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A combination of analytical, numerical, and qualitative methods is used to study competing equi-
librium orientational configurations in a liquid-crystal thin film. The material is a cholesteric liquid
crystal and has a negative dielectric anisotropy. The system has strong homeotropic anchoring of
the liquid-crystal director on the confining substrates and is subject to a voltage applied across the
film thickness. A free-energy functional embodies the competing influences of the boundary con-
ditions, the intrinsic chirality of the material, and the electric field. Attention is restricted to director
fields that are functions only of the distance across the cell gap. A detailed phase and bifurcation
analysis of the two equilibrium configurations of this type is presented; the control parameters are
the ratio of the cell gap to the intrinsic pitch of the cholesteric and the applied voltage. The study
was motivated by potential technological applications. The phase diagram contains both first-order
and second-order transition lines, the former terminating at an isolated point and the latter at a triple
point. The voltage-dependent nature of the total twist of the director across the cell is revealed and
explained, and an effective upper bound is obtained on the ratio of cell gap to pitch for the system
to support a simple voltage-driven second-order transition between the two 1-D equilibrium states.

Keywords: Liquid Crystals, Thin Films, Cholesterics, Oseen-Frank Free Energy, Negative
Dielectric Anisotropy, Phase and Bifurcation Analysis.

1. INTRODUCTION AND MODEL

Cholesteric liquid crystals (also known as chiral nematics),
in the absence of any other influences, form a twisting
equilibrium orientational ground state with the liquid crys-
tal “director” (the local average orientation of the long
axes of the molecules) rotating transverse to a helical
axis, the direction of which is degenerate in space.
Because of their unique optical properties, these materi-
als are used in several liquid-crystal-based technologies,
including displays, switchable diffraction gratings, eye-
wear with voltage-controlled transparency, beam-steering
devices, and mirror-less lasers, among others.1–12 The
understanding of the orientational structures in cholesteric-
liquid-crystal systems, and the transitions among them, is
of practical importance, as well as of fundamental interest.
It is the subject of this paper, in which we study a partic-
ular cholesteric-liquid-crystal system (geometry, boundary

∗Author to whom correspondence should be addressed.

conditions, material properties) that is used in some of these
applications.a

We report on an analysis of the structural phase and
bifurcation behavior of equilibrium molecular orientational
configurations in a thin cholesteric-liquid-crystal film. The
material also has a “negative dielectric anisotropy;” this
causes the director to prefer to align perpendicular to an
electric field, which for the system we study is parallel to
the film normal. In addition, the substrates that confine the
film are treated in such a way as to encourage the director
to align perpendicular adjacent to the substrate (i.e., paral-
lel to the applied electric field)—so called “homeotropic”
alignment. The competition among these several influences
(intrinsic chirality, electric field, and boundary conditions)

aStandard references on the physics of liquid crystals are Priestly
et al.,13 Vertogen and de Jeu,14 Pikin,15 Chandrasekhar,16 de Gennes and
Prost,17 and Kleman and Lavrentovich.18 For the mathematics of liquid
crystals, we refer to Ericksen and Kinderlehrer,19 Virga,20 and Stewart.21
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leads to multiple equilibrium orientational states and com-
plex transitions among them.

This system (basic geometry, orientations, and mate-
rial properties) underlies technologies discussed in Refs.
[1, 3, 6, 10]. The motivation for our work was as part of
a combined experimental and analytical study of this sys-
tem with a particular (proprietary) material being evaluated
for potential commercial applications in such areas. This
basic system (with various different materials) has been
much studied from experimental, qualitative, and numer-
ical points of view.22–27 The most interesting equilibrium
configurations are functions of two space dimensions, one
being across the cell gap, periodic in one direction in the
plane of the film. A variety of such textures and transitions
appear in the references above. An overview can be found
in Ref. [27], which also contains a reproduction of pre-
viously reported phase diagrams (extended to include the
influence of different boundary alignment treatments and
the presence or absence of spacers), as well as the unam-
biguous reconstruction of the complex periodic director
fields using fluorescence confocal polarizing microscopy
(which validated some previously suggested models and
disproved others).

The present paper is concerned with the competition
between two one-dimensional equilibrium states, which are
functions only of the distance across the cell gap (uniform
in the plane of the film)—we will report on the more com-
plicated periodic instabilities at a future time. These two
configurations (referred to below as “Homeotropic” and
“Translation Independent Cholesteric”) and the transition
between them are used in electrically driven light shutters,
intensity modulators, eyewear with tunable transparency,
and displays, as discussed in Refs. [1, 3, 6, 10]. Our anal-
ysis will reveal a phase diagram that is more complicated
than one would expect and which has implications for
technologies based on these configurations and transitions.
The geometry of the system and the coordinate system we
shall use are displayed in Figure 1. Of the several different
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E

Fig. 1. Thin film geometry and coordinate system: cell gap d, period of
periodic-in-x solutions 2L (not known a-priori), electric field E. Perfect
homeotropic anchoring (perpendicular alignment) of the liquid-crystal
director is assumed at the boundaries adjacent to the upper and lower
substrates. All fields are uniform in y.

equilibrium configurations observed experimentally, we
concentrate on the three depicted in Figure 2, where we
employ the terminology of Ref. [26].

The “Homeotropic” configuration is stable for suffi-
ciently small cell gaps and voltages, when the boundary
conditions can overcome both the intrinsic chirality (and
desire of the director to form a pure-twist ground state) as
well as the influence of the electric field (which encour-
ages the director to align perpendicular to the field, in
the horizontal direction). This configuration has a com-
pletely uniform director field. For sufficiently large cell
gap and/or sufficiently high voltage, the “Translation Inde-
pendent Cholesteric” (TIC) configuration can exist. It is
sometimes locally stable (metastable) and sometimes, in
addition, globally stable (minimum free energy). It is non-
uniform in the z direction only (across the cell gap) and
is rotationally degenerate: any continuous rotation of it
around the z axis produces an equivalent equilibrium direc-
tor field (with the same free energy). 1-D-periodic struc-
tures can also exist for sufficiently large cell gaps and
voltages, and these compete with the Homeotropic and
TIC solutions. The “Cholesteric Finger of type 1” (CF1)
is one of the most common—see Figure 2 right, where a
single period is displayed. This configuration is periodic
in the lateral, x, direction and translationally degenerate:
any continuous translation in the x direction produces an
equivalent equilibrium director field. All solutions we con-
sider are uniform in the y direction.

We model the system with Oseen-Frank elasticity and
coupled electrostatic potential: the free energy (per unit
length in the y direction) of a single period in the x direc-
tion is given by

� �n�	
=
∫ L
−L

∫ d
0
��n�
n�
	�dzdx (1)

where n = n�x� z� is the director (a unit-length vector
field), 	 = 	�x� z� the electrostatic potential (E = −
	,
the local electric field), and the free-energy density is
given by

2� = K1�divn�2 +K2�n · curln+q0�
2 +K3�n× curln�2

−�0��⊥�
	�2 +�a�
	 ·n�2
 (2)

Here L is the half-period of a periodic-in-x solution; d
is the cell gap; q0 = 2�/P is the wavenumber associ-
ated with the intrinsic “pitch” P of the cholesteric; and �0

is the vacuum dielectric permittivity (8�854× 10−12 F/m).
The values of the Frank elastic constants K1, K2, and K3

for the particular material used in our experiments are
given in Table I, as are the relative dielectric constants
�	 (relative dielectric permittivity parallel to the electric
field) and �⊥ (relative permittivity perpendicular to the
field). The “dielectric anisotropy” is their difference, which
is negative for our material: �a �= �	 − �⊥. The mate-
rial is proprietary; the material parameters were measured

2 J. Comput. Theor. Nanosci. 7, 1–17, 2010
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Fig. 2. Equilibrium director fields: “Homeotropic” (left), “Translation Independent Cholesteric” (TIC, center), “Cholesteric Finger of type 1” (CF1,
right, one period). Lengths are in microns.

experimentally (using Fréedericksz thresholds to deter-
mine the elastic constants and using capacitance measure-
ments for the dielectric constants)—details can be found in
Ref. [27].

The first three terms of (2) embody the “elastic energy”
associated with distortions of the director field. Were q0

equal to zero (the case of a nematic liquid crystal), the
zero-distortional-energy ground state would be a uniform
field n = const (for which both divn = 0 and curln = 0).
For q0 
= 0, the zero-elastic-energy state is given by fields
of the general form

n�z�= cosq0zex+ sin q0zey (3)

where the helical axis (ez above) could be oriented in any
arbitrary direction; for such fields we have divn = 0 and
curln = −q0n (⇒ n · curln+ q0 = 0 and n× curln = 0).
The last two terms of (2) embody the free energy associ-
ated with the electric-field/liquid-crystal interaction. With
a given electric field (given 
	), the free-energy density
� is minimized by n ⊥ 
	 (n ·
	 = 0) for �a < 0 (our
case), as opposed to n 	 
	 for �a > 0.

The periodicity 2L is not known or specified a-priori. In
this general setting, the constrained, coupled equilibrium
equations satisfied by the director field n = n�x� z� and

Table I. Material parameters: elastic constants (K1, K2, K3, in units of
pN = 10−12 J/m) and relative dielectric permittivities (�	, �⊥, dimension-
less) associated with free-energy density (2).

K1 17.2 pN
K2 7.51 pN
K3 17.9 pN
�	 3.4
�⊥ 7.1

electrostatic potential 	 = 	�x� z� can be expressed

−div
(
��

�
n

)
+ ��
�n

= �n�

�n� = 1� −�< x <�� 0< z < d (4a)

div���n�
	�= 0� � = �0��⊥I+�an⊗n� (4b)

Here �=��x� z� is the Lagrange-multiplier field associated
with the pointwise unit-vector constraint on n, and � is the
dielectric tensor of a uniaxial crystal with optic axis n. We
follow some of the notation of Refs. [20] and [21]. In terms
of Cartesian tensors, the following identifications can be
made:[

��

�
n

]
= ��

�n���
�

[
��

�n

]
= ��

�n�
� �I
= ���

�n⊗n
= n�n�� ���= x� y� z
(5)

The boundary conditions are

n�x�0�= n�x�d�= ez

	�x�0�= 0� 	�x�d�= V (6)

where V is the applied voltage. The globally stable
“phase” of the system is given by the coupled equilibrium
fields of least free energy—this is the configuration that
would be observed in a laboratory experiment in general.

Two aspects of the modeling warrant discussion: the
appropriateness of Frank elasticity and the assumption of
infinitely strong homeotropic anchoring. The Oseen-Frank
phenomenological theory is based on certain assumptions
and has its limitations. It assumes a uniform degree of
orientational order with a uniaxial molecular orientational
distribution. It does not explicitly take into account molec-
ular conformational variations. It also assumes mild spa-
tial variations in the director field. It is a macroscopic

J. Comput. Theor. Nanosci. 7, 1–17, 2010 3
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model, meant to be valid on length scales that are large
compared to intrinsic, molecular-order length scales. This
theory has been very successful in modeling systems of
low-molecular-weight liquid crystals in super-micron-size
geometries. Its validity is strained, for example, when deal-
ing with cores of the singular defects,18�28 behavior close
to the transition into the isotropic phase, high shear rates
(in the related Ericksen-Leslie hydrodynamic theory), and
the like.

The proprietary material used in the experiments we
model is a low-molecular-weight liquid crystal with a typ-
ical nematic correlation length in the range of 10 s of
nanometers. The cells (in both the experiments and in the
technologies) are typically 5–10 microns thick (2–3 orders
of magnitude larger than the correlation lengths) and free
of defects, for the configurations we analyze. The applied
AC voltages were sufficiently low and frequencies suf-
ficiently high to avoid hydrodynamic instabilities. See
Ref. [27] for details on the experiments. All these circum-
stances suggest that the Oseen-Frank model should per-
form quite well.

Perpendicular (“normal” or “homeotropic”) orientation
of the nematic director at the interface of a liquid crystal
and various media is a well established experimental fact,
whose mechanisms are discussed, for example, by Sonin
in Refs. [29] and Yokoyama in Ref. [30]. A variety of tech-
niques can be used to achieve the homeotropic orientation;
it is often established at the free surface of nematic liquid
crystals formed by polar molecules or at the interfaces con-
taining amphiphilic (surfactant) molecules. In particular, in
Ref. [27] (Smalyukh et al., the experiments we model), the
homeotropic alignment has been established at the inter-
face between a low-molecular-weight cholesteric mixture
and a commercially available polyimide coating JALS-204
(JSR, Japan). When such a polyimide is unidirectionally
rubbed and when the director is forced to tilt away from
the normal orientation (for example, by an external elec-
tric field), this unidirectional treatment helps to reduce the
manifold of distorted configurations.27

An important issue is the relative strength of
the molecular interactions that keep the director in the
homeotropic position. The relevant measure of this is
the so-called (polar) anchoring coefficient W (see, e.g.,
Refs. [18, 29, 30]), which is determined by the work
needed to deviate the director by a certain angle from
the normal to the interface, per unit area of the interface.
The ratio l = K/W , where K is the typical Frank elastic
constant, has the dimension of length and is called the
anchoring “extrapolation length.”18 If l is much smaller
than the typical spatial scale of director distortions, then
the search for an equilibrium configuration is reduced to
the minimization of the Frank-Oseen functional with no
additional surface terms. This is the case in our work: in
the relevant experimental situation described in Ref. [27],
l has been estimated to be in the sub-micrometer range,

while the other length scales, such as the cell thickness, the
cholesteric pitch, the length scale of director reorientation,
are much larger, in the range of 2–100 micrometers.

Thus the boundary conditions in our case are taken into
account by simply requiring that the director at the sur-
face does not deviate from the normal orientation. This
approach is often called “infinitely strong anchoring” or
“fixed boundary conditions” (see, e.g., Refs. [17, 18]). The
“weak anchoring” (finite-strength anchoring) regime could
have been built into the model, at the expense of an
added surface anchoring term to the Frank-Oseen func-
tional and thus some additional complexity but not much
deeper insight; such an addition was not deemed necessary
for the first stage of modeling of the structures with the
director varying over scales much larger than the submi-
cron distance l.

2. DIRECTOR ANGLE REPRESENTATION
AND REDUCED SYSTEMS

To gain some preliminary understanding of this system, we
have restricted our consideration in this paper to configura-
tions that are uniform in x, i.e., “1-D” solutions, which are
functions of z only. This excludes the CF1 configuration.
In this first phase of our investigation, then, we study the
bifurcation and phase behavior of the Homeotropic ver-
sus TIC solutions, under the assumption that all fields are
functions of z only.

2.1. Director Angle Representation and
Equilibrium Equations

For the analysis of these 1-D solutions, a representation of
the director field in terms of spherical-polar coordinates is
useful:

nx = sin " cos#� ny = sin " sin#� nz = cos" (7)

In terms of these, the pointwise unit-vector constraint
�n�z�� = 1 is automatically satisfied, and the Homeotropic
solution takes the form

"�z�=0=const� #�z�=undefined� 	�z�= Vz
d

(8)

The components of the TIC solution cannot be expressed
analytically (as far as we know). They can be com-
puted numerically and, for representative parameter values,
appear as in Figure 3. In terms of this angle representation
of the director, the free-energy density becomes

2� = �K1 sin2"+K3 cos2"�"2
z

+ �K2 sin2"+K3 cos2"� sin2"#2
z

−2K2q0 sin2"#z+K2q
2
0

−�0��⊥ sin2"+�	 cos2"�	2
z (9)

where "z = d"/dz, etc.

4 J. Comput. Theor. Nanosci. 7, 1–17, 2010
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Fig. 3. Components of a representative TIC equilibrium solution
(numerically computed): tilt angle (", top), twist angle (#, center), and
electrostatic potential (	, bottom) versus z (distance across the cell).
Parameters: as in Table I, cell gap d = 5$m, d/P ratio = 0�5, voltage
V = 3�5 volts.

The coupled Euler-Lagrange differential equations asso-
ciated with (9) are given by

d

dz
��K1 sin2"+K3 cos2"�"z


= sin " cos"%�K1 −K3�"
2
z

+ ��2K2 −K3� sin2"+K3 cos2"
#2
z

−2K2q0#z+�0�a	
2
z & (10a)

d

dz
%sin2"��K2 sin2"+K3 cos2"�#z−K2q0
&= 0 (10b)

d

dz
���⊥ sin2"+�	 cos2"�	z
= 0 (10c)

with associated boundary conditions

"�0�= "�d�= 0� #�0�� #�d� undefined�

	�0�= 0� 	�d�= V (11)

These give necessary conditions for equilibria. This prob-
lem as it stands is degenerate because of the rotational
invariance of the TIC solutions and associated indetermi-
nacy of the # boundary conditions.

2.2. First Integrals and Reduced Systems

Equations (10b) and (10c) have right-hand sides of zero by
virtue of the fact that the free-energy density (9) involves
only the derivatives #z and 	z and not the undifferenti-
ated fields # and 	. As a result, these equations can be
integrated directly to give the first integrals

�K2 sin2"+K3 cos2"�#z = K2q0 +
c1

sin2"
(12)

and

��⊥ sin2"+�	 cos2"�	z

= V∫ d
0 1/��⊥ sin2"+�	 cos2"�dz

(13)

the latter having used as well the boundary conditions
on 	. From (13) we can obtain an explicit formula for the
electrostatic potential in terms of the equilibrium " field
for the director:

	�z�= V
∫ z

0 1/��⊥ sin2"�(�+�	 cos2"�(��d(∫ d
0 1/��⊥ sin2"�(�+�	 cos2"�(��d(

(14)

The fate of the integration constant c1 in (12) can be deter-
mined by examining its role in the free-energy density � .
If we use the expression (12) above to replace the terms
in (9) involving #z by their equilibrium equivalents involv-
ing " only, we find that

�K2 sin2"+K3 cos2"� sin2"#2
z −2K2q0 sin2"#z

=−K2q
2
0

K2 sin2"

K2 sin2"+K3 cos2"

+ c2
1

sin2"�K2 sin2"+K3 cos2"�
(15)

The term containing c2
1 above is nonnegative and so would

give a free-energy-minimizing state only when c1 = 0.
Moreover, by virtue of the boundary conditions on "�z�
("�0� = "�d� = 0), we see that near the boundary points

J. Comput. Theor. Nanosci. 7, 1–17, 2010 5
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z = 0 and z = d, the sin2" factor in the denominator of
this term should behave like

sin2"�z�= "z�0�2z2 +O�z4�� near z= 0 (16)

and

sin2"�z�= "z�d�2�d− z�2 +O��d− z�4�� near z= d
(17)

which would cause the integral of this term to be divergent.
Thus (granted that "z remains bounded) the only choice
of c1 that leads to admissible equilibrium fields is c1 = 0.
Thus we obtain

�K2 sin2"+K3 cos2"�#z = K2q0

*# =
∫ d

0

K2q0

K2 sin2"+K3 cos2"
dz

(18)

Here *# denotes the “total twist” across the cell.
The expressions (13) and (18) enable us to remove #

and/or 	 from the system. The free-energy density with #
removed takes the form

2� = �K1 sin2"+K3 cos2"�"2
z

+K2q
2
0

K3 cos2"

K2 sin2"+K3 cos2"

−�0��⊥ sin2"+�	 cos2"�	2
z (19)

while the free energy with both # and 	 removed is
given by

� �"
 = 1
2

∫ d
0

[
�K1 sin2"+K3 cos2"�"2

z

+K2q
2
0

K3 cos2"

K2 sin2"+K3 cos2"

]
dz

− 1
2
�0V

2

[∫ d
0

1

�⊥ sin2"+�	 cos2"
dz

]−1

(20)

This latter expression is similar to Ref. [21, Eq. (3.221),
p. 91], where the approach of Deuling31 to analyze a
Fréedericksz transition with an electric field is discussed;
the formula above for our free energy includes an addi-
tional term from the intrinsic chirality, which is not present
in the case in Refs. [21, 31].

Equation (18) expresses the dependence of the local
(instantaneous) “twist rate,” #z�z�, on the tilt angle. Since
the elastic constants for our material satisfy K2 ≈K3/2, the
twist rate varies between roughly q0/2, for " ≈ 0, to the
usual bulk value of q0, for " ≈ �/2. The total twist across
a cell of thickness d then satisfies

�
d

P
≈ 2�

K2

K3

d

P
< *# < 2�

d

P
(21)

approaching the lower limit for very small voltages and
the upper limit for very large voltages.

3. PERTURBATION ANALYSIS OF
BIFURCATIONS

We study the local linear stability of the Homeotropic
solution with respect to 1-D (z-dependent only) perturba-
tions. We do this first by expanding the free energy (20)
around the "�z� = 0 equilibrium state and analyzing the
quadratic form associated with the second variation, find-
ing that the uniform state is stable within a certain ellipse
in the �d/P�V � parameter plane. Preliminary numerical
explorations reveal that the transition from Homeotropic to
TIC can be either “first order” (discontinuous with respect
to changes in the dependent variables) or “second order”
(continuous), and so we then perform a more refined
perturbation analysis of the Homeotropic-TIC bifurcation
points (for different material parameters) to try to deter-
mine where in the parameter space the change from one
behavior to the other takes place.

3.1. Local Stability of Homeotropic
Configuration

The local stability of the Homeotropic configuration to
perturbations, which we are restricting to be uniform in
x (as well as y), can be analyzed in various ways. If we
introduce a small perturbation of the uniform ground state
"�z� = 0+ �"�z�, ��"� � 1, into the "-only form of the
free energy in (20) and expand, we obtain

� �0+�"
 = 1
2

[
K2q

2
0d−

�0�	V 2

d

]

+ 1
2

∫ d
0

[
K3�"

2
z +

(
�0�aV

2

d2
− K

2
2q

2
0

K3

)
�"2

]

+O��"4� (22)

Here the leading term gives the free energy of the
Homeotropic n�z� = ez director field, and the first-order
terms vanish by virtue of the equilibrium conditions satis-
fied by it. The second term in the expansion is a quadratic
form in the perturbation �"�z�; it is positive definite for
V 2 and q2

0 sufficiently small—keep in mind that �a < 0.
By examining the eigenvalue problem associated with this
form, one can deduce that stability is lost to a perturb-
ing mode of the form �"�z� ∝ sin�z/d when the pair
�d/P�V � is outside the “spinodal ellipse”

4K2
2

K2
3

(
d

P

)2

− �0�a

K3�
2
V 2 = 1 (23)

This equation is consistent with Refs. [24, 26]. The loss
of stability can be either 1st order, for d/P large, or 2nd
order, for d/P small. The situation is depicted in Figure 4.

3.2. Nondimensionalization

The point on the spinodal ellipse at which the bifurcation
changes from supercritical to subcritical can be determined

6 J. Comput. Theor. Nanosci. 7, 1–17, 2010
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scan lines for the bifurcation diagrams on the right. The bifurcation diagrams plot the maximum tilt angle "m versus voltage V for constant d/P = 0�8
(upper right) and "m versus d/P for constant V = 1�0 volts (lower right). Only the upper parts of the mirror-symmetric pictures are shown. The
upper-right bifurcation diagram is “supercritical” (associated with a 2nd-order transition); while the lower-right is “subcritical” (1st-order transition).
In the bifurcation diagrams, metastable configurations are indicated with solid blue lines; dashed blue lines correspond to equilibria that are not locally
stable. The global free-energy-minimizing solution is indicated with a heavier blue line; the vertical red line corresponds to the crossover point. The
value "m = 0 corresponds to the Homeotropic solution; values of "m 
= 0 are associated with TIC solutions.

in various ways. Here we do so by performing a pertur-
bation analysis of the bifurcation points that occur at all
the points along this curve. For this we find it convenient
to use the "-only formulation of the equilibrium equa-
tions. The Euler-Lagrange equation associated with (20) is
given by

d

dz
��K1 sin2"+K3 cos2"�"z


= sin " cos"
{
�K1 −K3�"

2
z −K2q

2
0

K2K3

�K2 sin2"+K3 cos2"�2

+ �0�aV
2

��⊥ sin2"+�	 cos2"�2

×
[∫ d

0

1

�⊥ sin2"+�	 cos2"
dz

]−2}
(24)

to be solved on 0 < z < d subject to boundary condi-
tions "�0�= "�d�= 0. The problem is nonlinear, and it is
nonlocal—due to the fact that the local electric field (asso-
ciated with the 	z term in (9), which has been removed)
depends on the orientation of the director across the entire

cell. Observe that the problem possesses mirror symmetry:
if "�z� satisfies (24), then so must −"�z�. This is the cause
of the “pitchfork” nature of the bifurcations.

It is advantageous at this stage to put our problem in
dimensionless form. To this end we introduce

z̄ �= �z
d
� "̄�z̄� �= "�z�� �̄a �=

�a

�	
= �	 −�⊥

�	
(25a)

and
k1 �=

K1 −K3

K3

� k2 �=
K2 −K3

K3

�

� �=
√−�0�a

K3

V

�
� � �= K2q0d

K3�

(25b)

in terms of which (24) takes the form (after dropping bars)

d

dz
��1+k1 sin2"�"z


= sin " cos"
{
k1"

2
z −

�2

�1+k2 sin2"�2
− �2

�1− �̄a sin2"�2

×
[

1
�

∫ �
0

1

1− �̄a sin2"
dz

]−2}
(26)

J. Comput. Theor. Nanosci. 7, 1–17, 2010 7
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which is to be solved on 0 < z < � subject to boundary
conditions "�0� = "��� = 0. Here we regard k1, k2, and
�̄a as “material” parameters and � and � as “control” or
“continuation” parameters. The dimensionless parameter �
is proportional to the voltage V , while � is proportional to
the d/P ratio—recall that q0 = 2�/P . Numerical values
for k1, k2, and �̄a for the material used in our experiments
(see Table I) are given by

k1
�=−0�039� k2

�=−0�580� �̄a
�=−1�088 (27)

We also note that in terms of � and �, the spinodal ellipse
(23) becomes the unit circle in the �−� parameter plane

�2 +�2 = 1 (28)

3.3. Perturbation Analysis of Bifurcation Points

We restrict our attention to scenarios of the types depicted
in Figure 4: � fixed, continuation with respect to �, or �
fixed, with continuation in �. Other ����� trajectories are
possible. Considering the former of these, we introduce a
continuation parameter - and formally expand around a
possible bifurcation point at - = 0:

"�z.-� = "1�z�-+"3�z�-
3 +"5�z�-

5 +· · · (29a)

��-� = �0 +�2-
2 +�4-

4 +· · · (29b)

The oddness of the " expansion (with respect to -) and
evenness of the � expansion are consistent with the sym-
metry of the problem; if one seeks " and � in terms
of more general expansions, one finds the terms omitted
above to be zero.

We require a normalization for the parameter -, and we
adopt the following (for convenience):

4

�

∫ �
0

(
�"

�-

)2

dz+3
(
d�

d-

)2

= 2 (30)

This gives - the significance of a pseudo-arc-length
parameter in "−� space. The consequences of this nor-
malization at the first few orders are

O�1� �
2
�

∫ �
0
"2

1 dz= 1 (31a)

O�-2� �
2
�

∫ �
0
"1"3 dz+�2

2 = 0 (31b)

O�-4� �
9
�

∫ �
0
"2

3 dz+
10
�

∫ �
0
"1"5dz+12�2�4=0 (31c)

Formally substituting the assumed expansions (29)
into (26), we obtain at leading order, O�-�,

"′′1 + ��2
0 +�2�"1 = 0

0< z < �� "1�0�= "1���= 0 (32)

which will have nontrivial solutions only if

�2
0 +�2 =m2� m= 1�2� � � � (33)

The first unstable mode corresponds to m = 1, and we
obtain

�2
0 +�2 = 1� "1�z�= A1�1 sin z (34)

The normalization condition (31a) implies that A2
1�1 = 1,

and we choose the positive values

�0 =
√

1−�2� A1�1 = 1 (35)

At the next order, O�-3�, we obtain the problem for "3,
which has the form

"′′3 +"3 = C3�1 sin z+C3�3 sin 3z

0< z < �� "3�0�= "3���= 0 (36)

with C3�1 and C3�3 given by

2C3�1 = k1 +1− �̄a + �3k2 + �̄a��
2 −4�0�2 (37)

and
−6C3�3 = 3k1 +1−3�̄a +3�k2 + �̄a��

2 (38)

The solvability condition for (36) requires that the right-
hand side of the ordinary differential equation be L2-
orthogonal to sin z (i.e.,

∫ �
0 f �z� sin zdz = 0, where f

denotes the right-hand-side function), which implies that
C3�1 = 0. This determines �2,

4�0�2=k1+1− �̄a+�3k2+ �̄a��
2� �0=

√
1−�2 (39)

and the solution "3 of (36) then takes the form

"3�z�= A3�1 sin z+A3�3 sin 3z� A3�3 =−1
8
C3�3 (40)

The normalization condition (31b) yields

A3�1 =−�2
2 (41)

If desired, this process could be continued. The prob-
lems at the next orders have a similar, clean overall struc-
ture; however the formulas for the coefficients become
progressively more complicated. At O�-5� we would have

"′′5 +"5 = C5�1 sin z+C5�3 sin 3z+C5�5 sin 5z

0< z < �� "5�0�= "5���= 0 (42)

The formulas for C5�1, C5�3, and C5�5 are quite long. Solv-
ability again implies that C5�1 = 0, which determines �4;
the solution "5 takes the form

"5�z� = A5�1 sin z+A5�3 sin 3z+A5�5 sin 5z

A5�3 =−1
8
C5�3� A5�5 =− 1

24
C5�5 (43)

8 J. Comput. Theor. Nanosci. 7, 1–17, 2010
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Fig. 5. Metastability region of Homeotropic configuration with transition point indicated (left). The bifurcation from Homeotropic to TIC is supercrit-
ical where the parameter V2 = �

√−K3/�0�a�2 is positive; it is subcritical where V2 is negative. The red circle denotes the transition point at which V2

changes sign; its coordinates are �d/P�∗
�= 1�014, V∗ = 1�220 volts for our material parameters. On the right is a conjecture of what we might expect

the phase diagram to look like, indicating a 2nd-order phase transition where the bifurcation is supercritical, with a 1st-order transition line anticipated
to lie somewhere beyond that, in the region where the two solutions coexist, with location determined by the locus of free-energy crossover points.

and the normalization condition (31c) determines A5�1.
And so on. Beyond a certain point, a direct numerical
approach (as we shall discuss in the next section) becomes
more expedient.

At the moment, the most useful piece of information we
have obtained is the expression (39) for �2 in terms of the
parameters k1, k2, �̄a, and �. The sign of �2 determines
the forward or backward nature of the symmetry breaking
pitchfork bifurcation: �2 > 0 implies a forward-opening
(“supercritical”) bifurcating branch, while �2 < 0 corre-
sponds to a backward-opening (“subcritical”) branch. For
our material, the sub-expressions on the right-hand side of
(39) have the following signs

k1 +1− �̄a > 0 and 3k2 + �̄a < 0 (44)

with the change of sign occurring at the transition point

�∗ =
√

1−�2∗
�= 0�525

�∗ =
√
−k1 −1+ �̄a

3k2 + �̄a

�= 0�851
(45)

For the experimental work (see Refs. [24, 26, 27]), infor-
mation has typically been expressed in terms of the applied
voltage V and the ratio d/P . These are related to � and
� by

V = �
√
−K3

�0�a

��
d

P
= K3

2K2

� (46)

which for our material parameters gives rise to the
crossover point

V∗
�= 1�220 volts�

(
d

P

)
∗

�= 1�014 (47)

This point is indicated as the red circle in Figure 5 along
with a conjecture of the kind of phase diagram we might
expect on the basis of this analysis. The actual phase dia-
gram is more complicated, as we shall now see.

4. NUMERICAL INVESTIGATION OF
PHASES AND BIFURCATIONS

The actual phase diagram, for this case in which we arti-
ficially impose the constraint that the fields be functions
of z only, is not as simple as anticipated above. It requires
numerical techniques to explore. For this we have used
the MATCONT software package.32 MATCONT is a public-
domain MATLAB® b toolbox for numerical continuation and
bifurcation analysis of ordinary differential equations and
general nonlinear algebraic systems. We use it to explore
the equilibrium solutions of the coupled "−	 system, with
# removed. We utilize the dimensional forms, with the
parameters of the material used in our experiments.

4.1. Numerical Bifurcation and Phase Analysis

From (19), the free energy with # removed is given by

� �"�	
 = 1
2

∫ d
0

[
�K1 sin2"+K3 cos2"�"2

z

+K2q
2
0

K3 cos2"

K2 sin2"+K3 cos2"

−�0��⊥ sin2"+�	 cos2"�	2
z

]
dz (48)

bMATLAB is a registered trademark of The MathWorks, Inc.

J. Comput. Theor. Nanosci. 7, 1–17, 2010 9
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We wish to compute equilibria (subject to boundary con-
ditions "�0�= "�d�= 0, 	�0�= 0, and 	�d�= V ), assess
their local stability, and determine which equilibrium con-
figurations have the least free energy. To this end, we
discretize the free-energy functional (48) directly by a
piecewise-linear finite-element method on a uniform grid
with nodal quadrature:

zk=k*z�k=0�����n� *z= d
n
� "k≈"�zk�� 	k≈	�zk�

(49)
This results in a discrete free-energy that is a function of
the interior �"�	� nodal degrees of freedom in the general
form

f �"1� � � � � "n−1�	1� � � � �	n−1�

=
n−1∑
k=0

�h�"k� "k+1�	k�	k+1�*z (50)

with "0 = "n = 0, 	0 = 0, 	n = V , and �h given by

4�h�"0�"1�	0�	1�

= �K1�sin2"0+sin2"1�+K3�cos2"0+cos2"1�


(
"1−"0

*z

)2

+K2q
2
0

[
K3 cos2"0

K2 sin2"0+K3 cos2"0

+ K3 cos2"1

K2 sin2"1+K3 cos2"1

]

−�0��⊥�sin2"0+sin2"1�

+�	�cos2"0+cos2"1�


(
	1−	0

*z

)2

(51)

Discrete equilibria are given by solutions of the gradient
equations,

�f

�"1

= · · · = �f

�"n−1

= �f

�	1

= · · · = �f

�	n−1

= 0 (52)

a sparsely coupled nonlinear system of 2n−2 equations in
2n−2 unknowns. The local stability is assessed by exam-
ining the eigenvalues of the Hessian matrix

H =
[
�2f

�xi�xj

]2n−2

i� j=1

� x= �"1� � � � � "n−1�	1� � � � �	n−1�

(53)
On a stable branch, H will have n− 1 positive eigen-
values and n− 1 negative ones (corresponding to the
always-negative-definite 	1� � � � �	n−1 components). On an
unstable branch, there will be fewer than n− 1 positive
eigenvalues. The existence of a zero eigenvalue indicates
a singular point of the system and a potential bifurcation
or fold point, at which an exchange of stability could take
place. The free energies of multiple, competing, locally
stable solutions can be compared directly using (50).

We favor a numerical approach such as this because it
produces a discrete free energy, equilibrium equations, and
stability eigenvalue problems that are consistent with each

other, one following directly from the other. The approach
used here is a low-order (2nd-order accurate) discretiza-
tion approach, with the errors in the free energy and field
variables proportional to *z2 (in theory and in our bench-
marking). A viable alternative would be to use a “spec-
tral” method, Fourier or polynomial based, in which " and
	−Vz/d could approximated by truncated sums of modes
%sin�z/d� sin 2�z/d� � � �&, for example. This would have
the advantage of requiring far fewer degrees of freedom to
achieve comparable accuracy; however the analytics would
be a bit more complicated, and the numerical linear alge-
bra would involve full, dense (rather than sparse) matrices.
We did not implement this latter approach.

The accuracy of the material parameters we have (deter-
mined by experiment, in Table I) is believed to be roughly
three significant digits, which is about the level of visual
discernment in a graph or plot, and so we adopted that
as the target numerical accuracy for our computations.
Thus we continued to refine our grids until all bifurcation
points, limit points, free-energy-crossover points, and solu-
tion branches were stable at that level; this was achieved
with n= 128.c

4.2. Homeotropic-TIC Phase Diagram

The actual phase diagram that results is given in Figure 6.
Its structure is somewhat close to what was anticipated;
however, the 1st-order Homeotropic-TIC transition line
does not terminate in the transition point as expected.
Instead it crosses the spinodal ellipse at a different point,
extends beyond the ellipse, and terminates in an isolated
critical point (a cusp point). The perturbation analysis is
correct, and there is indeed a change from supercritical to
subcritical bifurcation at the identified transition point (the
lower of the two red circles); however, it is associated with
the development of a second, metastable, smaller ampli-
tude TIC solution, and a second limit point. The scenario
is illuminated in Figure 7.

We see that the small-amplitude TIC solution germinates
at the transition point (red circle in lower right-hand cor-
ner of blowup region, Fig. 6 right, Fig. 7 top), when the
applied voltage exceeds V∗

�= 1�220 volts. The small- and
large-amplitude TIC solutions coexist in the region beyond
the spinodal ellipse between the limit-point loci denoted
by the red lines. They undergo a 1st-order transition across

cVarious implementation issues arise in using a numerical bifurca-
tion package such as this, which was originally designed for small-scale
autonomous ODE dynamical systems. One needs to take advantage of
MATLAB’s sparse-matrix representations and solvers, and for this, one
must use MATCONT’s @pde_1 “curve file.” The Jacobian (our Hessian
(53)) needs to be exactly symmetric (not just symmetric to roundoff
level). Also, the package does not have a built-in capability of switch-
ing branches at a symmetry-breaking bifurcation point—such a singular
point has a higher co-dimension than a simple bifurcation point, which
the package is equipped to handle—and so an ad-hoc approach must be
implemented to deal with such points.

10 J. Comput. Theor. Nanosci. 7, 1–17, 2010
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Fig. 6. Homeotropic-TIC phase diagram (left) and blowup (right). The dashed blue line indicates a 2nd-order transition from Homeotropic to TIC.
The solid blue line is a 1st-order transition line. Inside the spinodal ellipse, it corresponds to a 1st-order transition from Homeotropic to TIC. Outside
the spinodal ellipse, it indicates a 1st-order transition from a small-amplitude TIC (left of the line) to a large-amplitude TIC (right of the line). The
1st-order transition line terminates at the point where these two TIC solutions coalesce into one. The green line is the spinodal ellipse, indicating the
metastability limit of the Homeotropic solution. The red lines are spinodal lines for the TIC solutions: large amplitude (left), small amplitude (right).
These correspond to loci of fold points that indicate the metastability limits of these phases. These lines terminate in the cusp point d/P

�= 0�935,
V
�= 1�496 volts. The “triple point,” where the 2nd-order transition line terminates at the 1st-order line, has coordinates d/P

�= 0�962, V
�= 1�370 volts.

the solid blue line in between. The two TIC solutions
merge together when the limit points coalesce at the cusp
point (red circle in upper-left corner of blowup region), the
coordinates of which are d/P

�= 0�935, V
�= 1�496 volts.
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Fig. 7. Blowup of complicated part of Homeotropic-TIC phase diagram (upper). The horizontal black lines indicate scan lines, corresponding to
values V = 1�3, 1.37, and 1.425 volts, of the bifurcation diagrams in the lower left, center, and right.

The complicated nonlinear behavior that we already see in
this simplified version of our model (with our admissible
fields and variations restricted to be functions of z only) is
consistent with the picture obtained in the experiments (see

J. Comput. Theor. Nanosci. 7, 1–17, 2010 11
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Ref. [27]) and in the analysis when we allow our fields to
depend on both x and z (on which we will report later).

5. 2-D LOCAL STABILITY OF
HOMEOTROPIC CONFIGURATION

The problematic solutions for this system are functions
of two independent variables, x and z, such as the CF1
configuration. We would like to assess the stability of
the Homeotropic solution to perturbations of this type,
to see, for example, if there is ever a situation in which
the Homeotropic solution loses local stability directly to
a periodic-in-x solution, such as CF1. This is possible in
principle and was the case, for example, for the system
studied by Lonberg and Meyer33 some time ago. The issue
of which solution (Homeotropic, TIC, CF1) is globally sta-
ble (has lowest free energy) must be resolved numerically.
Here we first just perform a local linear stability analysis
of the Homeotropic configuration and show that it is not
possible for it to lose local stability directly to a periodic-
in-x solution when the control parameters are inside the
spinodal ellipse.

5.1. General Linear Stability Criterion

The metastability of an equilibrium solution �n0�	0� can
be assessed in various ways, here we adopt the point of
view of the constrained director dynamical system

7
�n
�t

= P�n�h�n�	�� �n� = 1� div���n�
	�= 0

(54)
Here 7 is a viscosity parameter; h denotes the “molecular
field” (the terminology used in de Gennes and Prost17),

h �=−��
�n

= div
(
��

�
n

)
− ��
�n

(55)

and P�n� �= I− n⊗ n gives the projection transverse to
the local director. Equation (54) represents the single-
rotational-viscosity director dynamics (or gradient flow)
associated with our free energy. The director is always
constrained to have unit length. The electric field is taken
to adjust instantaneously to any changes in the director
field—this is justified by the fact that the relaxation time
for the electric field is several orders of magnitude smaller
than the relaxation time of the liquid-crystal director field
(roughly of the order of femtoseconds versus millisec-
onds). The system is also subject to initial, boundary, and
periodic conditions on the fields n�x� z� t� and 	�x� z� t�.

Equilibrium solutions, as defined by Eq. (4), are pre-
cisely time-independent solutions of (54). An equilibrium
solution is said to be “locally stable” if all sufficiently
small perturbations of it, taken as initial conditions in (54),
decay back to the equilibrium configuration as t → �.
Such small perturbations should evolve initially according

to the linearization of the system (54) around the equilib-
rium field, and so we say an equilibrium solution is “lin-
early stable” if the solutions of the linearized constrained
dynamical system (below) decay to zero in time for any
initial data.

Thus let us consider an equilibrium state �n0�	0�
and small perturbations of it: n = n0 + u, 	 = 	0 +9,
�u�x� z� t��� �9�x� z� t�� � 1. We substitute these into
Eq. (54) and expand to first order in u and 9. The point-
wise constraint �n� = 1 leads to the condition n0 · u = 0;
while the electrostatic equation leads to

div��0
9�+div��′
0
	0�= 0 (56)

where �0 and �′
0 are the dielectric tensor and its lineariza-

tion at the equilibrium solution n0

�0 = ��n0�= �0��⊥I+�an0 ⊗n0�

�′
0 = �0�a�n0 ⊗u+u⊗n0�

(57)

The dynamical equation for n, upon linearization, produces

7
�u
�t

= P�n0�h0 +P�n0�h
′
0 − �h0 ·u�n0 − �h0 ·n0�u (58)

where h0 and h′
0 denote the molecular field and its lin-

earization at the equilibrium solution �n0�	0�. This equa-
tion can be simplified using the equilibrium conditions:

P�n0�h0 = 0 ⇒ h0 = �0n0� �0 �= h0 ·n0 (59)

and
h0 ·u= �0n0 ·u= 0 (60)

Here �0 is the Lagrange-multiplier field associated with the
pointwise unit-vector constraint on the equilibrium director
field n0. This leaves us with the following general form of
the linearized constrained dynamical system:

7
�u
�t

= P�n0�h
′
0 −�0u� n0 ·u= 0

div��0
9�+div��′
0
	0�= 0

(61)

We note that h′
0 is linear in both u and 9, while �′

0 is
linear in u. Below we write out the explicit form they take
for our problem when linearized around the Homeotropic
configuration.

5.2. Linear Stability Equations for Homeotropic
Configuration

For our case of interest, namely the Homeotropic config-
uration, the director field is uniformly aligned in the z
direction, and the electrostatic potential is a linear profile
in z across the cell gap:

n0�z�= ez� 	0�z�=
Vz

d
(62)
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The associated Lagrange multiplier field is uniform as
well, as is the projection P :

�0�z� = h0 ·n0 = hz�n0�	0�= �0�a

V 2

d2

P�n0�= ex⊗ ex+ ey⊗ ey (63)

The expressions for the components of the molecular field,
from which the formula for �0 above is derived, are given
in the Appendix. The pointwise constraint gives

n0 ·u= 0 ⇒ u= uex+vey (64)

The dielectric tensor and its linearization are thus given
(in Cartesian component form) by

�0=�0



�⊥

�⊥

�	


� �′

0=�0�a




0 0 u

0 0 v

u v 0


 (65)

The dynamical equations for u and v take the form

7
�u

�t
= �h′

0�x−�0u (66a)

7
�v

�t
= �h′

0�y−�0v (66b)

from which we finally arrive at the linearized dynamical
system coupling the perturbations u, v, and 9:

7ut = K1uxx+K3uzz−�0�a

V 2

d2
u

+2K2q0vz+�0�a

V

d
9x (67a)

7vt = K2vxx+K3vzz−�0�a

V 2

d2
v−2K2q0uz (67b)

�⊥9xx+�	9zz+�a

V

d
ux = 0

−�< x <�� 0< z < d� 0< t (67c)

Here u= u�x� z� t�, ut = �u/�t, etc., and this system must
be solved subject to homogeneous boundary conditions

u= v = 9 = 0� on z= 0 or d (68)

and prescribed initial conditions

u�x� z�0�= u0�x� z�� v�x� z�0�= v0�x� z�

9�x� z�0�= 90�x� z�
(69)

This is a coupled dissipative dynamical system for u and v,
with the 9 variable slaved to the u variable, producing an
effective nonlocal contribution to the right-hand-side of the
first equation. Our task is to determine under what con-
ditions on the parameters the solutions to these equations

decay in time (linearly stable case) versus grow in time
(linearly unstable case).

It is once again useful to nondimensionalize our
problem. We do so in a way that is consistent with the
scalings we have used previously in (25):

x̄ �= �x
d
� z̄ �= �z

d
� t̄ �= t

<
� < �= 7d2

K3�
2

(70a)

ū�x̄� z̄� t̄� �= u�x� z� t�� v̄�x̄� z̄� t̄� �= v�x� z� t�
9̄�x̄� z̄� t̄� �= �9�x� z� t�/V (70b)

�K1 �=
K1

K3

= k1 +1� �K2 �=
K2

K3

= k2 +1�

�̄⊥ �=
�⊥
�	

= 1− �̄a

(70c)

� �=
√−�0�a

K3

V

�
� � �= K2q0d

K3�
(70d)

Note that �K1, �K2, and �̄⊥ are all positive. The linearized
stability system reads (after dropping bars)

ut = �K1uxx+uzz+�2u+2�vz−�29x (71a)

vt = �K2vxx+vzz+�2v−2�uz (71b)

�̄⊥9xx+9zz+ �̄aux=0� −�<x<��0<z<� (71c)

The analysis of the previous section corresponds here to
the case in which u, v, and 9 are independent of x, which
reduces the above to

ut = uzz+�2u+2�vz (72a)

vt = vzz+�2v−2�uz (72b)

9zz = 0 (72c)

It follows that in this case 9�z� t�= 0, and as we shall see
below, the coupled u− v problem will be asymptotically
stable whenever �2 +�2 < 1, which is the same conclu-
sion as reached by the previous (differently executed) 1-D
stability analysis.

We are interested in solutions to our general problem
that are either uniform in x or periodic in x with some
finite period. Thus we consider perturbations of the form

u�x� z� t�= eiqxû�z� t�� v�x� z� t�= eiqxv̂�z� t�
9�x� z� t�= eiqx9̂�z� t� (73)

where q is an arbitrary real number. Substituting into
Eqs. (71), we obtain

ût = ûzz+ ��2 − �K1q
2�û+2�v̂z− iq�29̂ (74a)

v̂t = v̂zz+ ��2 − �K2q
2�v̂−2�ûz (74b)

9̂zz− �̄⊥q29̂+ iq�̄aû= 0 (74c)

We note that except for the 9̂ coupling between the first
and third equations (the effect of which is not yet clear),

J. Comput. Theor. Nanosci. 7, 1–17, 2010 13
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the terms − �K1q
2 and − �K2q

2 are stabilizing: they just have
the effect of reducing the effective voltage—recall that
�2 ∝ V 2.

Equation (74c) plus the boundary conditions 9̂�0� t� =
9̂��� t�= 0 can be solved explicitly using a Green’s func-
tion representation:

9̂�z� t�= iq�̄a

∫ �
0
g�z� (. q�û�(� t�d( (75)

where g is given in terms of its eigenfunction expansion by

g�z� (. q�= 2
�

�∑
k=1

sin kz sin k(
$k

� $k �= k2 + �̄⊥q2 (76)

It follows that the associated integral operator is positive
definite, in the sense that∫ �

0

∫ �
0
g�z� (. q�f �z�f �(�dzd( ≥ 0 (77)

for any square-integrable function f (with equality if and
only if f is the zero function). The deflated coupled system
that results is

ût = ûzz+ ��2 − �K1q
2�û+2�v̂z

+ �̄aq
2�2

∫ �
0
g�z� (. q�û�(� t�d( (78a)

v̂t = v̂zz+ ��2 − �K2q
2�v̂−2�ûz (78b)

The positive definiteness of the integral operator (and the
fact that �̄a is a negative number) shows us now that the
influence of this (nonlocal) term is stabilizing as well.
We just need to provide an argument for this observation,
which we do now.

5.3. Energy Method Analysis

We can use an “Energy Method” type of argument to show
that under appropriate conditions on the parameters, the
solutions to Eq. (78) decay in time. Define the “energy”

E�t� �= 1
2

∫ �
0
�û�z� t�2 + v̂�z� t�2
 dz (79)

and note that E�t�= 0 ⇒ û�·� t�= v̂�·� t�= 0. Then using
Eq. (78), it follows that

E ′�t� =
∫ �

0
�ûût+ v̂v̂t�dz

=
∫ �

0
�−û2

z+2��ûv̂z− v̂ûz�− v̂2
z 
dz

+��2− �K1q
2�
∫ �

0
û2dz+��2− �K2q

2�
∫ �

0
v̂2dz

+ �̄aq
2�2

∫ �
0

∫ �
0
g�z�(.q�û�z�t�û�(�t�dzd( (80)

We claim that the first integral in the expression for E ′�t�
above satisfies the bound

J �û� v̂
 �=
∫ �

0
�−û2

z+2��ûv̂z− v̂ûz�− v̂2
z 
 dz

≤ ��2 −1�
∫ �

0
�û2 + v̂2�dz (81)

This follows from the fact that the extremals of J sub-
ject to the constraint

∫ �
0 �û

2 + v̂2�dz = 1 must satisfy the
coupled eigenvalue problem

ûzz+2�v̂z = �û (82a)

v̂zz−2�ûz = �v̂ (82b)

on 0< z<� subject to boundary conditions û= v̂= 0, at
z= 0��. A complete set of eigenfunctions and associated
eigenvalues for this problem is given by[

û

v̂

]
n

= sinnz

[
cos�z

sin�z

]
� sinnz

[− sin�z

cos�z

]

�n = �2 −n2� n= 1�2� � � � (83)

and �max = �1 = �2 −1, which proves (81).
Given the bound (81), and using (77) plus �̄a < 0, we

obtain from (80)

E ′ ≤ rE� r �= �2 +�2 −1−q2 min% �K1� �K2& (84)

By use of an integrating factor, it follows that

E�t�≤ ertE�0�= 1
2
ert

∫ �
0
�û2

0 + v̂2
0�dz (85)

When the parameters are such that r < 0, we have

E�t�→0� as t→� ⇒ û�·�t��v̂�·�t�→0� as t→�
(86)

We have established the following.

Claim. Consider the coupled û− v̂ nonlocal dissipative
dynamical system (78), subject to homogeneous boundary
conditions

û�0� t�= û��� t�= v̂�0� t�= v̂��� t�= 0 (87)

and sufficiently regular initial conditions

û�z�0�= û0�z�� v̂�z�0�= v̂0�z� (88)

If the parameters satisfy

�2 +�2 < 1+q2 min% �K1� �K2& (89)

then the solution decays in time:

û�·� t�� v̂�·� t�→ 0� as t→� (90)
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We conclude that for ����� inside the spinodal ellipse
(23), the Homeotropic configuration is linearly stable with
respect to arbitrary 2-D perturbations. As the spinodal
threshold is crossed, stability is lost to a uniform-in-x con-
figuration. This uniform-in-x solution could be a TIC or
a periodic configuration, such as CF1, of diverging period
(q → 0); this is consistent with the qualitative analysis
of Ref. [26]. There is never any local instability (direct
transition) to a periodic structure of finite period. It should
be emphasized that this all is just local linear stability
analysis; we know that there are regions inside the spin-
odal ellipse where TIC and periodic structures coexist with
the Homeotropic configuration and have lower free energy.

6. CONCLUSIONS

Through a combination of analytical, numerical, and qual-
itative techniques, a fairly complete understanding of the
phase and bifurcation behavior of the two competing
1-D equilibrium solutions “Homeotropic” and “Translation
Independent Cholesteric” (TIC) has been obtained. Our
analysis in this paper should be viewed in the context of
Ref. [27], with particular attention to the phase diagrams
in Figures 1, 4, and 7 of that paper, constructed there from
laboratory experiments. We emphasize that in this paper
we have constrained all solutions to be functions of z only.
In a more general setting, in which the fields were allowed
to be functions of both x and z (as is the case with the CF1
configuration), the solutions we have studied here would
continue to be equilibria; however their stability proper-
ties (both local and global) could change as a result of the
larger class of admissible perturbations. In the last section
we have shown, however, that the Homeotropic solution
remains locally stable to arbitrary periodic-in-x 2-D per-
turbations for parameters inside the spinodal ellipse.

We find this system to be fairly rich and complicated
even in this first-stage analysis (with our restrictive mod-
eling assumptions), which foreshadows developments to
follow. An interesting aspect of the system revealed by our
analysis is the tilt-dependent nature of the twist rate of the
TIC solution, and as a result the voltage-dependent nature
of the total twist across the cell, as given in Eq. (18).
While this general phenomenon is familiar in the dynami-
cal setting (because of its relevance to switching dynamics
in cholesteric devices), we have here a clean and explicit
realization of it in an equilibrium setting.

The analysis of the Homeotropic-TIC transition held
some surprises. Upon identification of the transition point
on the spinodal ellipse where the Homeotropic-TIC bifur-
cation changed from supercritical to subcritical, one
certainly anticipated that this would simply be a tricritical
point where the phase transition changed from 2nd order
to 1st order. Instead one finds a range of parameters where
two different types of TIC solutions (small vs. large ampli-
tude) coexist; one finds as well accompanying “S-shaped”

bifurcating solution branches. In the end, this may not be
highly relevant, as the CF1 solution appears to have lower
free energy in that region, and so it is possible that these
other metastable configurations may not be observable via
laboratory experiments. The linear stability analysis of the
Homeotropic configuration with respect to arbitrary 2-D
perturbations rules out the possibility of any direct transi-
tions from Homeotropic to any periodic-in-x solutions.

While this is just a first phase of our analysis of this
system, the implications of it (and also of the experimen-
tal work in Ref. [27]) for potential technological applica-
tions may be important. An “ideal” system would be one
that just admitted two, robust, stable configurations of the
Homeotropic and TIC type, with the TIC “opening up,”
as voltage is increased, to a continuously larger maximum
tilt angle while maintaining a constant total twist across
the cell gap. The actual system differs from this in some
ways. First, the total twist is a function of the maximum
tilt angle (controlled by voltage) and changes roughly by a
factor of two as the maximum tilt angle varies from close
to zero to close to �/2. Next, for certain values of the
parameters, there are actually two different types of TIC
solutions (one with a smaller maximum tilt angle than the
other), and there is a 1st-order transition from one to the
other as the ratio of cell gap to intrinsic cholesteric pitch
d/P or the voltage V (or both) is increased. Finally, for the
proprietary material used in the experiments in Ref. [27],
we obtain an effective upper bound of roughly d/P � 0�9
for the system to support a simple voltage-driven second-
order transition between the Homeotropic and TIC config-
urations, which limits parameter ranges for technologies
based on these states and this transition. In reality, the
limit is in fact lower, due to instabilities to periodic-in-x
distortions that arise in the range 0�6 � d/P � 0�75, as
illustrated in Ref. [27].

APPENDIX: FORMULAS FOR MOLECULAR
FIELD IN COMPONENT FORM

In order to simplify some formulas, both for numeri-
cal implementation and for analysis, we make use of the
relations

� curln�2 = �n · curln�2 +�n× curln�2
n× curln=−�
n�n (A1)

valid for smooth vector fields satisfying �n�r�� = 1, to
express the free-energy density from Eq. (2) in the some-
what simpler form

2� = K1�divn�2 +K2� curln�2 +2K2q0�n · curln�

+K2q
2
0 + �K3 −K2���
n�n�2

−�0��⊥�
	�2 +�a�
	 ·n�2
 (A2)
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For our problem, n = n�x� z� and 	 = 	�x� z�, and we
have

divn= nx�x+nz�z� curln=




−ny�z
nx� z−nz�x
ny�x




�
n�n=



nxnx�x+nznx�z
nxny�x+nzny�z
nxnz�x+nznz� z




(A3)

Using these formulas, we can write the free energy (2) in
component form

2� = K1�nx�x+nz�z�2 +K2�n
2
y� z+ �nx�z−nz�x�2 +n2

y� x


+2K2q0�−nxny�z+ny�nx�z−nz�x�+nzny�x
+K2q
2
0

+ �K3 −K2���nxnx�x+nznx�z�2 + �nxny�x+nzny�z�2
+ �nxnz�x+nznz� z�2


−�0��⊥�	
2
x+	2

z �+�a�nx	x+nz	z�2
 (A4)

The components of the molecular field are given in gen-
eral in the form

hx =
�

�x

(
��

�nx�x

)
+ �

�z

(
��

�nx�z

)
− ��

�nx
(A5a)

hy =
�

�x

(
��

�ny�x

)
+ �

�z

(
��

�ny�z

)
− ��
�ny

(A5b)

hz =
�

�x

(
��

�nz�x

)
+ �

�z

(
��

�nz�z

)
− ��
�nz

(A5c)

For our free energy above, these take the form

hx =
�

�x
�K1�nx�x+nz�z�+ �K3 −K2��nxnx�x+nznx�z�nx


+ �

�z
�K2�nx�z−nz�x�+�K3−K2��nxnx�x+nznx�z�nz


− �K3 −K2���nxnx�x+nznx�z�nx�x
+ �nxny�x+nzny�z�ny�x+ �nxnz�x+nznz� z�nz�x


+2K2q0ny�z+�0�a�nx	x+nz	z�	x (A6a)

hy =
�

�x
�K2ny�x+ �K3 −K2��nxny�x+nzny�z�nx


+ �

�z
�K2ny�z+ �K3 −K2��nxny�x+nzny�z�nz


+2K2q0�nz�x−nx�z� (A6b)

hz =
�

�x
�K2�nz�x−nx�z�+ �K3 −K2��nxnz�x+nznz� z�nx


+ �

�z
�K1�nx�x+nz�z�+�K3−K2��nxnz�x+nznz�z�nz


− �K3 −K2���nxnx�x+nznx�z�nx� z
+ �nxny�x+nzny�z�ny� z+ �nxnz�x+nznz� z�nz� z


−2K2q0ny�x+�0�a�nx	x+nz	z�	z (A6c)
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