometric parameters of confining surfaces as well as laser-
guided spatially resolved isotropic–nematic temperature quench
allow us to generate the precise desired defect and field config-
urations out of a host of topology-satisfying stable and meta-
stable states.

Significance

There are few theoretical predictions of knotted, linked, soli-
tonic, and other topologically nontrivial field configurations,
which can be tested by experiments, due to the lack of ex-
perimentally accessible systems and techniques. This work
presents an experimental realization and thorough theoretical
analysis of interplay between topologies of the nematic field
and closed confining surfaces with systematically varied genus.
Handlebody-shaped nematic drops with normal boundary
conditions reveal a large diversity of controlled field config-
urations, including ones with linked and knotted half-integer
defect lines that are topologically distinct from predictions of
mathematical theorems and that can exist only in nonpolar
media. Our model system may become a testbed for probing
a scale-invariant interplay of topologies of confining surfaces,
fields, and defects.
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Results
To deduce the structure of fields and defects, we combine nu-
merical modeling based on minimization of the Landau–de
Gennes free energy (25) with experimental 3D nonlinear optical
imaging and holographic optical control (26) of n(r) and in-
dividual defects in the corresponding experimental systems. We
investigate the structure and transformation of defects as a func-
tion of genus, temperature, material, and geometric parameters.
The most common observed defects are loops of nematic line
defects, dubbed “disclinations,” which are characterized by a
winding number s counting the number of times n(r) rotates by 2π
as one circumnavigates the defect once in a plane perpendicular to
the line. For g = 1 surfaces, we observe a single disclination loop
with s = 1, two s = 1/2 disclination loops, or nonsingular solitonic
“escaped” director configurations containing no defects (Fig. 1).
As the system is quenched from isotropic to nematic phase, we
observe especially large structural richness of configurations with
disclination rings, including links and knots. Drops of higher genus
stabilize even larger combinations of multiple s = 1/2 loops and
escaped configurations supplemented with additional topological
point and disclination loop defects. Whereas constraints imposed
by topological theorems are always met and hedgehog charges
always add to m = ±χ/2, the particular defects that occur are
highly dependent on geometric and material parameters, as well as
on the laser-controlled temperature quench, allowing for a precise
selection and control of desired field configurations.

Fig. 1 summarizes experiments and numerical modeling of
director configurations in g = 1 drops with rounded-square cross-
sections. They are characterized by the torus major and minor
radii R and r, respectively, and by the exponent α≥ 2 determining
the tube’s cross-sectional rounded-square shape, with larger α
giving larger deviations from a circle (SI Text). Fig. 1 A and B
shows defect structures stable at small to intermediate values of r
(Table 1). The stability limit rp of the double rings depends on
temperature and R, and is of the order of rp ∼ 100ξ, where ξ ∼ 15
nm is the nematic correlation length (Table 1 and SI Text). Both
the single s = 1 (Fig. 1A) and the pair of s = 1/2 disclination rings
(Fig. 1B) carry topological charges m = 0. Such disclination rings
are unstable in a nematic bulk, which is consistent with the to-
pology of the order parameter manifold and free-energy mini-
mization (27). However, they are energetically stabilized by the
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Fig. 1. (A and B) Configurations with (A) a single s = 1 and (B) two s = 1/2 disclination rings, having isosurfaces of (A) Q= 0:2 and (B) Q= 0:25 shown in blue;
R= 2:5  μm,  r = 0:1R,  α= 10: (Insets) n(r) around the defects. (C) Hopf link and (D) trefoil T(3; 2) torus knot, known also as 31 knot in the Alexander-Briggs
notation, of half-integer disclination loops, with blue isosurfaces of Q=0:3;   R= 1  μm,  r = 0:2  μm,  α= 6. (E) n(r) in a plane of a torus with an escaped n(r) for
R= 10 μm,  r = 0:1R,  α=10. (F) Landau–de Gennes free energy, Eq. 1 (in excess over the free energy of the uniform nematic) as a function of r at R= 10r for the
two structures. (G–J) Computer-simulated (G and I) POM and (H and J) 3PEF-PM textures of drops with (G and H) two defect rings and (I and J) escaped n(r).
Linear polarizations of 3PEF-PM probing light (marked by red, blue, green, and pink double arrows) of four images used to obtain the superimposed textures
shown in (H and J). (K–M) Optical micrographs obtained between crossed polarizer P and analyzer A, without (K) and with (L) an additional 530-nm phase
retardation plate (blue double arrow depicts its low axis) and (M) without these optical elements. (N) Experimental 3PEF-PM texture obtained by overlaying
images with polarizations of probing light at 0°(red), 45°(green), 90°(blue), and 135°(pink) and corresponding to H.

Table 1. Ground-state field and defect configurations and their
corresponding r range of stability for genus g = 1 droplets

Configuration Approximate r − range of stability

Single s = +1 ring r ∼ ξ
r ∼ 10ξ at τ = τNI

Two s = +1/2 rings ξ K r K 100ξ
Funknot < Flink < Fknot

Escaped director field r J 100ξ
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surface confinement and perpendicular boundary conditions in
g = 1 drops. The configuration with a single s = 1 ring is relatively
exotic and observed mainly only at very strong confinement with
r∼ ξ. The threshold value of r at which the s = 1 ring loses its
stability grows with temperature, and for temperatures very close
to the nematic–isotropic phase coexistence reaches values of the
order of ∼10ξ (Table 1). In practically realizable experimental
systems, although bringing the system close to the isotropic–
nematic-phase transition (while still in a nematic phase) in-
creases stability of s = 1 lines, such structures still can be re-
alized only for drops with r in the submicrometer range and
cannot be probed in detail due to limited resolution of optical
imaging techniques. For ξK rK 100ξ, room-temperature field
configurations with double rings of s = 1/2 disclinations appear
(Fig. 1B). Because each of the rings has a winding number of the
same sign, they mutually repel (18, 19) and tend to localize in the
diagonal corners of rounded-square cross-section, maximizing
their separation (Fig. 1B). This ground-state structure for drops
with submicrometer- and micrometer-sized ring cross-sections
can be realized along with many metastable configurations, in-
cluding the ones with linked and knotted disclinations. As an
example, Fig. 1C shows a Hopf link of two s = 1/2 defect loops
and Fig. 1D depicts a trefoil knot of a single half-integer defect
line. Two more examples out of a large number of confinement-
stabilized structures are shown in Fig. 2, representing pentafoil
and septafoil torus knots of the half-integer disclinations. It is
interesting that the nonpolar nature of n(r) allows for so many
topologically interesting field configurations to occur while sat-
isfying boundary conditions and topological constrains that the
net hedgehog charge m of all defects is zero. Moreover, for
larger drops, a defect-free escaped director configuration
becomes energetically favorable (Fig. 1 E and F), having the
perpendicular boundary conditions met simply through non-
singular distortions of n(r). Single and double defect rings and
the escape of singularity through continuous director distortions
(Fig. 1 A, B, and E) are also hosted by nematics in cylindrical
capillaries (28, 29), with the solitonic escaped field configuration
also resembling the solitons dubbed “skyrmions” that recently
received prominent attention in studies of chiral magnets (30).
LC confinement in toroidal drops dramatically enriches this
behavior by allowing linked, knotted, and other topological field
and defect configurations (Figs. 1 and 2) that cannot be stabi-
lized in cylindrical capillaries or in unconfined nematic samples.
To directly compare experiments and results of numerical

modeling, we have simulated three-photon excitation fluores-
cence polarizing microscopy (3PEF-PM) and polarizing optical
microscopy (POM) micrographs of global and local minimum-
energy nematic field and defect configurations while accounting
for the finite resolution effects (Fig. 1 G–J) (26). The structures
can be identified based on comparison of such images. For ex-
ample, POM and superimposed 3PEF-PM micrographs of con-
figurations with two disclination rings (Fig. 1 G and H) differ
from images with escaped n(r) (Fig. 1 I and J). Furthermore,

theoretical POM images, such as the one obtained for the drop
with double disclination rings (Fig. 1G), are consistent with the
experimental ones obtained with (Fig. 1K) and without (Fig. 1L)
an additional phase retardation plate. Optical 3PEF-PM micro-
graphs obtained through the superimposition of theoretically
calculated 3PEF-PM fluorescence patterns using four differ-
ent linear polarizations of excitation light (such as the one
shown in Fig. 1H) also agree with the corresponding experi-
ments (Fig. 1N).
For drops with g > 1, defects of nonzero net charge are re-

quired by the Poincaré–Hopf index theorem (23), and we ob-
serve them in both experiments and numerical modeling. In
contrast with g = 1 drops, in drops with small values of minor
radius r, we do not observe the s = 1 disclination rings, which are
unstable even at temperatures close to nematic–isotropic tran-
sition and tend to break into multiple (depending on g) s = 1/2
defect loops. Three half-integer disclination loops form in small
drops of g = 2 (Fig. 3A), with one of them running along the
whole drop perimeter, whereas two others encircle the two holes
of the drop. Similar configurations, with one large disclination
looping around the largest perimeter and g small circular loops
encircling holes, are also observed for droplet of g > 2. Theo-
retical POM (Fig. 3C) and 3PEF-PM (Fig. 3D) textures match
their experimental counterparts shown in Fig. 3 E and H and
G and J, respectively. The net hedgehog charges of defect loops
add to m = ± χ/2, such as m = ±1 for the configuration shown in
Fig. 3A, although these topological charges are not localized in
particular regions within the drop and charges due to individual
defects often mutually compensate each other. Similar to genus
g = 1 drops, a large number of linked and knotted configurations

A B

Fig. 2. (A) Pentafoil T(5,2) knot (51 in the Alexander-Briggs notation) of
disclinations. (B) Septafoil T(7,2) knot (71 in the Alexander-Briggs notation)
of disclinations. Blue surfaces of the knotted tubes depicting the defects
correspond to Q= 0:3; R= 1  μm,  r = 0:2  μm,  α= 6:

C D

E F G

H I

A B

A P

A P

A P

A P

A P

J

5 m

5 m

m= 1

Fig. 3. (A) g = 2 drop with defect rings depicted using blue isosurfaces of
Q= 0:35 and corresponding (B) cross-section of n(r) and (C) POM texture. (D)
The 3PEF-PM texture obtained by superimposing simulated images acquired
at four different linear polarizations of excitation light marked by red, blue,
green, and pink double arrows; R= 2:5 μm, r = 0:1R, α=10: (E–J) Experi-
mental micrographs obtained using POM between crossed polarizer P and
analyzer A without (E and H) and with an additional 530-nm phase re-
tardation plate (F and I) and using 3PEF-PM (G and J). Experimental 3PEF-PM
texture was obtained by superimposing images with polarizations of prob-
ing light at 0°(red), 45°(green), 90°(blue), and 135°(pink), corresponding to
the simulated texture shown in D; note the dark areas in junctions, where
n(r) is perpendicular to the images.
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of such half-integer defect lines can be realized too and will be
explored in detail elsewhere.
For larger drops with rJ 100ξ, the escaped director profiles

fully replace the singular defect rings (Fig. 4), yielding point
defects or small disclination loops localized in the junction
regions (Figs. 4 A and B and 5 A and B). In the configuration
depicted in Fig. 4A, a hyperbolic hedgehog of m = ±1 is found in
the upper part of the junction, corresponding to the point where
different colors in the 3PEF-PM image and dark brushes in the
POM image meet (Fig. 4 C and E). The defect core is open into
a ring shown in Fig. 4A, Inset (in the red frame). By varying initial
conditions for minimization of the Landau–de Gennes functional
and also by quenching the sample from isotropic to nematic
phase in both experiments and in numerical modeling (including
the laser-guided quenching described in the SI Text), other
metastable escaped configurations can be realized too. One of
them is shown in Fig. 4B, in which n(r) escapes in the same di-
rection in both branches of the 2-tori, in contrast with that in Fig.
4A where n(r) escapes in the opposite directions. In the former
case, each of the two junction regions hosts an extended half-
integer disclination loop. The sum of their topological charges is
still m = ±1. A close inspection of n(r) reveals that the upper
loop has m = ±1 and the bottom one is topologically “neutral”
(m = 0), occurring to minimize the free energy for a given mutual
directionality of the n(r) escape in the two rings. The trans-
formation of this configuration to the ground-state structure
shown in Fig. 4A faces a formidable free-energy barrier, trapping
the system in a metastable state. Defect loops in junctions en-
circle small nematic regions with n(r) perpendicular to the tori
planes (Fig. 4B), appearing as dark areas in both simulated and
experimental 3PEF-PM and POM textures (Figs. 4 C–I and 5 C–
G). Far from the junctions, the corresponding theoretical and
experimental 3PEF-PM (Fig. 4 C, D, and I) and POM images
(Fig. 4 E–H) also show mutually consistent intensity patterns,
indicating realization of the same field and defect configurations
in experiments and theory. Interestingly, the threshold value of
the minor tori radius r at which escaped configuration replaces
the one with half-integer defect loops is slightly larger (by about
10%) for g = 2 drops than for g = 1 drops (Fig. 4J). This is caused
by the free-energy contribution of the intertori region (shown in
green in Fig. 4J, Inset), which is required to host at least one m =
±1 topological defect (Fig. 4A), increasing the free energy of the
escaped configuration.

Discussion
A spectacular property of our confined nematic system is the
diversity of structures satisfying topological constraints imposed
by mathematical theorems and perpendicular boundary con-
ditions on the closed handlebody surfaces. This feature largely
stems from the nonpolar nature of n(r). Indeed, all half-integer
defect lines would be disallowed in polar systems, thus pre-
cluding appearance of knotted and linked defects and dramati-
cally reducing the number of topologically admissible structures.
From a large number of experimental and theoretical config-
urations seen in n(r), the structures that would still be allowed
in a vector field include only ones with escaped director field
hosting solely point defects at the intertori junctions and s = 1
disclination rings, substantially reducing the spectrum of possi-
bilities of satisfying both boundary conditions and the topological
theorems for drops of different g. The fact that the nonpolar
nature of nematic fields diversifies the topology of allowed
linked, knotted, and other configurations is important beyond

A
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m= 1m=0

E F

DC
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A P A P

A P A P

Fig. 4. (A and B) Escaped n(r) structures depicted in the drop’s midplane
for R= 10  μm,  r = 0:1R,  α= 10. (Insets) Junction regions and blue tubes de-
pict isosurfaces of Q= 0:3. Hyperbolic hedgehog defect core and disclination
loops with zero (green-framed) and unit (red-framed) topological charges.
(C and D) Corresponding 3PEF-PM textures obtained by superimposing
simulated images at four different linear polarizations of excitation light
marked by red, blue, green, and pink double arrows. (E and F) corre-
sponding POM images between crossed polarizer P and analyzer A. (G
and H) Experimental POM textures obtained (G) without and (H) with an
inserted phase retardation plate having a slow axis along the blue double
arrow. (I) Experimental 3PEF-PM texture obtained by superimposing images
with polarizations of probing light at 0°(red), 45°(green), 90°(blue), and
135°(pink). (J) Landau–de Gennes free energy, Eq. 1, as a function r at R= 10r
for configuration with disclination rings (circles) and solitonic escape

(squares) as shown in A. The green region of the droplet (Inset) marks the
3D minimization domain. In the gray region, the minimization is done by
exploiting the symmetry of the confinement region and then the Q tensor is
fixed (see Materials and Methods for more details).
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our soft matter system, because defect lines in nonpolar fields in
cosmology (cosmic strings) and in many other physical systems
are topologically similar to nematic disclinations, although much
less accessible experimentally. What is even more important is
that our study shows a way of satisfying topological constraints
that guide interactions between closed surfaces and nonpolar
nematic director fields, which is topologically distinct from that
predicted by mathematical theorems for vector fields. Indeed,
although unknots of small defect loops at intertori junctions of
large handlebody drops are topologically similar to point defects,
the linked and knotted defect lines are not, and thus are topo-
logically distinct from what can be realized in vector fields. It is
surprising that, to the best of our knowledge, the issue of how the
interplay of the topology of a closed surface and a nonpolar field
confined by it may differ from that in the case of a confined
vector field was never considered by mathematicians or physicists
alike. Our study reveals the unexpected richness of possible
nonpolar field and corresponding defect configurations under
confinement by closed varying-genus surfaces, which includes all
structures observed in vector fields and, additionally, a zoo of
other topologically distinct configurations, such as the ones with
knotted or linked defect lines.
Our system allows one not only to realize a large variety of

topologically distinct field and defect configurations, but also to
precisely control and select a particular configuration out of a
large variety of stable and metastable ones (Table 1). Control

capabilities at our disposal include (i) defining the total topological
hedgehog charge m determined by the genus g of a confining
surface; (ii) control of appearance of different types of defect
structures (integer or half-integer disclinations spanning the whole
droplet, versus various escaped solitonic configurations) through
varying geometric parameters like the minor tori radius r. Our
results also show that at each given g and r, there are different types
of topology-satisfying stable and metastable nematic configurations
(e.g., unknots, links, or knots), which cannot be selected by a
random process of quenching the sample from isotropic to ne-
matic state. Appearance of a particular variation of defect loops
in this case is kinetically dominated during the temperature
quench. However, even this fine selection between configurations
with similar types of defects is possible through the laser-guided
temperature quench (Fig. S1). Holographically or laser-scanning
implemented knotted and linked distributions of high-intensity
laser light (10) results in increased local heating of the LC along
the knotted–linked tubes of high laser intensity, allowing for se-
lection of the precise defect configuration of interest out of the
zoo of stable and metastable structures that can exist at given
g and r. In the larger drops with g > 1 and escaped director
structures, the particular types of defects in the junction domains
can also be selected by “combing” the director field in the desired
direction within each ring of handlebody by linearly polarized
laser light (Fig. S2) upon temperature quench from the isotropic
state, which then defines the types of defects occurring at the tori
junctions. Although the spontaneous temperature typically yields
a large number of stable and metastable structures, the above two
different types of laser-guided quench allow us to select precise
individual defect configurations. In simple words, by using ran-
dom temperature quench, we can first create a “menu” of defect
configurations that can be realized for given genus and geometric
parameters (of which r is the most important), and then deliver
the precise field–defect configuration by the use of laser-guided
temperature quench.
To conclude, we realized experimentally and analyzed theo-

retically structural organization in nematic drops confined by
closed handlebody surfaces with systematically varied genus. We
show richness of topologically nontrivial field excitations when
confining surfaces impose normal boundary conditions on the
director. The topological interaction of the director field and
surfaces generates linked, knotted, and other 3D field config-
urations which match theoretical predictions and may allow for
insights into many topologically analogous phenomena in other
branches of physics, ranging from particle physics to cosmology.
Because few theoretical predictions of topological field config-
urations can be tested experimentally due to lack of experi-
mentally accessible systems and techniques, our model system
may become a testbed for probing a potentially scale-invariant
interplay of topologies of confining surfaces, fields, and defects.
Similar to probing the cosmological Kibble mechanism using LC
phase transitions (19), it may enable new cosmology and particle
physics relevant experiments. On the other hand, our experi-
mental and theoretical findings demonstrate topologically dis-
tinct behavior of defect and field configurations in confined
nematic nonpolar molecular alignment field that are different
from well-known predictions of topological theorems applied for
vector fields in contact with closed surfaces of nonzero genus. In
addition to the richness of new fundamental behavior, our sys-
tem may be of interest for realizing new types of multistate op-
tically addressed topological memory devices that can allow for
recording and reading information through optically changing
different topology-satisfying field and defect configurations in
the polymer-dispersed nematic drops of controlled genus.

Materials and Methods
Fabrication and 3D Imaging. To create nematic drops with nonzero genus,
we first fabricated handlebody-shaped silica microstructures by means of

A B

C

E F G
A P

D

A P

5 m 5 m

5 m

m= 1 m= 1

m=0 m=0

Fig. 5. (A and B) Examples of numerically calculated escaped n(r) for
R=10 μm, r = 1 μm, α= 10. (C, D, and G) Experimental 3PEF-PM textures
obtained by superimposing images of g = 3–5 drops for linear polarizations
of probing light at 0°(red), 45°(green), 90°(blue), and 135°(pink). (E and F)
Experimental POM images of a g = 5 drop obtained (E) without and (F) with
an inserted 530-nm phase retardation plate having a slow axis along the
blue double arrow.
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photolithography (24, 31). Desired polymer structures were obtained using
replica molding and soft lithography (32). Norlin optical adhesive (NOA63)
was placed between a glass plate and a substrate containing handlebody-
shaped silica microstructures and then UV cured for 20 s using an OmniCure
S2000 illumination system (Lumen Dynamics). The polymerized film was
peeled off to leave the desired surface topography on one of its sides. We
also fabricated flat polymer films of 5–10 μm in thickness needed to form
closed handlebody-like surfaces by sandwiching the two films together. To
realize homeotropic boundary conditions, we treated the polymer films and
glass substrates by a 0.5 wt % aqueous solution of N,N-Dimethyl-N-octa-
decyl-3-aminopropyltrimethoxysilyl chloride or by a solution of lecithin in
toluene (10). Additionally, some NOA63 films were heated to temperatures
right beneath the isotropic nematic transition of the nematic LC E31 (from
EM Chemicals). Nematic E31 was then filled between a microstructured poly-
mer sheet and either a flat polymer film or coverslip, which were pressed
together and sealed through additional NOA63 UV curing. The ensuing
polymer films had LC drops of genus g = 1–5 with rounded-square cross-sec-
tions and homeotropic anchoring.

Nonlinear optical 3PEF-PM imaging used a setup built around an inverted
microscope IX 81 (Olympus), a tunable Ti-sapphire oscillator (680–1,080 nm,
Coherent) emitting 140-fs pulses at a repetition rate of 80 MHz, an oil-im-
mersion 100× objective with numerical aperture of 1.4, and a photomultiplier
tube detector H5784-20 (Hamamatsu) (24). Three-dimensional submicrometer
resolution was enabled by the nonlinear optical excitation. The fluorescence
intensity exhibited a strong ∝cos6θ dependence on the angle θ between n(r)
and the linear polarization of the probing light; 3PEF-PM and POM imaging at
different polarizations of probing light revealed 3D director field config-
urations (10). These images were then compared with the ones simulated
numerically using the extended Jones matrix method described in detail else-
where (33, 34) and the theoretical n(r) structures obtained as described below.

Theoretical Approach. Landau–de Gennes free energy is formulated in terms
of a traceless symmetric rank-3 tensor order parameter with five independent
components Qij ði,j= 1,:::,3Þ. Free-energy density then is written as an ex-
pansion in powers of Q and its spatial derivatives (25)

FLdG =
Z
V

�
a
�
T
�
Q2

ij −bQijQjkQki + c
�
Q2

ij

�2
+
L1
2
∂kQij∂kQij +

L2
2
∂jQij∂kQik

�
, [1]

where aðTÞ is a linear function of temperature T, and b, c are considered
temperature-independent material constants, summation over repeated
indexes is assumed, L1 and L2 are phenomenological parameters related to

the Frank–Oseen elastic constants. The integral in Eq. 1 is over 3D domain V ,
with the first three terms describing bulk free-energy density and the last
two gradient terms representing elastic free-energy density. We model
homeotropic anchoring by using the following surface free energy:

Fs =W
Z
∂V

�
Qij −Qs

ij

�2
ds, [2]

whereW > 0 is the anchoring strength, Qs
ij = 3Qb ðνiνj − δij=3Þ=2 describes the

preferred surface nematic ordering, with v being the unit normal to the
confining surface, δij is the Kronecker delta symbol, and Qb is the bulk value
of the scalar order parameter (SI Text). We numerically minimize the
Landau–de Gennes free energy, Eq. 1, supplemented by the surface term
given by Eq. 2, by using the adaptive finite elements method (35).

The free-energy profiles shown in Fig. 1F for g = 1 were calculated by
taking advantage of the axial symmetry of the structures with double rings
of disclinations and escaped director configurations. This reduces the initial
3D problem to an effective 2D one, which significantly increases the accuracy
of the free energy calculation for the largest considered sizes of droplets.
We also assume rigid normal boundary conditions in this case.

To obtain the free-energy profiles for a g = 2 drop shown in Fig. 4J, we
first assumed that the nematic configurations in the regions away from the
tori junctions do not significantly differ from the corresponding g = 1 con-
figurations at the same r and R. Based on this assumption, the volume of a g =
2 droplet is divided into an “active” junction region, shown in Fig. 4J, Inset by
green, and a “passive” off-junction one shown in gray in the aforementioned
inset. Then, in the course of minimization only fields in the active region vary,
whereas those within the passive one are kept fixed according to the solution
of the associated g = 1 problem. The angular extent of the passive regions is
given by their respective central angles, which were set to 8π=5.
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