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Understanding the behavior and evolution of a dynamical many-body system by analyzing patterns in their
experimentally captured images is a promising method relevant for a variety of living and nonliving self-
assembled systems. The arrays of moving liquid crystal skyrmions studied here are a representative example of
hierarchically organized materials that exhibit complex spatiotemporal dynamics driven by multiscale processes.
Joint geometric and topological data analysis (TDA) offers a powerful framework for investigating such systems
by capturing the underlying structure of the data at multiple scales. In the TDA approach, we introduce the W
function, a robust numerical topological descriptor related to both the spatiotemporal changes in the size and
shape of individual topological solitons and the emergence of regions with their different spatial organization.
The geometric method based on the analysis of vector fields generated from images of skyrmion ensembles
offers insights into the nonlinear physical mechanisms of the system’s response to external stimuli and provides
a basis for comparison with theoretical predictions. The methodology presented here is very general and can
provide a characterization of system behavior both at the level of individual pattern-forming agents and as a
whole, allowing one to relate the results of image data analysis to processes occurring in a physical, chemical,
or biological system in the real world.
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L. INTRODUCTION organelles and living cells, particle clusters, bacteria, biolog-
ical organisms flocking together, and stars forming a cosmic
network. An analysis of the spatial structure and the temporal
behavior of patterns can reveal the dynamics of processes that
occur both at the macroscopic and microscopic levels of the
underlying system.

Often complex system measurements are encoded in data
point clouds, spanning from numerical data on structured
grids, e.g., images, to networks and graphs, e.g. a gene-
regulatory network. Topological data analysis (TDA) is a
recent and rapidly growing field that provides new topolog-
ical and geometric analytical tools to uncover the underlying
features of complex systems from their measured data point
clouds [9]. TDA is particularly powerful in extracting rele-
vant topological and geometric features from complex data
and provide valuable, multiscale insight. A widely used TDA
method to compute topological features is persistence homol-
ogy that has been successfully applied in biology, medicine,
chemistry, physics, and material science [10-15]. A new de-
velopment in this research field involves introducing TDA
into machine learning (ML) methods to exploit topological
properties in ML pipelines or to use topological information

The formation of patterns is a well-known phenomenon
observed in physical, chemical, and biological systems
as a consequence of nonlinear dynamics leading to self-
organization of the system and its nontrivial spatiotemporal
behavior [1-8]. In fact, patterns can arise at different hier-
archical levels as a result of the movement and interaction
of a large number of multiscale subsystems that constitute
a complex system. Constituents range from molecular to
macroscopic scale and include photons, atoms and molecules,
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to improve ML pipelines [16—18].
Even though linking characteristics obtained from the
persistent homology of complex systems to their chemical,
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physical, and biological parameters is challenging, this has
been attempted successfully using a wide range of experi-
mental and simulated data. Early studies have used persistent
homology to analyze the equilibria and the periodic dynamics
of the Rayleigh-Bénard convection and Kolmogorov flow,
two model systems of spatiotemporal pattern formation away
from equilibrium [1,19-21]. The global behavior of biolog-
ical aggregations such as bird flocks, fish schools, and insect
swarms have been quantified using Betti numbers, topological
barcodes, and different types of distance matrices [22]. The
same tools have been used to characterize the dynamics of
islands in a confluent cellular monolayer spreading on an
empty space surface, and to track and classify the evolving
shapes of interfaces between two monolayers of different cells
in an antagonistic migration assay [23]. A similar persis-
tence homology-based technique has been used to study the
pattern-forming transition in cooling granular gases obtained
by numerical simulations [24] and in experimental studies of
phase transition in nematic liquid crystals doped with plas-
monic nanoparticles [25]. Using a model example of various
imperfect lattices, an attempt has been made to perform topo-
logical measurements for pattern-forming systems providing
both roll and dot patterns, transitions between which can oc-
cur when a control parameter is changed [26]. Furthermore,
TDA combined with ML techniques has been applied for
automatic detection of critical transitions in microstructured
materials during two distinct pattern-forming processes, such
as the spinodal decomposition of a two-phase mixture and
the formation of binary-alloy microstructures during physical
vapor deposition of thin films [27]. As another example, the
unsupervised classification of persistence images has made it
possible to automate the categorization of multicellular spatial
patterns, whose organization is controlled by the efficiency of
mutual cell adhesion [28].

Recently, several attempts have been made to apply TDA
to patterning in real systems at several hierarchical levels.
Here, perhaps the best example comes from the biological
world, namely a study of simulated zebrafish skin patterns
from an agent-based model that quantified pigment cell dy-
namics and global pattern attributes on a large scale using
TDA, computational geometry and interpretable machine
learning method [29,30]. Another very interesting inverse
analysis of topological data has also been shown, when a
particular region of a persistent diagram was directly linked
to an inhomogeneous area of simulated transmission elec-
tron microscopy images of amorphous and liquid states of
matter [31].

In the present study, we demonstrate the ability of TDA
to reveal the periodic behavior of complex, organized pattern-
ing agents and identify global attractor-like dynamics. This
follows earlier results on persistent homology successfully
revealing the cause of the magnetization reversal process on
the original microscopic magnetic domain structure [32] and
the mechanisms of formation dynamics of magnetic domain
patterns. In particular, we apply TDA to experimental data
from a soft-matter system, consisting of electrically powered
dynamic ensembles of three-dimensional twisted structures in
chiral nematic liquid crystals [33,34]. Such 3D structures are
characterized by skyrmion-like configurations of the liquid
crystal (LC) director field. Skyrmions were originally iden-

tified in the magnetization textures of chiral magnets [35],
introduced in particle physics [36] and then in chiral liquid
crystals [37-39], magnetic colloids [40], evanescent electro-
magnetic fields [41], and light [42,43]. The choice of liquid
crystals as a test-bed for our method is dictated by the ease
of their manipulation, the long-term stability of their topolog-
ical structures at room temperature, the easy visualization of
skyrmions, and their high responsiveness to applied external
fields, ensuring transitions between topologically protected
metastable states.

Previously, only a few attempts have been made to propose
various topological indicators based on the persistence of
structural features, that could describe a hierarchically com-
plex macroscopic state of a partially ordered system. This
results from the fact that expressing differences in physical
properties through differences in structure has proven to be
effective for regularly arranged structures and completely dis-
ordered systems, but not for spatially non-uniform or partially
ordered systems. Persistent homology applied to material sci-
ence data is uniquely suitable for the latter because of its
ability to capture the structural diversity of real and simulated
material systems or algebraically constructed spaces [44,45].
The recently proposed separation index allows one to ana-
lyze the topology of both the global many-particle system
and the local particle environment [46], while the structural
heterogeneity measures the deviation of a liquid crystal from
a homogeneous or uniform state at the mesoscopic level [25].
Another indicator, the persistent generator count with rela-
tive stability, demonstrated in the context of 2D magnetic
skyrmion lattice systems, effectively measures lattice con-
figurational properties and correlates with the conventional
orientational order parameter. It also traces phase transi-
tions across solid, hexatic, and liquid states [47]. The Euler
characteristic, although not related to persistence homology-
associated tools, can also serve as a topological descriptor
to quantify the shape of data objects that are represented as
fields or manifolds [48]. Finally, TDA can be successfully ap-
plied to molecular dynamics data as well [44,46,49]. However,
TDA based on persistent homology is rather different from
physics-based approaches to determine microscopic variables
that correspond to macroscopic characteristics of a given sys-
tem, like for example, the phenomenological coefficients in
the Frank free energy of nematic liquid crystals [50-52]. The
latter are based on molecular dynamics or other molecular
modeling methods, while the former deals with geometric
structure of materials science data.

We introduce a topological characteristic, the W function,
that allows us to reliably detect periodic changes in the size
of pattern-forming agents, as opposed to the algebraic norm
or structural heterogeneity that was previously proposed to
track temporal evolution of soft matter systems [25]. At the
same time, we show that the evolution of a dynamic and
complex hierarchical system can be examined in general terms
by computing distance matrices between different ensemble
states. The behavior of the system as a whole can be analyzed
in more detail by modeling the time-dependent imaging data
as discrete vector fields, and then applying multidimensional
scaling to it, an unsupervised learning method similar to prin-
cipal component analysis but suitable for the analysis of large
images.
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The paper is structured as follows. In Sec. I we present our
experimental and theoretical tools, including the W function.
This section covers in some detail the core mathematical defi-
nitions and derivations. However, the following experimental
sections are self-contained so can be followed, in the first
instance, without the mathematical details.

Section III is the core of the paper. Section IIT A illustrates
the general principles of the two analysis approaches taken in
this paper, evolutionary and topological. The first is the sub-
ject of Sec. III B: Here, we use distance matrices to create low
dimensional embedding spaces that allow the visualization of
the global skyrmion structure dynamics. The second is used in
Sec. III C to extract the fine scale harmonic and anharmonic
behavior that is a signature of the nonlinearity of the skyrmion
dynamics. Section IV summarize this paper and discuss pos-
sible applications to other soft-matter fields. Additionally, the
paper contains a Supplemental Material (SM) [53].

II. METHODS

A. Liquid crystal samples for the formation of topological
solitonic structures

Localized topological field configurations such as
skyrmions, hopfions, torons, twistions, and some others
have recently been found in magnetic systems, liquid crystals,
and light beams [54-56]. They represent field configurations
with a nontrivial global topological structure, i.e., they cannot
be transformed into a homogeneous field by continuous
changes. These structures also correspond to a local minimum
of the field energy and are thus metastable structures, the
transformation or erasure of which requires an external
influence with energy input. In liquid crystals, the most
well-known topological solitonic structure is the toron, also
known as the cholesteric spherulite or cholesteric bubble [57].
Its basic element is a double-twist cylinder looped on itself,
accompanied by hyperbolic point defects above and below the
equatorial torus plane to match the locally twisted LC director
field with the surrounding uniform unwound state [58]. In
general, a wide variety of localized topological structures can
be obtained in thin layers of chiral nematic liquid crystals
(CLCs) under conditions where the geometry of the LC
sample, combined with strong perpendicular anchoring
conditions on confining substrates, suppresses the winding of
the cholesteric helix [59].

Our samples were prepared by doping a commercially
available nematic mixture ZLI2806 (EM Chemicals) was
doped with the right-handed chiral additive CB-15 (EM
Chemicals). The weight fraction used for the chiral dopant
was chosen as Cyopane = 1/(§p), as needed to define the he-
licoidal pitch p of the subsequent chiral LC mixture to be
of desired value, where & = +5.9 um~! is the helical
twisting power of the chiral dopant in the particular ne-
matic host we use. The CLC mixture was additionally mixed
with 0.1 wt% of cationic surfactant hexadecyltrimethylam-
monium bromide (CTAB, purchased from Sigma-Aldrich)
to allow spontaneous generation of torons by means of
relaxation from an electrohydrodynamic instability, as de-
scribed below. The samples were prepared by sandwiching
the mixtures between indium tin oxide (ITO)-coated glass

substrates. Strong perpendicular boundary conditions were set
for the CLC director by treating the glass substrates with poly-
imide SE1211 coatings (Nissan Chemical). The treatment was
implemented by spin coating the ITO sides of glass substrates
at 2700 rpm for 30 s, followed by a 5-min prebake at 90 °C
and a 1 h bake at 180 °C.

B. Manipulation of an ensemble of localized twisted structures

Although the topological solitons can appear sponta-
neously, in our experiments they were robustly generated
by first inducing and then relaxing the electrohydrodynamic
instability obtained at the applied AC voltage of U = 20 V
at the frequency f = 2 Hz, forming spontaneously as ener-
getically favorable structures after turning U off [Fig. 1(a)].
This emergent robustness of the torons stems from the chiral
CLC’s tendency to twist, which results in the formation of
various twisted configurations. The particular twisted struc-
tures of torons that we study allow for relaxing the CLC’s
frustrated unwound state via formation of energetically fa-
vorable twist regions [Fig. 1(b)]. Furthermore, by manually
switching on and off the electric voltage U that induces
the hydrodynamic instability 3-5 times in the course of a
few seconds, one can control the number density as de-
sired, up to tight packing of torons. The initial relative
spatial positions of the torons are random, but crystallites
slowly form because of the repulsive interactions at the
high packing densities. The electric field needed to gen-
erate and control torons was applied across the samples
using a custom made MATLAB-based voltage-driving pro-
gram coupled with a data-acquisition board (NIDAQ-6363,
National Instruments). Various electric driving schemes were
used in order to morph the solitonic and power-induced
motions [Fig. 1(c)]. The macroscopically supplied electrical
energy was converted locally into solitonic motions that then
exhibited various collective effects described in our study
[Figs. 1(d)-1(f)]. Optical videomicroscopy then allowed us
to track the positions and collective organizations of the
torons [60,61] from the recorded videos 1, 2, and 3 within the
SM [53].

C. Distance matrices of image spaces

We use the spaces of vector fields over discrete measure
spaces framework [62] to analyze the video data. We provide
here a brief description of the method to help with the discus-
sion of the results.

‘We can think of an image as a vector field X'(A,,;,) defined
over a grid of pixels A,; of width w and height A. Let
each pixel s € A, have equal weight or measure u(s) = 1.
A grayscale image assigns a single real number (intensity) to
each pixel, while an RGB image assigns a three-dimensional
vector (red, green, blue) to each pixel. Formally, this defines
a function X : A,, — RY, where d = 1 for grayscale and
d = 3 for RGB.

To measure the difference between two images, we use
what the L”¢ norm of an image X, given by

1/p

DR ELO] [

SES(Awn)

1X (| 1pa = ifp<oo, (1)
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FIG. 1. Evolutionary and topological approaches to the analysis of complex soft dynamic systems. (a) Schematic of a chiral nematic LC
sample under applied electrical voltage. (b) Optical image of a single localized structure, representing its well-known topology with the spatial
torus-like director field organization [58]. (c) An example set of optical images demonstrating a time-evolving toron pseudocrystallite with
changes in the shape and position of localized structures. (d)—(f) Examples of three dynamic systems, the ensembles of localized twisted
structures, studied in this work. Experimental polarizing micrographs are taken after 1.5 min (d), 3 min (e), and 36.9 s (f) under an applied

electric field.

and
| Xl Lea := max{[|X(s)4}, 2

where | X (s)ll, := (X, x:|9)!/7 is the g norm of the pixel
intensity vector X'(s) = (x1, ..., X,).
Given two images X', V) : Ay — R4, their L9 distance is
defined as
1/p

Yooxe -yl . ®

seS(Awn)

LrUX, V) =

This gives a flexible way to compare images, whether they
are grayscale or RGB, by combining pixel differences across
the entire image [Fig. 2(a)]. This method can also be used to
measure the difference between the image gradients.

The RGB video frames obtained from videos 1, 2, and 3
within the SM [53] were transformed to grayscale. For each
set of video frames, we computed the corresponding L>2-
distance matrices. For these computations, we systematically
selected every fifth video frame within the complete datasets
for videos 1 and 2 within the SM [53], and every second video
frame for videos 3 within the SM [53]. The data processing
and distance matrix computations were performed in Python.

D. L*>2-norms and L>2-distance matrices of video frames
and gradients of video frames

The corresponding L2 norms and distances matrices of
the video frames were computed following the methodology
described in the previous section.

The gradient of an image measures the rate and direction
of change in the intensity of the pixels, highlighting edges and
regions of high contrast. In this work, gradients of grayscale
images were computed using the numpy . gradient function
in Python, which applies central differences for interior pix-
els and one-sided differences at the boundaries. For a 2D
grayscale image X, the horizontal gradient % at pixel (i, j)

is approximated as
09X Xl j+ 11— Xli, j— 1]
ox 2 '

“

Similarly, the vertical gradient "’a—X is computed using val-
y
ues from adjacent rows. The L>2-gradient norm |VX| is then

calculated as
aX\>  [0x\’
VX =57 ) T{57) - Q)
dx ay

This norm emphasizes regions of significant local intensity
change. The corresponding L*? norms and distances matrices
of gradients of video frames were also calculated in Python
using the methodology described in the previous section.

For this analysis, we worked with grayscale images, en-
suring that the images used to compute persistent homology,
as will be discussed in Sec. IIF, were exactly the same as
those used in the gradient-based analysis. This avoids dis-
crepancies that could arise from differences in color channels
or image representations. However, the methodology extends
naturally to RGB images: The gradient can be defined using
a vector-valued formulation and the L>2-gradient norm as the
Frobenius norm of the Jacobian.

E. Multidimensional scaling of distance matrices

Classical multidimensional scaling (MDS) takes an n x n
matrix of pairwise Euclidean distances between n points and
reconstructs coordinates that preserve those distances. The
algorithm works by converting the distance matrix into a
positive semidefinite inner product matrix A, from which the
coordinates of the point are derived. In this case, MDS is
equivalent to principal component analysis.

The eigenvalues of the matrix A represent the variance of
the data along each principal coordinate. A large eigenvalue
indicates a principal axis that captures a significant amount of
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FIG. 2. Geometric and topological methods for image analysis.
(a) Computation of the L!"! distance between two grayscale images.
(b) A grayscale image, and (c) the filtration by pixel intensity as-
sociated with it. As the pixel intensity increases, topological features
such as clusters of pixels and loops of pixels appear and disappear. (d)
The persistence diagram of the filtration is collection of points on the
plane that records the information about the pixel intensity at which
the zero-dimensional (blue) and one-dimensional (red) topological
features appear (birth), and the intensity value at which it disappears
(death). (e) Three separated regions PD,,, PD, and PD,, at a fixed pixel
intensity threshold s. The topological cycles (b, d;) and (b,, by ) are
the most stable at pixel intensity s.

the variation in the pairwise distances. A detailed exposition
of the algorithm to obtain Euclidean coordinates using MDS
can be found in [63].

We performed multidimensional scaling on the L>2-
distance matrices to obtain Euclidean coordinates from the
distance matrices associated with the videos 1, 2, and 3 within
the SM [53], which were obtained following the method de-
scribed in Sec. II C. We performed multidimensional scaling
using the MATLAB built-in function cmdscale.

F. k-structural heterogeneity

In [25], structural heterogeneity was defined as a topologi-
cal characteristic for soft-matter systems, using imaging data.
It is based on persistent homology, a data analytic tool used
to get insight from the shape of the data. Here, we generalize
the notion of structural heterogeneity to consider two different
types of topological features that might appear in imaging
data. We recall some basic notion of persistent homology for
grayscale images and the definition of structural heterogeneity
and we introduce the generalized k-structural heterogeneity.

For a more detailed exposition of persistent homology, we
refer the reader to Refs. [64,65].

A grayscale image can be analyzed using persistent homol-
ogy by examining how its structure changes across different
light intensity levels [Figs. 2(b)-2(d)]. For each intensity
threshold i (ranging from O to 255), we create a filtration, i.e.,
a collection of simplified versions of the image that include
only the pixels with intensity less than or equal to a fixed pixel
intensity value i. As the threshold increases, new features
appear and existing ones disappear. These features include
isolated regions (connected components) and loops of pixels.

Each feature is recorded by the threshold value at which it
appears (birth) and the value at which it disappears (death).
These pairs of values are plotted to form a persistence dia-
gram, which provides a summary of the image’s topological
structure across all intensity levels.

The difference between the death and birth values of a
feature is called its persistence, and it reflects how long that
feature remains present as the intensity threshold changes. By
summing the persistence values of all loops (one-cycles) in
the diagram, we obtain a measure of the image’s structural
complexity, referred to as its structural heterogeneity.

For a grayscale image X with corresponding persis-
tence diagram PD(X), its k-structural heterogeneity, denoted
SH;(X), is the sum of the persistence values over all topolog-
ical features or cycles oy of dimension k in PD(X’), with birth
and death coordinates (by,, dy, ),

SHi(X) = > duy — be,. (6)
(b dey JEPD(X)

Isolated regions define cycles of dimension zero or zero-
cycles whereas loops of pixels define the cycles of dimension
one or one-cycles. The open source TDA platform GUDHI
was used to compute the normalized persistence diagrams that
include zero- and one-cycles from grayscale video frames.
The normalization of persistence diagrams followed the pro-
cedure reported in Ref. [25].

G. The V¥ function

Extracting insightful topological information from noisy
digital images can be challenging. Noise in images shifts the
birth and death times of features in persistence diagrams,
introducing many short-lived features. While longer-lived fea-
tures in a persistence diagram are more likely to represent
real structures, short-lived ones are often artifacts of noise. To
define a more robust numerical topological descriptor than (6),
we used the methodology described in Ref. [[66], Sec. 3] to
minimize the contribution of short-lived features, which are
attributed to noise, while retaining the topological features
that have a long lifespan. We define this optimized structural
heterogeneity (OSH), denoted W, next.

Let PDy () be the set of k-dimensional topological features
that are “alive” at scale parameter s in the persistence diagram
PD(X), that is, features whose birth and death coordinates
(b,d) satisfy b <s <d. Then |PDy(s)| is the number of
such features. Pictorially, PDy(s) corresponds to the set of
points in the persistence diagram that lie to the left of the
vertical line b = s and above the horizontal line d = s. Let
PD(s) := |J, PDi(s) be the union over all dimensions. Let
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Wy be defined as a normalized sum over all features alive
at scale s, where each contribution is given by the product
(d — s)(s — b), with b and d denoting the birth and death of a
feature, respectively,

1

AT

Y d=s)s=b. (D

(b,d)ePD(s)

The product (d — s)(s — b) in (9) becomes large only when s
lies near the middle of a feature’s lifespan, that is, between its
birth time b and death time d. If s is close to b or d, one of
the terms s — b or d — s becomes small, causing the product
to shrink.

Two correction factors need to be introduced to account for
those topological features that were discarded from PD(X)
in Wy(s). At threshold s, the persistence diagram splits into
three regions [Fig. 2(e)]: the rectangular region PD,; the lower
triangular region PD, consisting in all cycles whose death
coordinates satisfy d < s; and the upper triangular region PD,,
consisting in all cycles whose birth coordinates satisfy b > s.
Consider the functions

s—d
V= Y - ®)
(b,d)ePDy(s)
and
b—s
W, (s) = . 9
©= > - ©)

(b,d)ePD,(s)

Give a grayscale image X, the OSH of X, denoted W is
defined by

V(X)) = argmaxW,(s)Wy (s)W,(s), (10)
s€[0,1]

where [0, I] is the range of pixel intensity values.
For each set of time-dependent images {X;};>0, we can
compute the corresponding time-dependent value W(AX;) to

keep track of the time-evolution of the associated dynamical
system.

III. RESULTS AND DISCUSSION

A. Time-evolving complex soft matter system

In this section, we present three experimental systems used
as model examples to demonstrate transformational topo-
logical approaches to the analysis of dynamic multiscale
soft-matter-based systems. As already mentioned, the pattern-
forming agents are 3D localized twisted structures in liquid
crystals, characterized by a complex spatial distribution of the
LC director field. A variety of such particle-like structures
spontaneously appear as elastic excitation in frustrated films
of chiral nematics after the relaxation of electrohydrodynamic
instabilities, provided that the helical pitch p only slightly
exceeds the thickness of the homeotropically oriented LC
layer d(p 2 d) (see Sec. I1 A) [67,68]. These structures can
also be created by optically induced reorientation of liquid
crystal molecules when illuminating a frustrated chiral ne-
matic film with a tightly focused laser beam of sufficient
power [58,69,70]. In this case, the spot size and the power of
the light beam determine the type of elastic excitation formed.

When an alternating electric field is applied to a dense-
packed ensemble of particle-like soft structures [Fig. 1(a)]
(see Sec. II B), shearing-like deformations of quasihexago-
nal lattices occur in a pseudocrystallite, accompanied by the
evolution of crystallite grain boundaries [Fig. 1(d)] (video 1
within the SM [53]). In addition, under certain parameters of
the applied field, the transformation of pseudocrystallites can
be accompanied by the individual transformations of localized
structures into cholesteric fingers [Fig. 1(e)] (video 2 within
the SM [53]). If, however, an electric field is applied to a less
dense ensemble of soft quasiparticles, each of the structures
transforms the macroscopically supplied electrical energy in
such a way that the entire ensemble exhibits collective motion
in a direction that does not correlate with the direction of
the electric field applied orthogonally to confining substrates
[Fig. 1(f)] (video 3 within the SM [53]). This motion leads
to the formation of dynamic chains and clusters of localized
structures, so that in general the process resembles movement
in complex self-assembling living systems, such as flocking
of birds or fish [33].

The analysis of dynamic ensembles of localized elastic ex-
citations in a viscoelastic liquid-crystal medium is a complex
problem. Even for a single skyrmion structure, studying the
non-equilibrium behavior is a challenge [71,72], while for
dynamic toron pseudocrystallites, so far only Voronoi recon-
struction has been applied to reveal the complex movements
of particles and defects within their lattices [34]. On the other
hand, light passing through a three-dimensional LC structure
placed between polarizers forms a distinct optical microscopic
image, which is determined by the spatially inhomogeneous
orientational distribution of molecules within the structure.
The optical image is a two-dimensional projection of the
transmitted light and the reconstruction of the 3D director dis-
tribution is impossible without additional experimental data or
numerical simulations; nevertheless, different localized exci-
tations form optical images that are distinguishable from each
other [73], and an ensemble of localized excitations creates
a patterned optical picture. Based on this, we introduce two
methods for studying dynamic ensembles of localized struc-
tures: The first is an evolutionary approach that can be used to
explore the general behavior of a nonequilibrium many-body
system, even if individual structures undergo shape transfor-
mations. The second is a topological approach that can be
applied to detect changes in the individual localized structures
that constitute a dynamic ensemble.

The first method implies that the time sequence of experi-
mentally taken video frames visualizes changes in the state of
the three-dimensional system [Fig. 1(c)], and the numerically
computed distance between frames (in other words, the degree
of discrepancy between the intensity distributions of optical
images) reflects the rate of these changes [Fig. 2(a)]. Then,
the reconstructed distance matrix between all video frames
reveals the evolutionary path of the system.

The second method is based on the fact that the intensity
distribution is related to the topology of a localized structure
[Fig. 1(b)], and TDA reveals the structural features of the
two-dimensional light pattern [Figs. 2(b)-2(e)]. In each case
of the dynamic ensembles presented in Figs. 1(d)-1(f), con-
sideration of the time dependencies of topological quantities
allows us to detect changes in the 3D spatial organization of
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FIG. 3. Spatiotemporal evolution of different types of soft quasiparticle ensembles. (a), (c), (¢) Time evolution of three ensembles of
localized structures under an applied electric field, shown using selected frames from the corresponding videos. (b), (d), (f) The computed
image distance matrices for corresponding videos, where frame numbers were converted to seconds of real-time experimental videos.

the localized structures themselves, similar to how we tracked
structural changes in liquid crystal nanocomposites [25].

B. Spatiotemporal evolution of soft quasiparticle ensembles

As discussed earlier, for the evolutionary analysis we con-
sider the difference between frames of the same video to
understand the difference between the physical states of a
complex dynamical system at different points in time. To
quantify this difference, we computed the L>? distance be-
tween all pairs of frames (see Sec. IIC). Inspection of the
computed distance matrix (DM) allows us to reveal systems
that preserve their overall spatial organization over time evolu-
tion. Note that to effectively compare the evolution of different
systems, frame numbers were converted to seconds using the
experimental videos frame rates. In the case of shear-like
deformation of the pseudocrystallite [Fig. 3(a)], the distance
between any video frame and sequentially all the others first
smoothly increases and then decreases again, demonstrating
that the system tends to return to its initial configuration
[Fig. 3(b)]. Simple visual observation of video frames shows
that the grain boundary also drifts with time, but the DM turns
out to be insensitive to this change. If the movement of a
pseudocrystallite is accompanied by a shape transformation
of individual pattern-forming agents [Fig. 3(c)], the system is

only able to approach the initial state at the beginning, and
ultimately moves far from the initial configuration [Fig. 3(d)].
In addition, the much narrower blue diagonal in Fig. 3(d)
compared to Fig. 3(b) indicates that in the second case the rate
of change of the system is much higher, which is consistent
with faster movement of the pseudocrystallite (videos 1 and 2
within the SM [53]). In the case of self-assembly of moving
clusters [Fig. 3(e)], the distance between the states of the
system first increases remarkably quickly, which corresponds
to the transition from pseudocrystalline to cluster spatial orga-
nization, and then remains large and almost unchanged (video
3 within the SM [53]), which is explained by displacement of
clusters of different sizes and shapes over time [Fig. 3(f)]. The
widening of the DM diagonal indicates that the cluster states
of the system are closer to each other than the pseudocrys-
talline and cluster states.

In general, DMs provide a qualitative understanding of the
evolution of soft reconfigurable quasiparticle systems, but a
more detailed analysis of the direction and end point of evolu-
tion is desirable. Since dynamic ensembles of skyrmions are
multidimensional complex systems, it is reasonable to reduce
the dimension of the video frame intensity data for further
consideration, for example, using the principal component
analysis method (PCA). Obviously, liquid-crystalline systems
are essentially nonlinear, so one would expect that dimen-
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sionality reduction will also be nonlinear, but here we aim to
consider how linear dimensionality reduction can be applied
to such systems and what results can be obtained. Therefore,
we applied multidimensional scaling to three videos, selected
frames of which are presented in Figs. 3(a), 3(c), and 3(e).

Multidimensional scaling is an unsupervised method that
allows one to obtain Euclidean coordinates of the L>? distance
matrices (see Sec. IL E). In the simplest case of densely packed
and moving skyrmions [Fig. 4(a)], the eigenvalue intensities
show that the first two components are an order of magnitude
stronger than the third one. In their two-dimensional space,
an almost closed loop is formed. This corresponds to the
situation when a densely packed hexagonal lattice of localized
structures is preserved during its movement, and at a certain
time, when the positions of the localized structures coincide
with the initial ones, the system returns to its original state.
When taking the third principal component into account, the
3D curve lies almost in a plane parallel to the plane of the first
two components, which reflects the minor contribution of the
third component to the system dynamics.

In the case of the second video [Fig. 4(b)], a spiral-like
converging trajectory is obtained in the space of the first and

second components, leading to a seemingly attractive fixed
point at the end of evolution when all localized structures are
transformed into cholesteric fingers during their movement.
However, from the eigenvalues it is clear that several more
principal components are also significant. In 3D space of
the first three components, a rather flat curve at the begin-
ning of evolution indicates a minor contribution of the third
component, but closer to the end of the video its contribu-
tion becomes remarkable. Thus, the vertical part of the 3D
curve is formed representing the growth of cholesteric fingers,
although in the projection onto the plane of the first two com-
ponents, a converging curve resembling a fixed point attractor
indeed appears.

It is difficult to isolate significant components in the case
of the third video with skyrmion clustering [Fig. 4(c)], but if
we limit the analysis to the first three, then the contribution of
the third component is strong at the beginning of the video,
when clusters are formed and the translationally invariant
configuration (TIC) between the skyrmions appears [74,75].
Then the contribution of the third component weakens, and the
3D curve becomes flatter, which corresponds to the movement
of the clusters in the real-time video. The 2D projection shows
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a diverging spiral which we expect not to diverge much further
since the clusters have already formed. Unfortunately, we are
unable to verify this because the recorded video is too short.
The temporal evolution of individual principal components
(Fig. S1 within the SM [53]) also confirms the fact that the first
and second components are of key importance when consider-
ing the movement of shape-persistent pattern-forming agents,
while the third and even fourth components dominate in the
case of their simultaneous shape transformation.

Note that clustering can also be considered as a process
of shape transformation of the pattern-forming agents. In the
case of system shown in Fig. 3(e), this occurs by “gluing”
skyrmions into their long chains surrounded by the TIC phase
and forming a dynamic stripe-like pattern (video 3 within
the SM [53]), unlike the example shown in Fig. 3(c), where
individual skyrmions themselves transform into stripe-like
cholesteric fingers (video 2 within the SM [53]).

To sum up, DMs are capable of capturing the similarity of
states of time-evolving systems on a large-size scale, with-
out taking into account finer details and structural defects
of lower dimensions (e.g., linear disclinations such as grain
boundaries). Its coupling with PCA makes it possible to de-
tect whether the movement of ensemble-forming structures

is accompanied by their shape transformation or other, more
complex processes, and when this occurs in time.

C. Periodic structural changes of soft quasiparticles

Careful visual inspection of the video data prompted us to
analyze in detail the size variation of localized structures, as
we noticed their regular and consistent pulsation. In the case
of a dynamic pseudocrystallite, the average size of localized
structures changes in a small range of values, but clearly
periodically [Fig. 5(a)]. In the case of moving self-organized
clusters, the average size of quasiparticles decreases notice-
ably and then remains almost constant; however, from the
two observed dips at approximately 17 and 33 seconds one
can assume that in this system the variation period can be
much longer [Fig. 5(b)]. Fast Fourier transform (FFT) anal-
ysis applied to the first data set reveals a number of distinct
frequencies [Fig. 5(c)], while in the second case no periodicity
in time can be clearly identified [Fig. 5(d)].

The observed variations in the size of localized structures
are ensured by a change in the size of the LC regions when
the LC director deviates from the orientation perpendicular to
the sample substrates. The larger region and more molecules
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deviate from this direction, the higher the intensity of trans-
mitted light through 90°-crossed polarizers, and the larger the
observable structure size. The absence of noticeable distor-
tions in the shape of the structures during their variations in
size indicates that the director field orientational configuration
inside changes symmetrically relative to the centers of the
structures, while the topology most likely remains unchanged.
Therefore, the algebraic L>? norm of the intensity of video
frames or even the gradients of video frames may be more
suitable for analyzing the periodic behavior of this system
(see Sec. IID). However, only in the case of a dynamic pseu-
docrystallite, FFT analysis of the norm of the video frame
gradient gives a pronounced set of frequencies (Figs. S2(a)
and S2(b) within the SM [53]), while the FFT power spectra
for both the radii and norm of video frames are less distinct
[Fig. 5(c)] (see also Fig. S2(a) within the SM [53]). In the
case of shape-changing localized structures, the distinctness
of frequencies is noticeably reduced (Figs. S3(a) and S3(b)
within the SM [53]). In the case of clustering, as before,
it is very difficult to distinguish any frequencies from the
FFT data [Fig. 5(d)] (see also Figs. S4(a) and S4(b) within
the SM [53]). In an effort to reveal information about the
periodic behavior of localized elastic structures and follow-
ing the methodology for analyzing the time evolution of soft
matter systems presented earlier in [25], we computed the
time dynamics of structural heterogeneity of dimensions 0
and 1 (see Sec. IIF). Although for a dynamic pseudocrys-
tallite and a densely packed ensemble of shape-transforming
structures, FFT analysis of the computed dependencies does
not provide any additional information (Figs. S2(c), S2(d),
S3(c), and S3(d) within the SM [53]), in the case of cluster-
ing, some distinct frequencies can be detected (Figs. S4(c)
and S4(d) within the SM [53]). Therefore, using TDA, it
is possible to generate data that, at the next step of FFT
analysis, reveals periodic changes of soft pattern-forming
quasiparticles.

Aiming to obtain a distinct frequency spectrum revealing
periodic changes in localized structures for different dynamic
ensembles, we have constructed a topological descriptor, the
optimized structural heterogeneity (OSH) or W function. This
numerical descriptor takes into account an optimized version
of the zero- and one-structural heterogeneity of the system
(see Sec. II F). In other words, the W function quantifies dif-
ferent levels of organization of molecules in a liquid-crystal
system, which give rise to the formation or disappearance
of topological features, such as connected components or
loops (see Sec. I1 G). For the moving pseudocrystallite, the
W function changes periodically in time, but it can be noted
that its initial dip in the first period differs from all others
[Fig. 6(a)]. This may be because of the effect of electric field
switching on the sizes of localized structures. A similar, but
less pronounced, effect can be observed in the case of a dy-
namic ensemble of shape-transforming structures [Fig. 6(b)].
In addition, one can see that in this case the amplitude of
all other dips gradually decreases. We associate this with a
decrease in the number of axisymmetric localized structures
and the growth of cholesteric fingers, the behavior of which
gives a different contribution to the variation of the transmitted
light intensity during video recording and, ultimately, to the
change in the ¥ function.

In the third case of dynamic self-assembled clusters, the
effect of switching on the electric field is insignificant. The
limited number of dips makes it difficult to explain the be-
havior of localized structures from visual inspection of the
W function dependence [Fig. 6(c)]. Therefore, to achieve a
more precise analysis, we again applied FFT and revealed
that for the case of a dynamic pseudocrystallite consisting
of shape-persistent torons, the Fourier spectrum shows a set
of frequencies that look like a fundamental frequency ac-
companied with harmonics [Fig. 6(d)]. However, in fact, the
spectrum consists of the fundamental frequency and its second
harmonic, while all other frequencies are slightly larger than
the exact harmonic values. These spectral components are in-
terharmonics, i.e., at frequencies that are not integer multiple
of the fundamental frequency. Note that the power of spectral
components decreases sharply with increasing frequency, but
not in agreement with an exponential law. In the case of
dynamic and densely packed ensemble of shape-transforming
localized structures, the first harmonic is observed at almost
the same frequency as in Fig. 6(d), its additional harmon-
ics are absent, but a spectrum of interharmonics is observed
instead [Fig. 6(e)]. The contribution of the first several in-
terharmonics to the spectrum is quite remarkable, since they
have almost the same power as the first harmonic or even
exceed it. However, we consider the first frequency to be
fundamental, since it coincides well with the fundamental
harmonic in the case of Fig. 6(d), and the physics of the
processes occurring in these systems should be similar. With
this definition, the spectrum shown in Fig. 6(e) consists of a
set of inter- and subharmonics. Finally, in the case of the for-
mation of dynamic clusters from torons, a complex spectrum
with two spectral components of approximately equal power
is obtained [Fig. 6(f)]. By comparing this spectrum with the
power spectra in Figs. 6(d) and 6(e) (see also Fig. S5 within
the SM [53]), we could conclude that the first spectral com-
ponent is a slightly shifted interharmonic previously observed;
however, the second spectral component and the twice weaker
third component represent new contributions. It can also be as-
sumed that the frequency shift of the first spectral component
is caused by the interaction of the various processes occurring
in the system. In any case, the spectrum shown in Fig. 6(f)
confirms that these processes are quite aperiodic.

The formation of sets of different harmonics may be related
to the nature of the liquid-crystal systems under study. As is
known from signal analysis, the power values are proportional
to the energy of each corresponding frequency. Harmonics
arise from a pure sine wave processed by a nonlinear device,
which in this case is the liquid crystal medium. Subharmonics
show how much a signal deviates from a periodic shape, since
only the harmonic family has the property that each member
is also periodic with the fundamental period. Various sub-
harmonics could appear when the driving frequency is over
the fundamental frequency of the system because of the sys-
tem nonlinear stiffness. Interharmonics indicate an increasing
number of loads and nonlinearities in the system. Therefore,
we come to the conclusion that the degree of nonlinear re-
sponse increases from a dynamic quasicrystallite consisting
of torons to a moving ensemble of shape-transforming local-
ized structures and especially to clustering torons. In the first
case, the nonlinear response of a complex LC system leads
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to the emergence of a set of interharmonics that are close
in frequency to the harmonics and provide a much smaller
contribution compared to the fundamental frequency. In the
second case, the nonlinear response becomes more complex,
which could be associated with the formation of cholesteric
fingers, and apparently leads to the fact that the contribution of
interharmonics is even higher than the fundamental frequency.
In the third case, the power spectrum could be explained
by the dual response of the dynamic toron clusters and the
observed large regions of the liquid crystalline TIC phase, the
behavior of which, obviously, should be very different from
the behavior of localized twisted structures.

IV. CONCLUSIONS

Dynamic complex patterns are observed in a wide variety
of living and nonliving systems, arising from the physical,
chemical, or biological processes occurring in them. The evo-

lution of such systems is determined by the behavior of both
individual pattern-forming agents and the entire system as
a whole. Thus, the in-depth investigation of their behavior
requires the analysis at different hierarchical levels. In our
study, we applied a number of geometric and topological
methods to study the dynamics of patterns and their individual
elements.

As a particular case of a pattern-forming and multilevel
system, we have analyzed the behavior of dynamic ensembles
of localized twisted structures in chiral LCs, where the struc-
tures themselves could change their individual shape or vary
their size while maintaining it. An external electric field im-
parts a dynamic behavior, inducing a translational motion of
localized structures, and changing their spatial organization,
topology and size.

We found that geometric and topological data analysis are
well suited to characterize the dynamics of such systems.
The computed distance matrices between frames of recorded
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videos allow us to understand the evolution of the many-body
system at a qualitative level, while consideration of principal
component analysis data reveals not only the trajectories of
the system in different phase spaces reflecting real changes,
but also allows us to separate the evolution associated with
the translational motion of pattern-forming structures from the
movement accompanied by a change in their shape or their
clustering. Furthermore, we introduced a topological charac-
teristic, the W function, which detects periodic processes in
ensembles of pattern-forming agents with a constant topology
and separates this scenario from other cases when, simulta-
neously with movement, the shape of individual structures
changes or regions with significantly different spatial organi-
zation of the material appear.

The presented approach could be useful in solving the
problem of identifying and mapping domains in various liv-
ing and abiotic systems. A prominent example of such a
challenge is linking high-dimensional gene expression with
three-dimensional cell morphology [76], including the re-
sponse of cell state to genetic and chemical perturbations [77],
or to the form and function of living organisms [78].
Understanding this relashionship remains a major prob-
lem in biomedicine [79], bioinformatics [80], and general
biology [81,82]. Other outstanding problems include the ex-
ploration of hierarchical bioinspired nanocomposites with

embedded functionalities for dynamic and synergetic re-
sponses [83], nanoparticle superclusters for light-harvesting
nanomaterials in solar energy utilization [84], and thin-film
soft materials for green energy systems [85]. Overall, our
findings highlight that topological data analysis is universal
and should prove valuable for the study of a wide variety
of dynamic self-assembled multilevel systems: from micro-
tubules inside a cell, bacterial colonies and schools of fish
to floating gel particles, reaction-diffusion waves, moving
charged metal beads and convection cells, among many
others.
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