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Optical generation of crystalline, quasicrystalline, and arbitrary arrays of torons in confined
cholesteric liquid crystals for patterning of optical vortices in laser beams
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Condensed matter systems with topological defects in the ground states range from the Abrikosov phases in
superconductors, to various blue phases and twist grain boundary phases in liquid crystals, and to phases of
skyrmion lattices in chiral ferromagnets and Bose-Einstein condensates. In nematic and chiral nematic liquid
crystals, which are true fluids with long-range orientational ordering of constituent molecules, point and line
defects spontaneously occur as a result of symmetry-breaking phase transitions or due to flow, but they are
unstable, hard to control, and typically annihilate with time. Here we describe the optical generation of two-
dimensional crystalline, quasicrystalline, and arbitrary ensembles of particlelike structures manifesting both
skyrmionlike and Hopf fibration features—dubbed “torons”—composed of looped double twist cylinders and
point defects embedded in a uniform director field. In these two-dimensional lattices, we then introduce various
dislocations, defects in positional ordering of the torons. We show that the periodic defect lattices with and
without dislocation are light- and voltage-tunable reconfigurable two-dimensional diffraction gratings and can
be used to generate various controlled phase singularities in the diffracted laser beams. The results of computer
simulations of optical images, diffraction patterns, and phase distributions with optical vortices are in a good
agreement with the corresponding experimental findings.

DOI: 10.1103/PhysRevE.86.021703 PACS number(s): 61.30.Hn, 61.72.Ff, 42.79.Dj, 42.70.Mp

I. INTRODUCTION

Defects are fascinating objects commonly observed in both
ordered and partially ordered condensed matter systems [1–19]
and in the phase of light [20–33]. They have attracted a great
deal of attention in different branches of science, ranging
from condensed matter physics to cosmology in laboratory
experiments [34,35]. Defects are typically found in the form
of singular points, lines, or walls at which the orientational or
translational positional order of structured materials, such as
crystals or liquid crystals (LCs), is disrupted [2–4]. Although
being important for understanding the physical underpinnings
of many phenomena, defects were often treated as undesirable
in applied research and technology [36–39]. For example,
development of LC displays [36,37] and electro-optic devices
based on crystals or LCs traditionally relied on the use
of defect-free samples [3,36,38,39]. However, more recent
developments in the field suggest a great potential for defect-
enabled applications [1]. For example, Poulin et al. were the
first to show that defects, along with the accompanying elastic
distortions, enable novel long-range colloidal interactions in
LC fluids that can be used in the self-assembly of colloidal
particles [40]. This discovery resulted in the current quest to
develop a novel class of tunable LC colloidal composites based
on self-assembly of nano- and microparticles with various
types of surface treatment and shapes [41]. In a different recent
development, cholesteric LC blue phases with periodic lattices
of defect lines have emerged as novel functional materials
for LC displays [42,43]; wide-temperature-range blue phase
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LCs now enable the new “blue phase” display mode with
unprecedented refresh rate and superior characteristics (e.g.,
viewing angle) [42]. Defects are also important in other
condensed matter systems. For example, in photonic crystals
and photonic crystal fibers, deliberately introduced defects
allow for a robust control of nearly lossless flow of light,
control of mirrorless distributed feedback lasing, and a number
of other exciting properties and applications [5]. Similar to the
case of condensed matter systems, defects are abundant and
play an important role in the fields of optics and photonics.
For example, well-defined optical phase singularities, in which
phase of light has a discontinuity, greatly enrich the properties
of laser beams and find practical applications in a variety of
novel methods of imaging, laser trapping, microfabrication,
and telecommunications [20–22].

In LCs, defects introduce well-defined spatial patterns of
the LC director field n(r) (which is the coordinate-dependent
optical axis for these uniaxial media and describes spatial
variations of local average orientation of LC molecules) and
corresponding patterns of polarization-dependent effective
refractive index [2,3]. However, appearance of these defects
is poorly controlled and typically requires flow, high applied
fields, or heating of the sample to the isotropic phase with
subsequent quenching of temperature to bring the sample
back to the LC phase [3,19]. Furthermore, defects commonly
annihilate to minimize the elastic free energy of the LC [3].
Our previous studies have demonstrated that focused laser
beams with optical phase singularities can be utilized to control
topological defects in LCs through the optical generation
of twist-bound ensembles of point and ring-shaped defects
dubbed “torons” [1,44]. In this work, we describe optical
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patterning of defects in confined LCs to form two-dimensional
crystalline lattices of torons with and without various types
of dislocations and then use them to pattern dislocation
defects in the optical phase and wave front of laser beams.
Using laser tweezers with computer-programmed steering of a
focused laser beam, the electrically erasable long-term-stable
periodic crystal lattices of torons are dynamically modified
and tailored depending on the need, offering unprecedented
means of control over phase singularities of the diffracted
laser beams. These findings demonstrate a great potential for
bridging fundamental studies and applications of defects in soft
condensed matter, photonics, electro-optics, and other fields.

II. MATERIALS AND TECHNIQUES

A. Materials and sample preparation

Our studies employ frustrated chiral nematic LCs (CNLCs)
confined between glass plates with vertical surface boundary
conditions. CNLC samples of desired cholesteric pitch p

are formed by mixing nematic hosts such as 4-cyano-4′-
pentylbiphenyl (5CB) or E7 (a commercial mixture of four
different chemical compounds) with a chiral dopant 4-(2-
methylbutyl)-4′-cyanobiphenyl (CB15) [1,44–46]. The used
nematic LC hosts and chiral dopant were purchased from
EM Chemicals and used as supplied. The value of the pitch
p = 1/(hHTPCchiral) of CNLC of interest is selected by choosing
an appropriate concentration Cchiral of the chiral dopant in the
nematic host for the known value of the so-called “helical
twisting power” hHTP [1,44–46]. LC cells are fabricated using
glass plates with transparent indium tin oxide (ITO) electrodes
and alignment layers. Strong vertical surface alignment on
the inner surfaces of the confining glass plates is set by
treating these substrates with N ,N -dimethyl-n-octadecyl-3-
aminopropyltrimethoxysilyl chloride (DMOAP) by means of
dip coating in a 1 wt% aqueous solution [1]. LC cells with the
cell gap thickness d = 5–30 μm are produced by sandwiching
glass substrates interspaced with glass fiber segments of
corresponding diameter. Thickness uniformity of the cell is
characterized by observing interference of white light and
determined using measurements of light transmission as a
function of wavelength with a spectrometer [19]. In fabricated
cells, d is typically set to be comparable to p, with d/p

being within the range of 0.8–1. We infiltrate the LC into
the cell by capillary forces at 85 ◦C (above the temperature of
transition to the isotropic phase of used mixtures) to prevent
flow related defects. We then seal the cell with epoxy. For
electric control of the CNLC structures, wire leads are attached
to the transparent conductive ITO coatings by using conductive
tape and soldering.

B. Laser scanning setup for optical generation of toron arrays

We utilize a computer-controlled laser tweezers system
based on a pair of scanning mirrors [19] that allows one to steer
a laser beam between locations within the sample at which
individual torons are generated via continuous tight focusing
of the beam into the CNLC bulk for 15 ms or more. The
used experimental setup (Fig. 1) consists of a continuous-wave
(CW) ytterbium-doped fiber laser (1064 nm, obtained from
IPG Photonics) with a collimated output beam diameter of

FIG. 1. (Color online) Scanning-mirror laser tweezers setup used
to generate 2D patterns of torons. The CW collimated ytterbium fiber
laser is controlled with a pair of scanning mirrors. Lenses L1 and
L2 in a 4f configuration direct the beam into the back aperture of an
objective. The scanning-mirror angles determine the 2D positions of
the focused beam within the sample. The dichroic mirror (DM) allows
for simultaneous laser scanning for generation of torons and POM
studies of the optically controlled samples. The crossed polarizer and
analyzer are used to obtain POM textures.

5 mm and a two-axis scanning-mirror head XLRB2 (Nuttfield
Technology) integrated with an upright polarizing optical mi-
croscope BX-51 (Olympus). The tweezers system is designed
to enable computer-programmed steering of a focused beam
between arbitrary sets of coordinates in the sample. The two
scanned mirrors are powered by a digital-analog converter (NI
PCI-MIO-16E-4, obtained from National Instruments) con-
trolled by homemade Labview-based software. These mirrors
enable voltage-controlled two-dimensional beam deflection
and computer-programmed steering of the focused beam
within the sample. The laser beam is first directed into the
scanning head, reflected by its two mirrors, and then introduced
into the microscope by means of a two-lens telescope with
no magnification (Fig. 1). The telescope images the plane of
scanning mirrors to the back aperture of the objective while
also maintaining the collimation of the laser. Deflection angles
defined by the scanning mirrors are converted into positions
in the sample plane by the microscope objective. Using this
setup and homemade Labview-based software, we generate
large arrays of torons by fast sequential computer-programmed
positioning of the focused beam in the sample locations
at which we intend to generate torons. To assure reliable
generation of toron patterns, the focused beam stays at the
toron generation sites for 15 ms or more and is scanned
between the sites at rates of 1 kHz and faster. In addition
to optical fields, low-frequency electric fields (1 kHz, up
to 10 Vp−p) are applied to the CNLC cells using a DS345
generator (Stanford Research Systems) for electric control of
structures, defects, and diffraction patterns.

C. Optical phase mapping setup and method

Phase mapping of diffracted laser beams is implemented
using an approach described in detail in Ref. [30] and an
optical setup for the measurement of Stokes parameters
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FIG. 2. (Color online) Stokes polarimetry phase characterization
setup used to map the phase of diffracted laser light. A Mach-
Zehnder-type interferometer is implemented by dividing a He-Ne
laser beam into two paths and then recombining these two beams
by beam splitters BS1 and BS2, respectively. The block and iris
allow for selecting the diffraction order of interest. M1–M3 are silver
mirrors used for redirecting the beam. The polarization of the beam
is controlled by polarizers P1–P3 and the λ/4 plate. The beam is
collimated by the use of lens pairs L1-L2 and L3-L4.

shown in Fig. 2 [38,39]. In the setup, a Mach-Zehnder-type
interferometer is used to measure the relative phase shift
between two collimated coherent beams of light. A 633-nm
He-Ne laser with beam diameter of 1 mm is split into reference
and probing beams by the beam splitter BS1. Both arms of
the interferometer have an afocal lens pair for collimation of
each beam independently. The reference beam is collimated
by the lens pair L1 and L2 and then polarized horizontally by a
polarizer P1. The probing beam is collimated by L3 and L4 as
it is directed through the sample and then the diffracted beams
of interest are selected by a mirror and polarized vertically
by P2. The two collimated beams are then recombined by
BS2 followed by a rotatable quarter wave plate and polarizer
used for the measurement of the required intensities needed to
determine the Stokes parameters. A camera (Nikon D300) is
then used as an array detector to measure the intensity profile of
the beam and controlled to assure that there is no overexposure
such that its response scales linearly with intensity.

We measure four intensity profiles I (θλ/4,θp) for different
azimuthal orientation angle combinations of the quarter-wave
plate θλ/4 and the polarizer θp in the Stokes polarimetry setup
(Fig. 2). Phase reconstruction of selected diffraction orders
of interest was performed using the method of Denisenko
et al. described in Ref. [30] in which the Stokes parameters S2

and S3 are calculated using the measured intensities values
as S2 = I (π/4,π/4) − I (3π/4,3π/4) and S3 = I (π/4,0) −
I (3π/4,0) (Fig. 2). The coordinate-dependent relative phase
shift between the colocated reference and probing beams in
their lateral plane is then calculated as δ = arctan(S3/S2)
and visualized using MATLAB software. The phase profiles
δ(x,y) of the optical vortex beams are presented using both
two-dimensional (2D) and 3D representations and show dis-
continuous changes of phase at the location of optical vortices.

D. Imaging of generation dynamics and three-dimensional
structure of toron arrays

The scanning-mirror laser tweezers system is integrated
with an upright polarizing optical microscope (POM) BX-51

FIG. 3. (Color online) Experimental and computer-simulated
POM textures of torons. (a),(c) Experimental and (b),(d) correspond-
ing computer-simulated POM textures of laser-generated torons of
different size in a (a),(b) 9-μm-thick cell with CNLC pitch of about
10 μm and (c),(d) 3.5-μm-thick sample with pitch of about 5 μm.
The used CNLC materials were mixtures of the nematic host E7 and
chiral dopant CB15 at concentrations corresponding to pitch values of
5 and 10 μm. In computer simulations, we utilized values of ordinary
refractive index no = 1.5, extraordinary refractive index ne = 1.7,
and optical anisotropy �n = 0.2, closely matching that of the used
LC mixtures. The crossed polarizer and analyzer are shown by white
double arrows and marked by “P” and “A”, respectively.

(from Olympus) used to image LC texture and dynamics of
their evolution. In a typical experiment, the sample is placed
between two crossed polarizers and viewed in a transmission-
mode POM while the defect structures are being generated
and manipulated via steering the focused beam. Imaging light
traversing through the intertoron homeotropic LC regions with
vertical n(r) (along the microscope’s axis) is blocked by the
set of crossed polarizers as polarization of the light remains
unchanged while propagating in the LC along vertical n(r).
Cell regions with torons and various director distortions alter
polarization of incoming linearly polarized imaging light due
to the in-plane component of n(r) (Fig. 3). Laser generation of
structures and their imaging with POM are implemented by use
of a broad range of microscope objectives with 10 × –100 ×
magnification and numerical apertures (NA) within NA = 0.1–
1.4, depending on the need.

Director structures in the vertical cross sections of the LC
cells are studied using the three-photon excitation fluorescence
polarizing microscopy (3PEF-PM). This technique is an imag-
ing modality of the nonlinear optical polarizing microscopy
described in detail in Ref. [47]. A tunable, pulsed Ti:sapphire
oscillator with 140-fs pulse durations at an 80-MHz repetition
rate (Coherent Chameleon Ultra-II) is employed as an exci-
tation source for the 3PEF-PM. The oscillator output can be
tuned over a 680- to 1080-nm wavelength range to optimize the
three-photon absorption excitation of used CNLC materials.
To control the linear polarization state, the beam is passed
through a Glan-Thompson polarizer and a rotatable half-wave
plate. This beam is then directed into the laser scanning
head (Olympus FV-300) integrated with an inverted optical
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FIG. 4. (Color online) Laser-generated torons in a confined
CNLC. (a) Schematic of a toron n(r) configuration consisting of
two hyperbolic point defects (blue dots on the top and bottom
of the schematic) and twist-escaped disclination loop (red line in
the schematic midplane) that conserve the total topological charge
of structures embedded into a cell with a uniform vertical far-
field director. (b) Vertical xz computer-simulated cross section of
n(r) with two blue dots (top and bottom) marking the hyperbolic
point defects and two red dots (on the left and right sides of the
schematic) marking the intersection of the disclination loop with
the cross section. (c),(d) Computer-simulated (c) and experimental
(d) 3PEF-PM textures of a laser-generated toron in a 5-μm-thick
cell visualized using the PARAVIEW software for sample volumes of
high-intensity signal representing azimuthal deviations of the director
away from vertical and towards the direction of probing 3PEF-PM
polarization [48]. The intensity threshold was adjusted to show a
continuous 3D representation of the director’s in-plane orientation
for which four experimental data sets (corresponding to four different
polarizations of 3PEF-PM excitation light) were used. The different
colors (grayscale levels) visualize sample regions yielding high
intensity of 3PEF-PM signal when imaged using different azimuthal
orientations of linear polarization of the 3PEF-PM laser excitation
light (as depicted in the inset for four angles that the linear 3PEF-PM
polarization makes with the x axis). The lateral size of the toron
shown in (d) is about 5 μm. (e) Vector-field representation of the
axially symmetric toron structure that yields the two point defects
having opposite hedgehog charges and the rest of the 3D texture
having zero hedgehog charge. For the selected direction of vector
field (arrows) at the global point of reference (chosen to be the point

microscope IX-81 (Olympus). A 100 × objective with high
NA = 1.4 focuses the beam to a diffraction-limited spot while
a pair of galvano mirrors within the scanning head steers the
spot within the focal plane of the objective. A stepper motor
controls the height of the objective so that 3D images can
be assembled by software from a series of 2D optical scans
obtained at different depths of the sample. Since the laser
excitation intensities needed to induce significant three-photon
absorption exist only within a small volume around the focal
point of the microscope objective, this approach provides an
intrinsic diffraction-limited 3D optical imaging resolution. We
use a beam at 870-nm wavelength to excite the molecules of
used CNLCs directly via the three-photon absorption process
and detect the emitted fluorescence signal in an epi-detection
scheme using a bandpass filter centered at 417 nm (bandwidth
60 nm) and a photomultiplier tube (PMT). Since the transition
dipole moments of multiphoton absorption and fluorescence
are aligned with the long axes of LC molecules, polarized
multiphoton excitation and unpolarized detection yield fluo-
rescence textures with strong signal intensity dependence on
spatial changes of long-range molecular orientation patterns.
The intensity scales as cos6φ, where φis the angle between n(r)
and the used linear polarization direction of laser light [47].
Fluorescence textures obtained for different sample cross-
sections and different 3PEF-PM imaging polarizations allow
one to reconstruct the studied 3D n(r)-fields of laser-generated
structures (Fig. 4), as discussed in detail below.

III. COMPUTER SIMULATIONS OF POM AND 3PEF-PM
TEXTURES AND DIFFRACTION PATTERNS

By taking the computer-simulated 3D director structure
(obtained in our previous studies [1] by means of numerical
minimization of elastic free energy using the director relax-
ation method) of an individual toron as a building block of
studied laser-generated defect arrays [Figs. 3(b) and 3(d)],
we have simulated the corresponding POM textures using
the extended Jones matrix method [36]. These simulations
utilize experimental material and sample parameters (such
as optical anisotropy, pitch, and cell thickness). To simulate
a POM texture, an LC sample with a toron surrounded
by homeotropic uniform n(r) was split into a set of thin
slabs with known director orientation patterns given by the
numerical modeling. While traversing through the cell, light
splits into ordinary and extraordinary waves that have electric
fields perpendicular and parallel to the in-plane projection
of n(r), respectively. These waves “see” ordinary refractive

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
defect at the bottom part of the structure) in (e), the hyperbolic
hedgehog of “+1” charge is marked by a yellow solid circle (bottom
part of the schematic) while the defect of “−1” charge is marked
by a blue solid circle (top part of the schematic). The white solid
circles indicate the location of the axis of the looped double-twist
cylinder intersecting the schematic (e) in its midplane. Note that
(due to nonpolar symmetry of the director) the choice of the vector
directions is arbitrary and that the signs of both of the hyperbolic
point defects can be reversed by changing the direction of arrows in
the vector field.
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index no and an effective extraordinary refractive index nee(θ )
dependent on θ between n(r) and the light’s propagation
direction, respectively [3,36]. The effect of each thin slab is
equivalent to that of a phase retardation plate with spatially
varying optical axis in the lateral plane but constant orientation
of the optical axis across its thickness and can be described
by a coordinate-dependent Jones matrix [36]. In each pixel
of a simulated POM texture, the intensity of the light after
propagation through the cell is obtained by successive multi-
plication of the Jones matrices corresponding to a polarizer, a
series of thin nematic slabs with coordinate-dependent phase
retardation, and an analyzer. To mimic the achromatic-light
observations in our POM experiments, we have performed
these calculations for wavelengths 475, 510, and 650 nm and
then superimposed the resulting textures to obtain a POM
image for white imaging light. In addition to POM images,
we also simulate 3PEF-PM images by first calculating the
angle φ between n(r) and the linear polarization direction
of the used excitation laser light and then evaluating the 3D
normalized fluorescence intensity patterns as cos6φ(r). We
find that the computer-simulated POM images (Fig. 3) and
3PEF-PM images in 3D Paraview presentation [Figs. 4(c)
and 4(d)] closely match the corresponding experimental
results; this type of visualization of complex director fields
will be discussed in detail elsewhere [48].

We also use the minimum-energy simulated n(r)-structure
of the toron to model the phase distribution of a beam passing
through multiple torons that serve as “building blocks” of
studied phase diffraction gratings. Similar to the case of POM
texture simulations, the LC sample with a grid of patterned
toron structures is again split into a similar set of thin slabs
with a known orientation of n(r) and described by a similar
set of Jones matrices. The ordinary and extraordinary waves
experience different phase gain while propagating through
each of the thin LC slabs. The lateral phase distribution of
linearly polarized incident light after propagation through the
cell is obtained by successive multiplication of the Jones
matrices corresponding to the series of thin sample slabs acting
as phase retardation plates with known spatial patterns of the
optical axis orientation. This yields a coordinate-dependent
phase distribution of the light after exiting the sample. The
resulting near-field phase profile experienced by the laser beam
due to torons is then used to calculate the far-field diffraction
pattern. In order to obtain light intensity distributions in the
far field, we multiply the calculated phase distribution by a
Hamming function to approximate the Gaussian profile of a
laser beam and then propagate the beam to the far field using
the Fraunhofer equation [38,39].

IV. LASER-GENERATED VOLTAGE-TUNABLE
TWO-DIMENSIONAL CRYSTALS OF TORONS

The used CNLCs have twisted ground-state configuration
of n(r) which is characterized by cholesteric pitch p, a distance
along the helical axis over which mesogenic molecules and
n(r) rotate by 2π . Despite of the preference to form 1D
twisted structures, CNLCs can be untwisted by external
fields and/or confinement into thin cells. For example, in
the studied LC cells with vertical boundary conditions for
n(r) and of thickness d about equal or smaller than the

equilibrium cholesteric pitch p, one typically observes a fully
unwound frustrated state with a uniform vertical n(r). The
CNLC’s tendency to form twisted structures is suppressed
in this case. By focusing a Gaussian laser beam into these
cells (Fig. 1), we generate the so-called triple-twisted torons
of the first kind [1] (referred to simply as “torons” in this
article) containing two point singularities and a ring of twist-
escaped disclination [Figs. 4(a) and 3(b)], as reconstructed
using 3PEF-PM and conventional POM images [Figs. 3(a),
3(c), and 4(d)]. In the process of generation, the focused
laser beam of sufficient power initially causes rotation of
the director field away from the vertical orientation and
then spontaneous formation of the complex toron structure
(stable even after turning off the beam) that corresponds to
global or local minimum of the elastic free energy [1]. The
appearance of torons under crossed polarizers in POM depends
on the birefringence of LC, toron size, and sample thickness,
however, as these parameters are varied, computer-simulated
POM and 3PEF-PM textures always match the corresponding
experimental counterparts [Figs. 3, 4(c), and 4(d)] [1]. Rather
unexpectedly, the defects comprising torons do not annihilate
or repel apart. In contrast, these defects are bound to each other
at a certain well-defined distance by the interdefect regions of
the sample with twisted n(r) that help to minimize elastic
energy cost of the entire structure. The twist-interspaced point
and line defects form stable or metastable 3D configurations,
depending on LC material properties and the d/p ratio [1]. In
the confinement-unwound cholesteric LC cells with vertical
boundary conditions, these laser-generated topological defects
embed the localized twist of n(r) into the uniform background
director field, forming distinct localized elastic particlelike
excitations (Fig. 4) [1].

The long-term stability of various 2D arrays of torons can be
understood by analyzing elastic free energy and comparing it to
that of a homeotropic texture of the surrounding confinement-
unwound CNLC [2,3,49]. The elastic free energy density reads

felastic = K11

2
(∇ · n)2 + K22

2

[
n · (∇ × n) + 2π

p

]2

+ K33

2
[n × (∇ × n)]2 − K24{∇ · [n(∇ × n)

+ n̂ × (∇ × n)]}, (1)

where K11,K22,K33, and K24 are Frank elastic constants for
splay, twist, bend, and saddle splay deformations, respectively.
Similar to the case of individual laser-generated torons [1],
their arrays minimize twist and saddle splay terms of Eq. (1).
However, this is at the expense of elastic free energy cost of
additional bend and splay distortions (first and third terms in
the above equation) as well as core energies of point defects
within the toron structures. Although the homeotropic uniform
structure with or without individual torons as well as periodic
arrays of torons interspaced by the homeotropic texture have
comparable free energies per unit area of the cell, strong
elastic energy barriers associated with the transformation
of a toron into homeotropic texture or vice versa preclude
spontaneous transitions between these stable and metastable
states while allowing one to induce these transitions by
applied fields and laser beams.
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FIG. 5. (Color online) Periodic arrays of torons as voltage-tunable phase gratings. POM textures of (a) square and (b) hexagonal periodic
arrays of laser-generated torons with the insets showing the corresponding diffraction patterns obtained using a 633-nm HeNe laser. Thin lines
in-between the beams of the same diffraction orders shown in (b) are guides for the eye and have colors (grayscale levels) matched to the colors
(grayscale levels) of corresponding data points presented in (d). (c) Horizontal intensity profile of the square-periodic diffraction pattern along
the C-C line marked on (a). (d) Intensity of light in the hexagonal diffraction pattern vs applied voltage across the cell with the phase grating
of torons for different diffraction orders. The crossed polarizer and analyzer are shown by blue double arrows and marked by “P” and “A”,
respectively.

The triple-twisted torons of the first kind studied here
are each comprised of two hyperbolic point defects and
twist-escaped integer-strength disclination loops embedded
into the uniform vertical director field (Fig. 4) [1]. Mapping
of the director field around the point defects onto the order
parameter space (two-sphere S2/Z2 with pairs of diametrically
opposite points being identical) shows that both of them
have elementary charge with the absolute value of unity
[Fig. 4(a)]. Since the nematic director has nonpolar symmetry,
the assignment of the signs to these defects depends on a
convention as different approaches have been introduced in
the past to determine the sign of topological hedgehog charges
[1–5]. Following the traditionally used convention [3–5], the
hyperbolic point defects [Figs. 4(a) and 4(b)] and disclination
loops of strength s = −1/2 were commonly assigned a
topological charge of “−1” while radial point defects and
s = 1/2 disclination loops were commonly assigned hedgehog
charge “+1”. In analogy, following this convention, a loop
of an integer-strength disclination s = 1 can be assigned a
hedgehog charge of “+2”, compensating the two “−1” point
defect charges and providing one way of understanding the
topological charge conservation in the toron structure with two
hyperbolic point defects and a looped double-twist cylinder
treated as a loop of twist-escaped disclination [Figs. 4(a)
and 4(b)] [1]. A different approach of assigning signs of point
defects and disclination loops, recently discussed in Ref. [14],

requires having a global point of reference and the use of
vector field lines in the nematic or cholesteric texture until the
signs of the hedgehog charges are assigned with respect to
this global reference point [Fig. 4(e)]. Assignment of charges
of topological point defects then depends on the direction of
vector field lines at the global point of reference and can be
reversed by flipping this direction to an opposite one. Using this
approach, one can assign opposite signs of hedgehog charges
to the two point defects within the toron and mapping of the
texture of looped double-twist cylinder onto the corresponding
two-sphere order parameter space yields a net hedgehog charge
equal to zero [Fig. 4(e)]. Having two point defects of opposite
topological hedgehog charge then again assures that the total
topological charge is equal to zero (conserved), regardless
of the choice of the global reference point and vector field
direction that only determine which of the two point defects is
“−1” and which is “+1”. Interestingly, the uniformly twisted
director field lines on a family of nested tori of the toron
structure [Fig. 4(a)] resemble the stereographic projection of
the Hopf fibration [1] localized in a finite-volume of the cell
with vertical boundary conditions by means of the hyperbolic
point defects.

The studied torons can be optically generated at a desired
location in the sample. Using a scanning laser generation
system (Fig. 1), one can program a focused laser beam to
visit arbitrary locations in the confined CNLC sample and,
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FIG. 6. (Color online) Hexagonal periodic arrays of torons as voltage-tunable phase gratings. (a)–(f) POM textures of square-periodic
arrays of laser-generated torons with the insets showing corresponding diffraction patterns obtained using a circularly polarized 633 nm HeNe
laser; the applied voltages are marked in the bottom left corners of the images. The crossed polarizer and analyzer are shown by white double
arrows and marked by “P” and “A”, respectively.

for example, generate individual torons shown in Figs. 3 or
periodic lattices formed by them [Figs. 5(a) and 5(b)]. In flat
LC cells with strong surface anchoring and thickness of about
5 μm and larger as well as lateral sample thickness variations
of about 1% or less, torons generated by laser beams of power
of 50 mW and higher are typically immobile and can be used
to form long-term stable 2D lattices such as the ones shown in
Figs. 5(a) and 5(b). Since a director twist is of benefit from the
elastic energy standpoint only if it occurs with effective pitch
equal or close to the equilibrium pitch p, torons strongly repel
from each other at small center-to-center separations smaller
than p. They weakly repel at somewhat larger distances of
(1–1.4)p to minimize elastic free energy due to convex-type
distortions of n(r) at the toron’s periphery and overall decrease
of distortions and elastic energy cost as the intertoron distance
increases. However, these repulsive interactions quickly vanish
with distance and are comparable or smaller than kBT at
distances of 1.5p and larger. Although torons of small size
(e.g., equal to or smaller than 1 μm) can undergo Brownian
motion within the LC cell, the use of generating laser powers
of 50–150 mW assures that they are strongly pinned in the
location at which they have been generated. This pinning is
likely due to minor laser-induced perturbations in the surface
alignment provided by the surfactant monolayer coatings of
the substrates, so that periodic lattices of torons can remain
intact over long periods of time [Fig. 5(a) and 5(b)]. The
combination of surface pinning with the absence of strong
interactions at relatively small intertoron distances of 1.5p

and larger allows one to optically generate a number of
patterns formed by torons, such as periodic crystalline lattices
shown in Figs. 5(a) and 5(b). Mobile torons (not pinned to
the original generation locations) act as particlelike structures

and can also assemble into hexagonal crystalline lattices by
exploiting lateral confinement and the short-range repulsive
interactions; however, their Brownian motion, interactions,
and self-assembly go beyond the scope of the present work
and will be explored in details elsewhere [50].

V. ARRAYS OF TORONS AS PHASE GRATINGS

Square-periodic and hexagonal lattices of torons can be
used as 2D phase diffraction gratings, yielding diffraction
patterns [insets of Figs. 5(a), 5(b), 6, and 7] that indicate
highly periodic organization of torons in the LC sample.
Since the LC’s effective refractive index depends on the
light’s polarization and propagation directions with respect
to n(r), the arrays of torons yield periodic patterns of effective
refractive index and result in phase gratings obtained by
means of laser-guided structural self-assembly. Using the
superposition of equilibrium n(r) structure of individual torons
(obtained via minimization of the elastic free energy [1]),
we have composed n(r) of square-periodic and hexagonal
lattices of torons mimicking the experimental lattices shown
in Figs. 5(a) and 5(b) and calculated the ensuing periodic
refractive index patterns for circularly polarized incident light.
We then used the thus obtained refractive index and phase
distributions to computer-simulate the diffraction patterns in
the far field (as described in the Sec. III above) and find
them being in agreement with experimental results (compare
patterns shown in Fig. 8 to the experimental ones shown in
Figs. 5, 6, and 7).

The square-periodic diffraction patterns satisfy the well-
known condition for maximum intensity, (mx

2 + my
2)1/2λ =

Ltg sin θ , and have intensity maxima at distances r from the
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FIG. 7. (Color online) Square-periodic arrays of torons as voltage-tunable phase diffraction gratings. (a)–(f) POM textures of square-periodic
arrays of laser-generated torons with the insets showing corresponding diffraction patterns obtained with a 633 nm circularly polarized HeNe
laser. The orientation of crossed polarizer and analyzer at all voltages is shown in (d) by use of blue double arrows marked by “P” and “A”,
respectively.

center of zeroth order beam given by r = λD(mx
2 +

my
2)1/2/Ltg , where λ is the wavelength of laser light used

to obtain diffraction patterns, θ is the diffraction angle, Ltg

is the toron grating periodicity, D is the distance from the
grating to the screen, and mx and my are the diffraction
orders in the x and y directions, respectively [38]. Intensities
of different diffraction orders can be continuously tuned by
applying voltage (Figs. 5–7), until the diffraction grating of
torons is fully erased at relatively strong electric fields (video
1 of the Supplemental Material [51]). This electric control is
possible because of the free energy term describing coupling
between n(r) and electric field E due to voltage applied to
the LC cell. The effects of low-frequency ac electric field E
due to the voltage applied to cell’s transparent electrodes can
be explained by minimization of the electric field term of
the free energy density felectric = − ε0

2 �ε(E · n)2, where ε0 is
vacuum permittivity and �ε is the dielectric anisotropy that

FIG. 8. (Color online) Computer-simulated diffraction patterns
obtained for (a) square-periodic and (b) hexagonal arrays of torons.

can be positive or negative, depending on the used material
[3,36].

In studied LCs with positive dielectric anisotropy, such as
the CNLC mixtures based on 5CB and E7, coupling with an
electric field causes rotation of n(r) toward the cell normal
(i.e., toward E) and allows one to tune size and internal
structure of torons in the lattice. As applied voltage gradually
increases, the refractive index contrast between the torons and
their homeotropic surrounding decreases [Figs. 5(c) and 5(d)].
This continuous control of ensuing 2D patterns of effective
refractive index allows for the control of the diffraction pattern.
Furthermore, at relatively high applied voltages of about 2
Vp−p and higher, the gratings of torons can be fully erased
by the field as individual torons disappear due to unwinding
of n(r) (Figs. 6 and 7 and video 1 of the Supplemental
Material [51]), which can be followed by generation of a new
array or grating by scanning of the laser beam. Thus, facile
laser generation of torons by scanned laser beams and electric
control of these structures provide a new type of optically
reconfigurable voltage-tunable phase diffraction grating of
interest for many applications.

The axially symmetric director configuration of an indi-
vidual toron yields polarization-dependent refractive index
pattern and also polarization-sensitive phase gratings. Most
of the diffraction grating data presented in this work have been
obtained for circularly polarized probing light. For linearly
polarized incoming laser light, diffraction patterns show
strong dependence on orientation of the linear polarization
with respect to the crystallographic axes of the crystalline
arrays of torons, as shown in the videos 2 and 3 of the
Supplemental Material [51] using examples of square-periodic
and hexagonal gratings.
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FIG. 9. (Color online) Control of phase singularities by defects in toron gratings. (a) POM texture of a square-periodic array of torons with
an edge dislocation labeled by a red arrow (located near the center of the image) and (b) a corresponding diffraction pattern with diffraction
orders marked on the image and a large-area view containing higher diffraction order beams shown in the inset. (c) An enlarged image of the
first-order diffracted beam and (d) an interference pattern of the first-order diffraction and reference Gaussian beams obtained for their oblique
incidence. (e) Phase profile of the first-order beam shown in (c). (f) An enlarged image of a second-order diffracted beam and (g) interference
pattern of this beam and a reference Gaussian beam obtained for their oblique incidence. (h) Phase profile of the second-order beam shown in
(f). Three-dimensional plots of the phase vs coordinates in the lateral plane of the diffracted beams of first (i) and second (j) orders, respectively,
with green vertical lines showing locations of the phase singularities. The orientation of crossed polarizer and analyzer in (a) is shown by use
of blue double arrows marked by “P” and “A”, respectively.

VI. GENERATION OF PHASE SINGULARITIES IN
DIFFRACTED LASER BEAMS

Facile optical generation of arbitrary reconfigurable 2D
patterns of torons makes our system ideal for probing how
defects in the crystal-like gratings can induce and control
defects in the phase laser beams. To study phase profiles of
diffracted laser beams, we use the Stokes polarimetry setup
shown in Fig. 2 and the method described in the Sec. II C
above [30,32]. We probe phase profiles of beams in diffraction
patterns due to gratings with various dislocations and other
defects in periodic crystalline arrays of torons, which we
generate by electrically (via applying voltage to the transparent
electrodes) erasing and then optically recreating the desired
toron arrays (Figs. 9–11).

An optically generated square-periodic 2D phase grating of
torons with an elementary edge dislocation [Fig. 9(a)] yields
a 2D diffraction pattern shown in Fig. 9(b). The diffracted
beams with my = 0 have Gaussian-like intensity distributions
but the beams with |my | � 1 contain one or more low-intensity
spots in their intensity profiles. Mapping of lateral phase
distributions reveals no singularities in beams with my = 0
and the presence of phase singularities in all beams with

|my | � 1. As an example, this is demonstrated for the case
of the diffracted beam mx = 0, my = 1 in Figs. 9(c)–9(i)
and for the beam mx = 0, my = 2 in Figs. 9(f)–9(j). A
hexagonal grating with the so-called 5–7 point defect dipole
in the hexagonal lattice shown in Figs. 10(a) and 10(b)
also yields a pattern with phase singularities in diffracted
beams shown in Figs. 10(c)–10(e) (note that the 5–7 dipole
can be also viewed as a set of two edge dislocations in the
hexagonal lattice inserted along two different crystallographic
axes) [2]. Similarly, a square-periodic pattern of torons with
a set of two orthogonal elementary edge dislocation defects
in the center of the toron array shown in Fig. 11(a) yields
a diffraction pattern shown in its inset of Fig. 11(a), with
the diffracted beams having phase singularities characterized
in Figs. 11(b)–11(e). The details of phase distributions of
diffracted laser beams are visualized by means of two different
representations and show that the phase varies continuously
everywhere in the beam’s lateral plane except for the locations
of the screw dislocations (i.e., phase singularities), at which
phase is undefined. The computer-simulated laser intensity
distributions in the diffraction patterns and the phase profiles
[Figs. 11(f)–11(h) and Fig. 12] are in a qualitative agreement
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FIG. 10. (Color online) Hexagonal arrays of torons with defects and the corresponding diffraction patterns with phase singularities. (a),(b)
POM textures of hexagonal periodic array of torons with dislocations at applied voltages of (a) U = 0 and (b) U = 0.8 Vp−p. The inset of (b)
shows the location of 5–7 defects in the hexagonal toron array by means of a Voronoi diagram. (c) Diffraction pattern obtained using a grating
shown in (a). (d),(e) Phase profiles of the first-order diffraction beams marked in (c). The orientation of crossed polarizer and analyzer in POM
textures is shown in (a) by use of blue double arrows marked by “P” and “A”, respectively.

with the corresponding experimental results [Figs. 11(a)–
11(e), 9, and 10].

Characterization of phase profiles of laser beams in different
diffraction orders of square-periodic gratings with dislocation
defects [Figs. 9 and 11–13] reveals a simple relation between
their total topological charge N (mx,my) (here N defines the
number of twists the phase of the light makes in one wavelength
around the optical vortex and the sign of N defines the twist
direction) of optical phase singularities in a diffracted beam
of given order of interest and the Burgers vector b of the
dislocation (perpendicular to the inserted new row of torons) in
the diffraction grating: N (mx,my) = ±(bx |mx | + by |my |)/a,
where a is the lattice periodicity; this result is consistent with
previous studies of other types of gratings with defects [30–
33]. For example, since the grating with a dislocation shown
in Fig. 9(a)) has bx = 0 and by = a, the combined charge of
all phase singularities in beams of given diffraction orders is
N (mx,0) = 0, N (mx,±1) = ±1, N (mx,±2) = ±2, and so on.

A good qualitative agreement between simulated and
experimental phase profiles (Figs. 11 and 12 and Fig. S1 in the
Supplemental Material [51]) shows that patterning of defects
in toron gratings can reliably control phase singularities in
diffracted laser beams. Similar to the case of high-strength
disclinations and high-charge point defects in nematic LCs,
which are known to split into defects of lower charge to

minimize elastic energy [3], the phase singularities of large
N also tend to split into multiple phase singularities of ele-
mentary charge N = ± 1 [Figs. 9(b), 9(f)–9(j)]. The physical
underpinnings of this splitting are different as compared to
defect splitting in LCs. The splitting of high-charge phase
singularities into the elementary ones is usually attributed to
inherent presence or addition of small coherent background
in a screw-dislocated wave of the laser beam [31–33]. The
demonstrated voltage tunability of the diffraction patterns
provides unprecedented means of tuning both intensity and
phase distributions in the diffraction patterns (Fig. 13), similar
to the case of dislocation-free arrays discussed in the previous
section.

VII. TOWARD A MODEL SYSTEM FOR PROBING THE
INTERPLAY OF DEFECTS IN CONDENSED MATTER

AND IN ELECTROMAGNETIC WAVES

In conventional atomic, molecular, or colloidal crystals with
long-range positional order, dislocations and disclinations are
sources of mechanical stress and therefore energetically costly.
Therefore, only a limited combination of these defects in
such condensed matter systems can spontaneously occur or
be induced by external fields [4]. Furthermore, probing the
effect of individual defects in, say, atomic or molecular systems
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FIG. 11. (Color online) Square-periodic array of torons with defects and the corresponding diffraction pattern. (a) POM texture of the array
and the corresponding diffraction pattern shown in the inset obtained for a 633-nm HeNe laser; the two diffracted beams in different diffraction
orders are marked in the inset as mx = 1, my = 0 and mx = 1, my = 1. (b) Phase profile (top) and an interference pattern of the mx = 1,
my = 0 diffraction beam and a reference Gaussian beam obtained for their oblique incidence (bottom). (c) A 3D representation of the phase vs
coordinates in the lateral plane of the diffracted beam of the mx = 1, my = 0 diffraction order. (d) Phase profile (top) and an interference pattern
(bottom) of the mx = 1, my = 1 diffraction order beam and a reference Gaussian beam obtained for their oblique incidence (bottom). (e) A 3D
representation of the phase vs coordinates pattern in the lateral plane of the diffracted beams of the mx = 1, my = 1 diffraction order beam. (f)–(h)
Computer simulation of intensity (f) and phase distribution (g) of the diffraction pattern plotted separately [(f),(g)] and then overlaid on top of
each other (h). The orientation of crossed polarizer and analyzer in (a) is shown by use of blue double arrows marked by “P” and “A”, respectively.

FIG. 12. (Color online) Computer-simulated (a),(d) intensity and
(b),(e) phase distributions for diffraction gratings that correspond to
the experimental counterparts shown in Figs. 10 and 9, respectively.
(c),(f) Overlaid plots of lateral intensity and phase distributions of the
diffraction patterns obtained by superimposing parts (a) with (b) and
(d) with (e), respectively.

on phase of electromagnetic waves would require detailed
characterization of phase of diffracted x-ray and electron
beams with a wavelength comparable to crystal periodicity,
which is typically impractical. In colloidal systems and various
LCs with partial long-range or quasi-long-range positional
ordering (e.g., smectic and columnar LCs), defects such as
dislocations also correspond to short-lived metastable states
(unless the crystals with defects occur on curved surfaces so
that this stress is relieved by curvature [2,25]) and only limited
types of defects can be obtained. These constraints are not
present in our model system because interactions between the
surface-pinned torons are negligible and there is no significant
energy cost due to introducing various defects into the arrays
of torons which can be generated by simply scanning the laser
beam and “drawing” desired arrays/patterns. Thus, our system
offers a means for probing the interplay of defects in soft
condensed matter and optics, which can potentially yield a
number of general conclusions important for the study of
defects in different fields. Furthermore, homeotropic CNLC
cells with torons allow for the generation of structures rather
uncommon for 2D colloidal and molecular systems, such as the
honeycomb lattice [Fig. 14(a)], a square-periodic lattice with
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FIG. 13. (Color online) Square-periodic arrays of torons with
defects as voltage-tunable phase gratings. (a)–(d) POM textures
of square-periodic arrays of laser-generated torons at different
applied voltages (marked on the images) with the insets showing
corresponding diffraction patterns obtained with a 633-nm HeNe
laser. The orientation of crossed polarizer and analyzer in the POM
textures is shown in (c) by use of blue double arrows marked by “P”
and “A”, respectively.

a bifurcated homeotropic channel formed by missing rows of
torons [Fig. 14(b)], and various quasi-crystal-like structures
(Fig. 15) [52]. Thus, laser-generated patterns of torons offer a
test bed for probing various theoretical predictions and also for
facile experimental exploration of interaction of laser beams

and various unconventional phase diffraction gratings with
optically controlled singularities and quasicrystalline or partial
order.

An interesting property of the studied system is that it
contains defects at different levels (i.e., the torons comprise
twist-bound line and point defects in molecular ordering and
in twist directionality that then are used to form defect arrays
with dislocations, defects in the periodic arrangements of
these elastic quasiparticles). We have previously shown that
the types and organization of defects within torons can be
controlled by introducing defects into phase of the generating
laser beams [1]. The present work, in turn, demonstrates that
dislocation defects in the arrays of torons used as diffraction
gratings allow for the control of optical phase singularities in
the diffracted laser beams. In addition to the torons of the first
kind used as a building block of periodic lattices in this work,
one can compose phase gratings from torons having other
defect structures (e.g., with half-integer disclination loops
instead of point defects comprising the structure shown in
Fig. 4(a) [1]), cholesteric fingers of different kinds [45,46,53],
as well as mixed structures containing torons and fingers
of different kinds [44,54]. This unprecedented control over
spatial organization of defects in gratings may offer a wide
range of applications, such as optical data storage [37],
light or voltage controlled information displays [36], tunable
photonic crystals [37], light-controlled LC elastomers [55],
defect-mediated organization of metal and semiconductor
nanoparticles in LCs [56,57], etc.

VIII. CONCLUSIONS

We have demonstrated that laser-guided self-assembly
of periodic arrays of localized structures—dubbed torons—
allows for facile generation of reconfigurable and tunable
phase diffraction gratings with and without dislocation defects
as well as in the form of quasicrystal-like patterns. The
key advantage of the demonstrated optically and electrically

FIG. 14. (Color online) POM images of (a) a honeycomb lattice of torons and (b) a square-periodic array of torons with a bifurcated
homeotropic channel. The orientation of crossed polarizer and analyzer in these POM textures is shown by use of blue double arrows marked
by “P” and “A”, respectively.
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FIG. 15. (Color online) (a)–(c) POM images of laser-generated
quasi-crystal-like structures of torons obtained by mimicking qua-
sicrystal structures described in Ref. [50]. The lateral size of torons is
about 10 μm in all POM images. The orientation of crossed polarizer
and analyzer in the POM textures is shown by use of blue double
arrows marked by “P” and “A”, respectively.

reconfigurable diffraction gratings over their microfabricated
counterparts and electrically addressed spatial light mod-
ulators (typically used to generate phase singularities in
the laser beams) is the robustness with which the periodic
patterns of LC defects can be generated and switched between
multiple distinct long-term-stable states. Since the lattice
periodicity of optically induced structures depends on the
equilibrium pitch of the used CNLC and can be tuned from
several hundreds of nanometers to hundreds of microns by
varying the pitch and utilizing different structure generation
schemes, thus obtained diffraction gratings can be designed
to work in both Raman-Nath and Bragg regimes [38,51,58].
Structural multistability as well as low-voltage and low-laser-
power switching may additionally lead to powerless and
low-power multimodal operation of electro-optic, photonic,
and all-optical devices as well as new types of information
displays.
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