
Mutually tangled colloidal knots and induced
defect loops in nematic fields
Angel Martinez1,2, Miha Ravnik3, Brice Lucero1, Rayshan Visvanathan1, Slobodan Žumer3,4

and Ivan I. Smalyukh1,2,5,6*

Colloidal dispersions in liquid crystals can serve as a
soft-matter toolkit for the self-assembly of composite mate-
rials with pre-engineered properties and structures that are
highly dependent on particle-induced topological defects1–3.
Here, we demonstrate that bulk and surface defects in nematic
fluids can be patterned by tuning the topology of colloidal
particles dispersed in them. In particular, by taking advan-
tage of two-photon photopolymerization techniques to make
knot-shaped microparticles, we show that the interplay of the
topologies of the knotted particles, the nematic field and the
induced defects leads to knotted, linked and other topologically
non-trivial field configurations4–12. These structures match
theoretical predictions made on the basis of the minimization
of the elastic free energy and satisfy topological constraints4,5.
Our approach may find uses in self-assembled topological
superstructures of knotted particles linked by nematic fields,
in topological scaffolds supporting the decoration of defect
networks with nanoparticles1, and in modelling other physical
systems exhibiting topologically analogous phenomena12–16.

One of the grand challenges of modern material science is
to design and assemble three-dimensional (3D) structures of
low-symmetry colloidal particles that can reproduce complex
behaviour of atomic systems with different types of bonding and a
large number of chemical elements15–24. Interestingly, long before
the nature of atoms could be understood, early mathematical
developments of knot theory, one of the key branches of topology,
were prompted by Lord Kelvin’s conjecture from 1867 that
atoms of all elements were different knotted defect lines known
as ‘vortices’4,5,12. Although our modern understanding of atoms
is very different and naturally occurring materials are not just
tangled knots of defects, applications of the mathematical knot
theory are nowadays found in many branches of science, including
material systems such as liquid crystals, cosmology, quantum
chromodynamics, and both classical and quantum field theories3–11.
However, there are few theoretical predictions involving knotted
fields and vortices that can be tested by experiments9, which is due
to the lack of systems and techniques that allow for controlling
types and spatial arrangements of defects in three dimensions.
On the other hand, mastering control of topological defects in
liquid crystals is also important from a practical standpoint because
they are key for mediating nanoscale confinement and mesoscale
self-assembly of nanoparticles1,17–23.
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In this work, we develop knotted nematic colloids that enable
the generation and control of 3D patterns of point defects and
configurations of looped line defects, such as tangled knots, thus
allowing for experimental insights into predictions from knot
theory and into the interplay of topologies of knotted surfaces, fields
and defects4,5. On the one hand, this may be used for understanding
other experimentally less accessible physical systems with similar
topology, ranging from particle physics to cosmology13–16. On the
other hand, our knotted colloids can be used as building blocks of
topologicalmatter, this arising from themesoscale self-organization
of knotted colloidal ‘atoms’ driven by the minimization of
elastic free energy and from the mutual entanglement of induced
defects. Particle-controlled configurations of defects may also serve
as topologically non-trivial scaffolds for the 3D patterning of
semiconductor and metal nanoparticles1, as needed for the scalable
fabrication of composite materials with pre-designed properties.
Our findings show that the behaviour of knotted colloidal ‘atoms’
obeys topological constraints, and, therefore, that topological
theorems and mathematical knot theory can be used to guide the
design of self-assembled knottedmatter as envisaged byKelvin12.

Colloids are stable dispersions of microscopic particles in host
media16, which in the case of nematic colloids consist of particles
dispersed in a host fluid of anisotropic liquid-crystal molecules that
spontaneously align along the director n (refs 17–23). Colloidal
particles can also be anisotropic, typically in terms of the shape and
chemical functionalization of their surfaces. Anisotropic particles
were central to recent efforts of reproducing the complexity of
atomic bonding in self-assembled colloidal structures24 and of
generating biomimetic self-propulsion capabilities25. However, all
anisotropic colloids made so far exhibit relatively high symmetry,
and colloidal synthesis typically offers limited control of surface
topology23. Here, we use two-photon photopolymerization with
spatially patterned pulsed femtosecond laser light (seeMethods and
Supplementary Fig. 1)26 to obtain rigid particles with the surface
topology of torus knotsT (p,q). The particles are formed by knotted
polymeric tubes that, before having their ends joined, are looped p
times through the hole of an imaginary torus, with q revolutions
about the torus rotational symmetry axis4,5 (Fig. 1). The minimum
number of crossings of the polymeric tube in these particles is given
by the so-called crossing number c=min{p(q−1),q(p−1)}. When
dispersed in liquid crystals, these knotted colloids with controlled
surface boundary conditions distort the director field n(r), which
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Figure 1 | Photopolymerized knotted particles and their arrays. a, Optical micrographs showing photopolymerized left-handed (panels 1 and 2) and
right-handed (panels 3 and 4) trefoil colloidal torus knots T(3,2) with c= 3 and of different sizes, with the corresponding 3D models shown in green. The
top-left inset in panel 3 shows a 3PEF-PM image of a colloidal particle of the same chirality and comparable size as that shown on the same panel.
Micrographs show particles being slightly larger than their actual size because of the limited optical resolution. b, Scanning electron micrograph of a 4×4
array of torus knots T(5,3) with c= 10 on a glass substrate. c–e, Zoomed-in scanning electron micrographs of single T(3,2) (c,d) and T(5,3) (e) knots
shown from different perspectives, along with the corresponding 3D models (depicted in green), as viewed along the torus axis (c) and in an oblique
direction (d,e).

approaches the uniform far-field director n0 at large distances.
3D visualization of n(r) by means of nonlinear optical polarizing
microscopy (Supplementary Figs 2 and 3), assisted by holographic
optical tweezers27,28, reveals a topological interplay among surfaces
of knotted particles, nematic fields and defects.

Nematic dispersions of trefoil particle knots—known more
formally as T (3,2) torus knots and also as 31 knots in the
Alexander–Briggs notation4—are first explored in the regimewhere
the nematic molecular orientation field at the particle surfaces is
set to be tangential. In a stable configuration, which corresponds
to the minimum of free energy, the trefoil colloids align with
their torus plane perpendicular to the undistorted far-field nematic
director n0. As their complex shape is incompatible with the
inherently homogeneous field of the aligned nematic liquid crystal,
point defects called ‘boojums’ emerge at the surfaces of the
particles, and are visible in bright-field micrographs as dark points
due to scattering (Fig. 2a). Polarizing microscopy textures show
smooth variations of the molecular orientation field everywhere
in the sample, except at the boojums (Fig. 2b,c). Using the three-
photon excitation fluorescence polarizing microscopy (3PEF-PM)
technique with polarized laser excitation27,28, we explore the full
3Dmolecular orientation field (Fig. 2d,g) by probing high-intensity
fluorescence patterns (originating from both the polymer in the
particle and the surrounding liquid crystal with director distortions)
shaped as trefoil knotswith elliptical cross-sections, which reveal the
strongest director distortions in regions where colloidal surfaces are
orthogonal to n0, consistent with numerical modelling (Fig. 2g–i
and Supplementary Fig. 4). Experimental 3PEF-PM textures in
individual cross-sectional planes closely match their simulated
counterparts, as shown for a sample region near boojums in
Fig. 2d–g. To clearly identify positions of the surface defects, a

colour-coded 3D representation of the azimuthal orientation of the
director field around the particle is constructed, which reveals 12
boojums, forming nearby regions where the particle’s surface is
orthogonal to the far-field director (Fig. 2h). These boojums can
be characterized by a winding number s of the 2D director field at
the liquid-crystal/particle interface and also by the bulk topological
charge m (refs 16,23,29). The winding number is an invariant
commonly used to characterize 2D profiles of a field surrounding
a defect—in our case, the field profile at the surface of the particle
knot—and defines the number of times the director rotates by
2π as one circumnavigates the defect core once. The nonpolar
symmetry of the nematic director field allows integer numbers
of π turns of the director around the defects, with positive and
negative signs identifying defects with the director rotation being
the same as or opposite to that of circumnavigation, respectively.
The topological charge m is used to characterize point defects and
loops of defect lines in three dimensions, and is a characteristic
similar to s but describing the variation in the director-field
profile around the defect objects in all three spatial dimensions.
Its magnitude can be calculated using a simple integral of the
director structure over an enclosing surface16,23. By experimentally
mapping and calculating the molecular orientational profile in
the bulk and at surfaces around these defects, in agreement with
topological theorems4,23, we find 6isi = χ = 0, where i runs over
all boojums and χ = 0 is the Euler characteristic of the knotted
particle surface. Although this topological constraint could be
satisfied in many different ways, the one observed experimentally
corresponds to a local or global minimum of the total free energy.
Both experiments and numerical modelling reveal that the stable
field configuration around a trefoil particle knot with tangential
boundary conditions contains 12 surface point defects: six s = 1
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Figure 2 | A trefoil knot particle with tangential boundary conditions in an aligned liquid crystal. a–c, Bright-field and polarizing optical micrographs taken
without polarizers (a), between crossed polarizers whose directions are shown by white double arrows (b,c), and with an additional 530 nm retardation
plate having its slow axis aligned as shown by the blue double arrow (c). Locations of boojums are marked by red arrows in a,b. d,e, 3PEF-PM slices
obtained experimentally (d) and by numerical modelling (e). Each colour within these superimposed images (green and red) represents the fluorescence
signal from a single 3PEF-PM scan with imaging beam polarizations aligned along the colour-coded directions shown by double arrows.
f, Computer-simulated n(r) within the top-right part of the cross-section shown in (d,e). g, 3D fluorescence pattern of the knotted particle and surrounding
director distortions reconstructed from 3PEF-PM scans. The blue plane indicates the location of the single-slice images shown in d,e. h, 3D representation
of n(r) deviating away from n0 due to the incorporated trefoil knot particle. Colours depict the azimuthal orientation of n(r) when projected onto a plane
orthogonal to n0 and according to the scheme shown in the inset. The structure is visualized on a tube following the knotted particle’s surface. Points
where different colours meet are boojums. i, 3D representation of computer-simulated n(r) at the particle/liquid-crystal interface (black rods) and in the
bulk (blue rods) induced by a trefoil knot particle. Green and magenta areas show regions of a reduced scalar order parameter of 0.42, corresponding to
s=−1 and s= 1 2D defects at the liquid-crystal/particle interface, respectively. The knots in g–i are shown from different perspectives in order to depict
different features of the ordering.

boojums, which localize on the exterior tips of the knot, and their
six s=−1 counterparts, which reside on the diametrically opposite
sides of the knotted tube (the corresponding regions of the reduced
scalar order parameter are depicted in Fig. 2i in magenta and green
colours, respectively).

Trefoil particle knots with perpendicular surface boundary
conditions align with a torus plane either orthogonal to n0 in the
ground state or at several metastable orientations, including those
parallel to n0 (Fig. 3 and Supplementary Fig. 5). These ground-state
and metastable configurations, which correspond to global and
local free-energy minima, respectively, can be accessed with the
same particle by sequentially heating the sample with an objective-
based temperature control system FCS-2 (from Bioptechs) to about
34 ◦C—which is right below the nematic–isotropic transition of the
used liquid crystal—and then locally ‘melting’ the liquid crystal with
a holographic optical-tweezers beam, followed by quenching it back
to the nematic state. Optical micrographs of such a knotted particle
are consistent with n(r) near its surface being normal to it (Fig. 3).
3PEF-PM imaging with excitation light polarized perpendicular
to n0 yields a knotted tube of high intensity with an anisotropic
cross-section (Supplementary Fig. 6). Individual depth-resolved
3PEF-PM ‘slices’ obtained for different polarizations show the
presence of defect lines (marked by red arrows in Fig. 3d,e), which
match our theoretical configuration with two singular s = −1/2
defect lines following the knotted tube (Fig. 3c,f). These defect
lines compensate for the director imposed by the particle’s surface,
which resembles that of a knotted radial defect line with s= 1. Two
linear defects tracing the knotted particle’s tube is also the basic
feature of allmetastable states, although they are often accompanied
by their rewirings and linking to the knotted particle (Fig. 3g–j
and Supplementary Fig. 5). This shows that knotted particles can

generate defect loops in nematic fields by elastically distorting the
liquid crystal in such a way that these loops are knotted too. For
the T (3,2) particle shown in Fig. 3, the two defect loops are both
T (3,2) torus knots, mutually linked into a two-component link.
This link of line defects is further linked with the particle knot
(inset of Fig. 3f), effectively forming a three-component defect–
particle link. In mathematics, linking of two closed curves in 3D
space is commonly described by an integer called the ‘linking
number’. Intuitively, this represents the number of times that
each curve winds around the other, and it can be positive or
negative, depending on the orientation of the two curves5. In a
similar way, the observed linking of particles and defects can be
characterized by two topological invariants: the linking number Ln
of the particle with the induced defect loops in the nematic field, and
the self-linking number Sl of the defect line, which labels howmany
times it turns around its tangent in the course of one loop29. The
linking number of the particle knot with a chosen knotted defect
loop Ln= 3 emerges to be equivalent to the self-linking number
Sl = 3 of this loop, Ln= Sl , yielding a relation that connects the
topology of the particle with that of the surrounding molecular
field. This equivalence of two distinct topological invariants stems
from the local compensation of the induced distortion—that is,
the diametrically opposite elastic pinning of the two defect loops
near the particle surface—and is valid for all studied particle knots
with perpendicular boundary conditions, such as the T (5,2) and
T (7,2) shown in Supplementary Fig. 7 (ref. 27), provided that
the defects smoothly follow the particle’s knotted tube without
irregular rewirings (Supplementary Fig. 8). Interestingly, the linking
number of the knotted particle with the surrounding defect loops
can be controllably changed, for example by reorienting the knotted
particle into one of the metastable states (Supplementary Fig. 5).
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Figure 3 | A colloidal trefoil knot with perpendicular surface boundary conditions. a,b, Bright-field micrographs of a particle in an aligned nematic taken
between crossed polarizers whose directions are indicated by the white arrows (a,b) and with a full-wave 530 nm retardation plate inserted with its slow
axis at 45◦ (blue double arrow; b). c, Computer-simulated n(r) within a cross-section perpendicular to the knotted tube marked in f. d,e, 3PEF-PM images
of n(r) around the knotted particle shown in a,b and for excitation-light polarizations (green double arrows) at different orientations with respect to n0. Red
arrows mark the defect lines. f, Computer-simulated n(r) around a trefoil knot with perpendicular boundary conditions and the torus plane orthogonal to
n0. Green and magenta lines show regions with reduced scalar order parameter corresponding to the cores of the two knotted defect lines seen in the
cross-sections (d,e). The inset shows a topological schematic of the mutual linking between the particle knot (blue) and defect knots (green and
magenta). g–j, Bright-field micrographs of colloidal knots aligned with the torus plane parallel to n0, and taken without polarizers (g,i) and between crossed
polarizers with an inserted full-wave retardation plate (h,j). Green arrows in i indicate the locations of the rewirings of defect lines, similar to the ones
visible in the model shown in Supplementary Fig. 5u,v.

Another approach to characterize topological defect loops is by their
topological charge23,29: the homogeneous far-field director sets the
net total topological charge of the particle and the defect loops equal
to zero, and the trefoil knot particle has Euler characteristic χ = 0
(ref. 5), which also conditions the topological charge of the particle
to be zero and puts the net topological charge of the two knotted
defect loops equal to zero (under modulo 2; ref. 29). Indeed, these
topological charges are also reproduced using a general formalism
introduced in previous theoretical works29.

Our study can be extended to colloidal knots of higher
complexity, such as the colloids in the form of T (5,3) torus
knots (10124 in the Alexander–Briggs notation) with the crossing
number c = 10 that we show in Fig. 4 and Supplementary Fig. 9.
These knotted particles with tangential anchoring induce boojums
that obey the same topological constraint 6isi = 0 as their trefoil
counterparts, because χ = 0 for both, but the total number of
boojums is now 20: 10 boojums with the winding number s=1 and
10 with s=−1 defects in the 2D field at the liquid-crystal/particle
interface. The T (5,2) torus knot particles also induce a total of
20 self-compensating boojums (Fig. 5). In general, the equilibrium
n(r)-structures induced by torus knots with tangential anchoring

host |4p| self-compensating defects. This behaviour for torus knots
with p = 3, 5, 7 and larger persists when the knotted tube’s
diameter and overall particle dimensions are changed (Fig. 5 and
Supplementary Fig. 10–12). However, in addition to the stable
configurations, one also observes metastable states having different
numbers and locations of boojums, yielding oblique orientations
of the particle’s torus plane relative to n0, as we demonstrate
using examples of several different knots shown in Supplementary
Figs 13 and 14. Likewise, although the knotted particles with
perpendicular boundary conditions and p= 3,5,7 and higher are
typically accompanied by two knotted defect lines with s=−1/2,
by changing the diameter of the knotted tube relative to the overall
particle size one can also achieve metastable configurations in
which the two defects exhibit different rewirings (Supplementary
Fig. 8). This demonstrates that the topological constraints allow
for flexibility in terms of the precise ways of satisfying them.
Therefore, by varying confinement, using liquid-crystal materials
with different elastic constants, temperature quenching and the
application of external fields, one can create an experimental
arena for exploiting the means of control of this behaviour.
Finally, for all studied particles, field configurations and self-aligned
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Figure 4 | A colloidal knot T(5,3) with tangential boundary conditions.
a, 3D reconstruction of 3PEF-PM intensity for the T(5,3) particle with
director distortions around it. b, 3D representation of n(r) deviation from
n0 around the particle. Colours depict the azimuthal orientation of n(r)
projected onto a plane orthogonal to n0 according to the scheme shown in
the inset of Fig. 2h. The structure is visualized on a tube following the
surface of the colloidal knot. The points where different colours meet are
boojums. c, A 3D perspective view of the T(5,3) particle shown in a, with
the four corresponding cross-sectional planes depicted in d. d, 3PEF-PM
scans with superimposed green and red colour-coded fluorescence images
obtained for linear polarizations of excitation light along the double arrows
of the same colour marked in panel 4.

colloidal orientation states, the chiral nature of knotted colloids
causes mirror-symmetry breaking in the induced director field
n(r), potentially allowing for the self-assembly of chiral colloidal
superstructures in non-chiral nematic liquid crystals.

Knots have been realized in the past either as material objects,
such as knots of small molecules and polymer strands, or as
knotted fields, whereas our nematic colloids can be a combination
of both because the nematic field is guided by the particle
knot. For perpendicular boundary conditions, the particle knot
is even physically linked with the defect knots of the field,
having particle-to-defect-loop linking number Ln=3. Importantly,
knotted particles energetically stabilize complex (knotted) nematic
fields in time and space, allowing one to probe the details of
their structure, which cannot be achieved in other knotted fields7.
For example, as already envisaged by Kelvin, vortex lines in a
fluid flow remain stable in time only if the fluid is ‘perfectly
destitute of viscosity’12; in real fluids this always fails and knots
decay in time7. In particle physics, glueballs are theoretically
modelled as knotted flux tubes30, but even the very experimental
verification of glueball existence, not to mention probing their
internal structure, is extremely difficult despite the advances in
modern particle accelerators. Therefore, our colloidal knots offer
the exciting opportunity of providing experimental insights into the
physical realization of predictions from knot theory and its links to
physical and material systems.

To conclude, we realized a colloidal system of particle knots
coupled to nematic fields, providing insights into the interplay of
their topologies. This interplay is controlled by varying surface
boundary conditions and prompts the formation of topological
defects, including boojums and knots of defect lines. The particles
and field structures—for example, defect lines—can get mutually
tangled, forming linked particle–field knots. Large quantities
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Figure 5 | Torus knot T(5,2) particles with tangential boundary
conditions. a–c, Optical micrographs of the T(5,2) knotted particle
obtained without polarizers (a), with crossed polarizers aligned as
indicated by the white double arrows (b), and with crossed polarizers and
an additional phase retardation plate (blue double arrow) aligned with its
slow axis at 45◦ to crossed polarizers and n0 (c). Locations of boojums
visible within the optical micrographs are marked by red arrows in b.
d,e, Two different perspective views of the reconstructed 3PEF-PM
intensity pattern due to the T(5,2) colloidal knot particle and director
distortions induced by the particle as viewed along the torus axis (d) and
perpendicular to it (e). f,g, Numerical model showing surface defects
induced by a T(5,2) particle as viewed along the torus axis (f) and in a
direction perpendicular to it (g). Green and magenta areas show regions of
a reduced scalar order parameter of 0.42, corresponding to s=−1 and s= 1
defects in the 2D director field at the liquid-crystal/particle interface,
respectively.

of colloidal knots can be obtained by combining two-photon
photopolymerization with structured shaping of femtosecond laser
light via spatial light modulators28. Therefore, our knotted colloids
represent a vision towards the incomparable topological matter
made of self-assembled knots envisaged by Kelvin12. As the types
of particle-induced defect are governed by the topology of knotted
particles, these relations can be exploited to generate 3D patterns
of vortices with varied symmetry and complexity, both at the
surfaces of these particles and in the liquid-crystal bulk around
them. On the one hand, these defects can mediate colloidal
self-assembly by means of both anisotropic elastic forces17–23 and
entanglement29. On the other hand, particle-induced defects can
mediate the generation of free-energy landscapes for nanoparticle
entrapment1, thus allowing one to controllably decorate the
colloidal knots with metal and semiconductor nanoparticles,
which may provide a means for achieving the hierarchical self-
assembly of new topological composite materials. Therefore, by
establishing general principles for the 3D control of defects,
the demonstrated interplay of topologies of knotted colloidal
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surfaces and nematic fields provides a basis for highly unusual
yet practically useful forms of self-assembly, potentially impinging
on the design of mesoscale composite materials and applications,
ranging from a new breed of information displays tometamaterials,
nanophotonics and data storage.

Methods
Sample preparation. Colloidal particles in the form of thin, rigid polymeric tubes
shaped into knots of different chiralities (Fig. 1) were fabricated at rates of about
1,000 particles per hour using the automated set-up shown in Supplementary
Fig. 1, as described in detail in the Supplementary Information26. Each T (p,q)
torus knot particle was obtained by looping p times a focused photopolymerizing
laser beam through the hole of an imaginary torus, with q revolutions about
the torus before joining the ends of the ensuing polymerized knotted tube. The
tube diameter was tuned from 0.3 to 3 µm and the overall size of particles was
varied from 3 to 15 µm. The particles were dispersed in either a single-compound
nematic liquid crystal pentylcyanobiphenyl (5CB) or in a mixture ZLI-2806 (both
from EM Chemicals). As-manufactured colloidal knots induced strong tangential
surface boundary conditions, but some of them were chemically treated to induce
perpendicular ones26. Colloidal dispersions were confined into 25–50 µm cells
made of parallel glass plates with inner surfaces treated to induce strong planar
or perpendicular boundary conditions for n(r). Nematic fields around knotted
particles were studied using the 3PEF-PM set-up shown in Supplementary Fig. 2
(refs 27,28). 3PEF-PM images shown in Figs 2–5 and Supplementary Movies 1–3
generated from such 3PEF-PM images depict fluorescence signals arising due
to the nonlinear optical excitation of the dispersion. Unlike the (isotropic) IP-L
polymer inside particles, nematic host 5CB (Supplementary Fig. 3a) exhibits a
strong well-defined dependence of the fluorescence intensity on the orientation of
the linear polarization of the probe beam. Close analysis of polarization-dependent
3PEF-PM image stacks (Supplementary Movie 1) composed of individual optical
‘slices’, such as the ones presented in Figs 2d, 3d,e and 4d, reveals that the
induced n(r) and defects depend on the boundary conditions and topology of
the colloidal surfaces.

Numerical and topological modelling. The coupling between colloidal surfaces
and n(r) is also explored by a numerical approach based on Landau–de Gennes
free-energy minimization. This approach phenomenologically combines surface
anchoring effects together with phase properties, nematic elasticity, variable degree
of nematic order and its biaxiality into a free-energy functional based on the order
parameter tensor Qij (refs 16,22). Being particularly effective at micrometre scales
and when modelling complex shapes, it allows for the theoretical characterization
of n(r) and defect-induced variations in nematic ordering that correspond to
global or local minima of the free energy. Knotted particles are defined by an
implicit declaration of knots and by assigning a fixed thickness to this definition.
Minimization of the free energy is performed numerically for both tangential and
perpendicular boundary conditions using an explicit finite-difference scheme
on a cubic mesh27. This procedure yields spatial variations of the scalar order
parameter and biaxiality in regions of defects and stable or metastable director
fields n(r). They are subsequently used to computer-simulate 3PEF-PM textures
with experimental imaging resolution27,28, allowing for a direct comparison of
theory and experiments (Figs 2–5).
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