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Decay of skeins of dislocations in cholesterics, rewiring
of Conway’s tangles into necklaces of bangles
Jun-Yong Leea, Mehdi Zeghalb, Patrick Judeinsteinc, Maria Helena Godinhod, Ivan
Smalyukha,e and Pawel Pieranski∗b

Knotted and linked skeins of vortices and disclinations generated, respectively, by symmetry-breaking
normal → superfluid and isotropic → nematic phase transitions are known to untie, by rewiring
of their crossings, into independent unknots that finally shrink and collapse until the defects-free
ground state is reached. We demonstrate that the decay of skeins of dislocations, generated by the
isotropic → cholesteric phase transition within a cylinder/cylinder gap, leads to stable necklace-like
states made of numerous minimal loops, called bangles, tethered on kinks of much larger loops
called cargo. We analyze the topological decay of skeins of dislocations in terms of the Conway-
Kauffman theory of knots, showing that the necklace state results from rewiring of crossings triggered
by collisions of tangles with their numerator closure. We point out that, in general, for symmetry
reasons, kinks on edge dislocations are chiral. Their handedness, right or left, directly depends on
the sign of kinks on which they are localized. In cholesterics with intrinsic chirality, the energy of
kinks wearing bangles depends on their handedness. For this reason, within necklaces, all bangles
are tethered on kinks of the same sign.

[

1 Introduction
1.1 Classification of knots and links, immunity against the

rewiring
In mathematics, classifications of knots and links1–4, made, by
definition, of one-dimensional closed lines embedded in a three-
dimensional space, is based on the implicit immunity of their
crossings against the rewiring.

Knots tied on ropes, threads, fishing lines or strings are obvi-
ously endowed with this immunity. For this reason they are often
used as physical examples of the abstract topological intricacies.

1.2 Decay of skeins of linear topological defects
On the contrary, knotted and linked skeins of vortices, disclina-
tions or dislocations generated, respectively, by the symmetry-
breaking normal → superfluid, isotropic → nematic and isotropic-
cholesteric phase transitions are subjected to spontaneous
rewiring of their crossings. The resulting decay of the topolog-

a International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-
SKCM2), 2-313 Kagamiyama, Higashi-Hiroshima City, Hiroshima, Japan.
b Laboratoire de Physique des Solides, Université Paris-Saclay, 91405 Orsay, France.
c i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Tech-
nology, NOVA University Lisbon, Campus de Caparica, Caparica 2829 - 516, Portugal.
d Université Paris-Saclay, CEA, CNRS, LLB, 91191 Gif-sur-Yvette, France.
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ical complexity attracted much attention and, among others, the
following generic question were raised5,6: what is the terminal
state of the decay and What is the topological pathway leading to
it ?

1.3 Aims of this paper

In the case of the superfluid vortices, the answer to this ques-
tion was found through a numerical simulation by Kleckner et
al.5: the decay of knotted and linked skeins of vortices involves
rewiring of the crossings, one after another, and leads to a sys-
tem of independent vortex loops (unknots) that collapse until the
defects-free ground state is reached.

The second case of the nematic disclinations is illustrated by
an experiment and discussed in more details in the next section
2. We will see that it is more complex than the case of superfluid
vortices because two types of disclinations are generated during
the isotropic → nematic transition. We will show that in spite of
this difference the terminal state is also defects-free.

In section 3, we focus on the decay of skeins of dislocations gen-
erated by the isotropic → cholesteric phase transition and demon-
strate that, under the confinement in gaps of variable thickness
h(x,y), the decay is incomplete because it terminates at the neck-
lace state composed of minimal loops, dubbed bangles, tethered
on kinks of large loops called cargo. The topological path lead-
ing to the necklace state passes through the stage of double-helix
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tangles2,3,7 that ultimately are rewired into the necklaces of ban-
gles such as the one depicted in Figure 4. In section 4, we report
on the detailed structure of bangles resolved by means of fluores-
cence confocal microscopy. In section 5.1 we will we provide a
short introduction into the Conway-Kauffman theory of rational
knots which turns out to be perfectly adequate for interpretation
of the tangle → necklace rewiring given in section 6.

2 Decay of skeins of disclinations in nematics
In the absence of obstacles such as colloidal inclusions8 or fibers9,
the decay of skeins of disclinations generated by the isotropic-
nematic phase transition leads to the defects-free ground state
compatible with boundary conditions.

This behavior is illustrated here with an experiment performed
with the setup tailored initially for studies of dislocations in
cholesterics. As we will see below this setup is also well adapted
for studies of skeins of disclinations in nematics.

2.1 Genesis of the skeins of disclinations by the isotropic-
nematic phase transition

2.1.1 Experimental setup

In this experiment, depicted in Figure 1, a droplet of pure 5CB
is maintained by capillarity inside a thin gap between cylindrical
mica sheets. The geometry of the sample shown in Figure 1a is
similar to the one used by Zappone and Bartolino in their exper-
iments on nucleation of dislocation loops10 as well as in experi-
ments with 5CB/CB15 cholesteric mixtures discussed below (see
Figures 2 and 3). A more detailed description of our setup can
be found in references [11] and [12]. It consists of two plastic
parts tailored for supporting the mica sheets and bending them
into the cylindrical shapes with a well-known radius of curvature,
typically R=50µm. (The mica sheets used in our experiments are
"Muscovite Mica Sheets V1 Quality" from Electron Microscopy Sci-
ences.)

The isotropic-nematic transition is driven by a thermal quench
from the isotropic phase (see Movie S1). Heating and cooling
of the sample is achieved by switching on and off a stream of a
hot (≈ 40oC) nitrogen gas. Due to the very small thicknesses of
the mica sheets (≈ 50µm) and of the nematic droplet (hmin ≈
100µm) the cooling rate due to the thermal contact with ambient
air is of the order of 5oC/s.

2.1.2 The initial ground state

Due to the identical anchoring directions, parallel to the x-axis, on
both mica sheets, the director field of the ground state, reached
after a long enough relaxation, is uniform: n0(z) = [1,0,0]. The
experiment starts by heating the sample above the temperature
TNI of the nematic-isotropic phase transition.

2.1.3 Excited states

The subsequent quench from the isotropic into the nematic phase,
generates a patchwork-like texture made of several coexisting
states compatible with the anchoring conditions:

nNi
(z) =

[
cos

(
Ni

2πz

h

)
,sin

(
Ni

2πz

h

)
,0

]
(1)

with Ni = 0,±1/2,±1,±3/2, .... The adjacent patches are sepa-
rated by disclinations.

2.2 Decay of skeins of disclinations into the defects-free
ground state

The density per unit area of the elastic distortion in these patches
of surface area Si grows with the square of their index Ni :

gNi
= K22

2

(2π

h

)2
Ni

2 (2)

The subsequent evolution of the patchwork (see Figures 1c-1g) is
driven by the reduction of the total distortion energy

Edist ≈
∑

i

SNi
gNi

+
∑

j

LjTj (3)

in which the second term involves the tension Tj and the length
Lj of the disclination j separating the adjacent patches.

Elimination of patches with higher indices leads to a collec-
tion of independent loops (see Figure 1g) in which the lowest
excited states with N = ±1/2 are separated from the surround-
ing ground state matrix (with N = 0) by singular disclinations of
rank m = 1/2. Let us note that the two N = ±1/2 state can coex-
ist inside one disclination loop of rank m = 1/2. In this case they
are separated one from the other by disclinations of rank m = 1.
Thanks to the escape of the director field from the (x,y) plane
into the third dimension z (see Figure 1k) these m = 1 disclina-
tions are non-singular.

During the final stage of the decay these unlinked disclination
loops shrink and collapse. For the sake of simplicity, let us suppose
that a collapsing disclination loop is circular and its radius is r.
The distortion energy Edist is then composed of two terms:

Edist ≈ πr2hg1/2 + 2πrT1/2 (4)

in which
T1/2 = CK22ln

(
h

Rc

)
+ Ec (5)

is the energy per unit length of the disclination loop, Rc is the
radius of the singular core, Ec is the core’s energy per unit length
and C is a numerical constant.

The final collapse of such a circular loop is driven by a cen-
tripetal force per unit length given by

− 1
2πr

∂Edist

∂r
≈ −hg1/2 −

T1/2
r

(6)

The first term of this expression written explicitly as

FP K = −π2K22
2h

(7)

can be seen as the Peach-Koehler force acting on the disclination.
Let us stress that, in contrast with the case of cholesterics con-
sidered below, the sign of this force, inversely proportional to the
local thickness h = hmin + r2/(2R) (R is the radius of curvature
of the mica sheets), is negative (corresponding to the centripetal
direction) for all values of r.

2 | 1–14Journal Name, [year], [vol.],
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                   Nematic 5CB

Fig. 1 Decay of a skein of disclinations generated in the gap between the mica sheets by the isotropic-nematic phase transition. a) Geometry of the
experiment: droplet of 5CB confined by capillarity between cylindrical mica sheet. The sample is heated by a stream of a hot (≈ 40oC) nitrogen gas
until the Nematic-Isotropic transition occurs. The subsequent quench to the Nematic phase is due to the spontaneous cooling at ambient temperature.
b) Variation of temperature in time. c-g) Entanglement at t= 2,8,16,64 and 256s after its genesis. h) At t= 860 s, the defects-free ground state is
recovered. i) Cross section of the texture along the AB line defined in (g). The red circles indicate singularities of the m= 1/2 disclination. j) Cross
section of the texture along the CD line defined in (g). The red circles indicate singularities of the m= 1/2 disclination. k) Cross section of the m= 1
disclination along the EF line defined in (g). The director field n(r) is non singular here thanks to the escape into the third dimension z.
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The second term

FL = −
T1/2

r
(8)

which can be seen as the Laplace force due to the tension (energy
per unit length) of the disclination, grows as 1/r. The relative
importance of the two terms depends on the ratio

FL

FP K
∼ h

r
(9)

For this reason, the collapse of independent loops is driven mostly
by the Peach-Koehler force until the radius r becomes small
enough.

3 Decay of skeins of dislocations in cholester-
ics

3.1 Distortion energy

When the chiral compound CB15 is added to the nematic droplet
of 5CB confined between the mica sheets, the expression 2 of the
elastic energy density is modified as follows:

gN = K22
2

(2π

h

)2 (
N − h

po

)2
(10)

In a first approximation, the characteristic length po called pitch is
inversely proportional to the concentration cCB15 of CB15. In the
nematic phase, cCB15 = 0% so that po → ∞ while for cCB15 =
0.86%, the pitch is finite: po ≈ 25µm.

3.2 The ground state

The distortion energy expressed in equation 10 vanishes not in
one homogeneous ground state state like in nematics but in a set
of states satisfying the following condition:

hN = Npo (11)

In other words, the distortion energy vanishes for discrete val-
ues hN of the gap thickness allowing to lodge N undistorted
cholesteric pitches po.

In the case of the cylinder/cylinder gap of variable thickness
given by h(r) = hmin +r2/(2R), this condition is satisfied only at
discrete values of the radius r given by12:

rN =
√

2R(Npo − hmin) (12)

For all other values of the thickness, the cholesteric helix is nec-
essarily either compressed or dilated.

Therefore, the ground state, corresponding to the minium of
the total distortion energy, of a cholesteric confined inside the
cylinder/cylinder gap is composed of annular fields with the in-
dex N separated by circular defects which can be seen either as
disclinations or as dislocations12.

To be more explicit, let us discuss results of an experiment,
realized with a relatively thin cylinder/cylinder gap, depicted in
Figure 2 (see Video S2).

3.3 Thin gap, large cholesteric pitch
In this experiment, a very complex dense skein of linear defects
generated by the isotropic-cholesteric phase transition decays into
a much simpler texture shown in Figures 2g and 2h.

3.3.1 Two types of dislocations

3.3.1.1 Non singular dislocations with the Burgers vector
b=p For readers familiar with the solid state physics, the fron-
tier between the N=2 and N=1 fields in Figures 2h and 2i appears
as analogous to a crystal dislocation with the Burgers vector b

equal to the full cholesteric pitch p.
If the director field n was constrained to stay in the (x,y) plane

(the polar angle θ defined in Figure 2a is set to π/2), then the
order parameter of the cholesteric could be represented by the
complex function Ψ = eiφ(z) like the order parameter of the su-
perfluid state. However, in cholesterics the phase φ has a physical
meaning: it corresponds to the azimuthal angle defined in Figure
2a. With the condition θ = π/2, the linear topological defect be-
tween the adjacent N=2 and N=1 fields would be analogous to
the superfluid vortex because on the circuit surrounding it (red
dashed rectangle in Figure 2i) the phase φ varies by 2π. If this
analogy with the superfluid vortices was fully true then defect line
in Figure 2h would have a singular core like the superfluid vortex.

Since the pioneer works of Kleman and Friedel13 and of
Toulouse and Kleman14 it is well known that this analogy is
wrong : the core of dislocations with the Burgers vector b = p,
known also as thick or double15, is non-singular because the di-
rector field n can evolve not in two but in three dimensions as it
is depicted in Figure 2i.

3.3.1.2 Singular dislocations with the Burgers vector b=p/2
On the contrary, the dislocations with the Burgers vector b = p/2
known as thin or simple15, which separate the fields N=1, N=1/2
and N=0 in Figure 2h, are analogous to the m = 1/2 disclination
in nematics (see Figure 1i above) so that they must have a singu-
lar cores13,14.

3.3.2 Lehmann clusters

Remarkably, at the beginning of the decay (see Figures 2e and
2f) the b = p dislocations are frequently associated in pairs called
Lehmann clusters15 with the total Burgers vector b = p − p = 0.
These Lehmann clusters are attached by one or two of their ends
to the b = p/2 dislocations (see Figures 2f and 2g).

3.3.3 Bangles

During the subsequent decay, the size (length) of the Lehmann
clusters is shrinking. Independent clusters collapse but those
which are linked with other thick dislocations (pointed by small
blue arrows in Figure 2f) stop shrinking when they reach their
minimal size. This mechanism leads to generation of minimal
loops, called bangles (pointed by blue arrows in Figure 2g), teth-
ered on large thick (b = p) dislocation loops called cargo.

3.4 Thick gap, tangles and necklaces of bangles
Bangles are generated in abundance by the isotropic-cholesteric
phase transitions when the gap thickness hmin is several times
larger than the cholesteric pitch po.
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Fig. 2 Decay of skeins of dislocations produced by the isotropic-cholesteric phase transition in a thin sample. a) Geometry of the experiment: droplet
of a 5CB/CB15 cholesteric mixture confined by capillarity between cylindrical mica sheet. The sample is heated by a stream of hot (≈ 40oC) nitrogen
gas until the cholesteric-isotropic phase transition occurs. The subsequent quench to the cholesteric phase is due to the spontaneous cooling at
ambient temperature. b) Variation of the temperature with time. c) Isotropic phase of the 5CB/CB15 mixture. d) Dense entanglement of dislocations
produced by the isotropic-cholesteric phase transition. d-g) Decay of skeins containing the single (b=p/2) and double (b=p) dislocations. f) Few
bangles tethered on the b=p dislocations are indicated by arrows. g) Final state of the decay in the thick part of the cylinder/cylinder gap. The
necklace state involves only the b=p dislocations. h) Final state of the decay in the thinnest part of the cylinder/cylinder gap. The b=p/2 dislocations
present here do not form tethered loops. i) Cross section of the dislocation b= p along the line AB defined in (h). j) Cross section of the dislocation
b= p/2 along the line CD defined in (h). k) Cross section of the dislocation b= p/2 along the line EF defined in (h).
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Fig. 3 Generation of the necklace state by the isotropic → cholesteric phase transition in a thick cholesteric layer. a) Isotropic → cholesteric phase
transition. b) Dense skein of dislocations generated by the isotropic → cholesteric phase transition. c) After 33 minutes of relaxation, double-helix
tangles t1 and t2 and necklaces n1 and n2 can be distinguished. d) Close-up views of the double-helix tangles t1 and t2 and necklaces n1 and n2. e)
The skein of dislocations after 1395 minutes of relaxation. f) Close-up view of the two series of bangles inside the dashed rectangle in picture (e).

In a typical experiment depicted in Figure 3 (see Video S3), the
skein of dislocations resulting from the isotropic-cholesteric phase
transitions (see Figure 3a) is more complex than the one gener-
ated in the thin gap (see Figure 2f) because beside dislocations
with Burgers vectors b = p and b = p/2, it contains also double-
helix tangles t1 and t2 (discussed below) as well as necklaces n1
and n2 corresponding to series of respectively six and two bangles
tethered on common cargo loops.

During the subsequent decay, all double-helix tangles are
rewired into necklaces so that final pattern of dislocations in Fig-
ure 3e is composed of circular cargo loops bearing chains of ban-
gles.

3.5 Inchoate decay of skeins of dislocations in cholesterics

The first conclusion of experiments reported above is that the
decay of skeins of dislocations, generated by the isotropic-
cholesteric phase transitions, is inchoate because it leads not to
the defects-free state but, on the contrary, to a state composed
of concentric coaxial thin or thick dislocation loops. This target-
like pattern is well known and has been discussed in more details
previously11,16.

The second conclusion is that the thick dislocation loops (b = p)
belonging to the target-like pattern can bear much smaller loops
called bangles. For obvious reasons, systems of large cargo loop
bearing bangles are called necklaces.

4 The necklace state
4.1 The concept of the necklace state

The concept of the necklace state was introduced recently12,17

in the context of experiments with cholesteric droplets confined

between cylindrical mica sheets and submitted to a dilation-
compression strain pulse (see Video S4).

4.2 Geometry of necklaces

An example of a necklace generated in this manner is shown in
Figure 4b where five bangles are tethered on the cargo loop.

4.2.1 3D structure of necklaces

The three-dimensional structure of this necklace, resolved us-
ing higher magnifications, is depicted schematically in Figure 4d
which shows that all bangles are tethered on kinks of height
∆z = +p of the cargo loop. The positive sign is given to the kinks
bearing bangles after the clockwise orientation of the cargo loop,
symbolized by the conical arrow.

4.2.2 Structure of bangles tethered on kinks, FCPM experi-
ments

4.2.2.1 FCPM experiments The detailed 3D structure of
kinks wearing bangles was resolved by means of fluores-
cence confocal polarizing microscopy (FCPM) (see Figure 5).
We prepared a chiral nematic host consisting of a low-
birefringence nematic host (ZLI-3412) dope with a right-handed
chiral dopant (CB15, TCI), yielding a chiral pitch of approx-
imately 5 µm of pitch. Additionally, very small amount of
the anisotropic fluorescent dye N,N-bis(2,5-di-tert-butylphenyl)-
3,4,9,10-perylenedicarboximide (BTBP) was added to this mix-
ture for fluorescence confocal polarizing microscopy (FCPM)
imaging. A wedge cell (see the insert in Figure 5g) was fabricated
using a slide glass and a cover glass. One side of the cell was sepa-
rated using double-sided tape to set a gap to 60 µm, while the op-
posite side was directly sealed using epoxy adhesive to minimize

6 | 1–14Journal Name, [year], [vol.],

Page 6 of 15Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

7 
Se

pt
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 9

/1
7/

20
25

 8
:1

3:
50

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D5SM00703H

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/D5SM00703H


kink -p
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50
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a

    5CB + CB15

Fig. 4 The necklace state. a) Geometry of experiments with cholesteric droplets (5CB/CB15 mixtures) confined between cylindrical mica sheets.
The upper mica sheet can be moved in x, y and z directions. b) View in a microscope of a necklace composed of a circular dislocation called cargo
loop wearing five small circular dislocations called minimal loops or bangles. N is the number of cholesteric pitches p ≈ 5µm located between the
mica sheets. c) Close-up of a bangle tethered on a kink of the cargo loop. The radius of the bangle is about three times smaller than the cholesteric
pitch: rb ≈ p/3. It varies with the concentration cCB15 of the chiral compound CB15 in the nematic 5CB. Here, cCB15 = 0.86% and p ≈ 25µm .
d) Perspective view of the necklace state. As all minimal loops are tethered exclusively on the +p kinks of the cargo loop, this configuration is chiral
(for details see Figure 10).

Fig. 5 Bangle tethered on a kink of a dislocation. (a) Bright-field image of the bangle structure. (b) Cross-sectional fluorescence confocal polarizing
microscope (FCPM) images along the dotted lines (1) and (2) in (a), showing vertical deviation of the dislocation with pitch p. The polarization
direction is along the x-direction (c, d) Cross-sectional FCPM images in planes (c) perpendicular and (d) parallel to the edge dislocation line far
from the kink. For each slice, fluorescence intensities acquired under four linearly polarized excitations (0°, 45°, 90°, and 135°) are summed. Hence,
bright regions correspond to in-plane alignment of the director, whereas dark regions indicate vertical alignment with director roughly along the z-axis.
Images i–vi correspond to cross-sections along the lines i–vi marked in (a). (e) In-plane intensity-summed FCPM images at different heights. (f) 3D
reconstruction of the dislocation kink and surrounding bangle based on experimental observations. (g) Plot of the relative height (∆Zd) versus the
relative lateral positions (∆Xd) of the dislocation. Both positions are extracted from the experimental images like the ones shown in (d). For the
sake of clarity, the dihedral angle of the wedge represented in the inset is exaggerated. (ZLI-3412/CB15 mixture with the cholesteric pitch p=5µm.)
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the gap, resulting in a linearly varying cell gap. Both substrates
were pre-cleaned by sequential sonication in DI water with de-
tergent, ethanol, and isopropyl alcohol for 15 min each, followed
by drying at 75°C for 15 min. To establish planar alignment, a 1
wt % aqueous solution of polyvinyl alcohol (PVA) was spin-coated
onto each substrate, baked at 110°C for 15 min, and subsequently
rubbed. The prepared CNLC mixture was then infiltrated into the
cell by capillary effect. To generate the bangle structures associ-
ated with the dislocation lines, the sample was first heated into
the isotropic phase and then rapidly cooled down to the chiral
nematic phase under ambient conditions. The internal structures
of the dislocation lines and bangle formations were observed us-
ing an inverted optical microscope equipped with multifunctional
imaging capabilities (FV3000, Olympus), including both bright-
field microscopy and FCPM.

4.2.2.2 Structure of bangles The optical micrograph in Fig-
ure 5a reveals an edge dislocation line with the Burgers vector
b = p wearing a bangle with the diameter 2rb ≈ 4µm smaller than
the chiral pitch p ≈ 5µm. Cross-sectional FCPM images (Figure
5b) clearly show vertical displacement of the dislocation by one
pitch across the bangle structure which means that the bangle is
tethered on the kink of height p. To visualize the polar orientation
of the director, we sum fluorescence signals acquired under four
linearly polarized excitations (0°, 45°, 90° and 135°). In this ap-
proach, in-xy-plane alignment regions exhibit strong signal, while
regions with "homeotropic" alignement (with the director along
the cell normal, the z-axis) show weaker signals. This imaging
provides an effective contrast map for detecting out-of-plane tilts
and identifying the position of dislocation cores. Cross-sectional
views of the intensity-summed FCPM images (Figures 5c and d)
reveal details of structures of the kink in the dislocation line and
of the bangle tethered on it. In-plane intensity-summed FCPM
cross-sections at different sample depths (Figure 5e) further indi-
cate that the dislocation kink is steeply inclined.

This observation is quantitatively supported by tracing posi-
tions of the dislocation core (Figure 5g), where the vertical posi-
tion (∆Zd) is plotted against the relative lateral position (∆Xd).
The plot reveals a vertical shift of ∆Zd ≈ 4µm corresponding to
an in-plane displacement ∆Xd of only ≈ 1.5µm, confirming the
steep nature of the dislocation kink.

Finally, to visualize the overall 3D geometry of the dislocation
line and the associated bangle structure, low-intensity regions
corresponding to the dislocation cores were extracted from the
stacked intensity-summed FCPM images. The reconstructed 3D
construction (Figure 5f) vividly illustrates the kinked configura-
tion of the dislocation line and the well defined bangle structure
tethered on it.

4.2.3 Radius of the cargo loops

In equilibrium, the radius rcl of the large cargo loop defined
in Figure 4b is given by the balance of the Peach-Koehler and
Laplace forces acting on it.

4.2.3.1 The Peach-Koehler force Let h be the local thickness
of the gap between the mica sheets. As, in general, this thick-
ness is neither equal to Npo nor to (N + 1)po (where po is the

po

z

z

n

      edge dislocation- bangle

sc
re

w
  d

isl
oc

at
io

n,
 k

in
k

rml

r

θ

rb

rdtc

Fig. 6 Bangle tethered on a kink of a cargo loop. As the kink is a quasi
vertical segment of the cargo loop, it can be seen a segment of a screw
dislocation with the Burgers vector b= p. Around the screw dislocation,
the director field n has symmetry of revolution : in cylindrical coordinates
(r,ψ,z) it is independent of the azimuthal angle ψ: n = n(r,z). In the
vicinity of the z axis, inside the cylinder of radius rdtc, the director field
has the double twist texture independent of z: n = (0,sin(qr), cos(qr))
with q = (π/2)/rdtc. The bangle itself can be seen as circular edge
dislocation of radius rb.

equilibrium pitch of the cholesteric helix), the cholesteric helix is
respectively dilated and compressed in the external (N+1) and
internal (N) fields separated by the cargo loop. The energy den-
sity per unit area of the elastic distortion is given by18,19

fN = h
K22

2

(
N2π

h
− po

)2
(13)

inside the cargo loop and

fN+1 = h
K22

2

(
(N + 1)2π

h
− po

)2
(14)

outside of it. The difference

fP K(h) = fN+1 − fN (15)

corresponds to the so-called Peach-Koehler force per unit length
perpendicular to the dislocation loop.

4.2.3.2 The Laplace force The Laplace force due to the intrin-
sic tension Tcl of the cargo loop is given by:

fLaplace = −Tcl

rcl
(16)

In approximation where the Laplace force due to the tension T
of the dislocation is neglected, this radius of the cargo disloca-
tion is such that the Peach-Koehler force FP K(h(r)), defined in
expression 15, vanishes12. Knowing the solution

hcl = (N + 1/2)po (17)
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of the equation FP K(hcl) = 0, and the expression

h(r) ≈ hmin + r2/(2Rm) (18)

for the thickness of the cylinder/cylinder gap, one can calculate
the radius rcl of the cargo loop

rcl ≈ [2Rm(hcl − hmin)]1/2 (19)

4.2.4 Radius of bangles

The bangle tethered on the kink of the cargo loop can be seen
as a circular edge dislocation of radius rb tethered on a screw
dislocation (see Figure 6). In this approximation, the radius rb of
the bangle is fixed by the balance between the Laplace centripetal
force -Tb/rb due to the tension Tb of the edge dislocation and the
centrifugal repulsion force due to the elastic interaction between
the edge dislocation and the kink.

To understand the origin of this repulsive force let us approxi-
mate the kink by the double twist cylinder (see ref.20) of radius
rdtc depicted in Figure 6 (see Video S9). In the vicinity of the z
axis, the director field is expressed in cylindrical coordinates as:

n(r,φ,z) = [0,cosθ(r),sinθ(r)] (20)

where θ(r) is the angle between the director n and the z axis. θ(r)
varies from θ(0) = 0 to θ(rdtc) = π/2 (see Figure 6).

Let us suppose in a first approximation that

θ(r) = qr (21)

with
q = 2π

p
= 2π

4rdtc
(22)

With the density of the distortion energy per unit volume given
by20

f = K22
2

(
qo − ∂θ

∂r
− 1

r
sinθ cosθ

)2
+ K33

2
sin4 θ

r2 − K24
r

∂ sin2 θ

∂r
(23)

one can calculate the energy of the double twist cylinder of height
po as the integral:

Fdtc = po

∫ rdtc

0
f2πrdr = po

πK22
8

[
C − (8 + 2π2)ρ + π2ρ2]

(24)
where C is a numerical constant depending on the ratio K24/K22
and ρ = qo/q = rdtc/(po/4) is proportional to the radius of the
double twist cylinder defined by equations 21 and 22.

Fdtc(ρ) has a minimum for ρ = 1 + 4/π2 ≈ 1.4 i.e. for rdtc ≈
0.35po. This means that the radius of the double-twist cylinder is
larger than po/4.

The total energy of the system double-twist-cylinder+bangle can
be written as

Fdtc+b = Fdtc(rdtc) + 2πrbTb (25)

Assuming that the radius rb of the bangle can be approximated
as rb ≈ rdtc + po/4 one can calculate that the minimum of the

b

c

D
C

A
x sh

ea
r

y

B

a

C

BA

+2

numerator closure

numerator closure

D

Fig. 7 Chiral tangles. a) The tangle scheme used in the Conway-
Kauffman theory of knots. Here the tangle (+12) with its numerator
closure (AB + CD) is a part of a two-component link. b) View in a mi-
croscope of a levogyre double-helix entanglement of a pair of cholesteric
dislocations. It was generated by the isotropic → cholesteric phase tran-
sition. c) Perspective schematic view of the levogyre double-helix shown
in (b).

total energy Fkink+ml occurs for

rb = po

4
4 + 2π2 − 2T̃b

π2 (26)

where T̃b = Tb/K22. Knowing from experiments that rb ≈ po/3
we can infer that Tb ≈ 5.3K22.

5 Theory of tangles and their occurrence in
experiments

For the purpose of the forthcoming discussion in Section 6 of the
tangle → necklace rewiring occurring during the decay of skeins
of cholesteric dislocations, it is necessary to briefly overview the
Conway-Kauffman theory of knots based on the the concept of tan-
gles2,3.

5.1 Conway-Kauffman theory of rational knots based on the
concept of tangles

Within the Conway-Kauffman theory2,3, the so-called rational
knots and links are represented as systems of connected tangles.
As an example we show in Figure 7a the tangle +12 with twelve
π-twists (crossings) which can be seen as a sum of 6 elementary
tangles +2. By connection of the four extremities of this tan-
gle +12, A with B and C with D, one obtains a two-component
link made of the yellow and blue loops linked six times. In the
Conway-Kauffman theory2,3 this operation is called the numera-
tor closure.

It is easy to check that the numerator closure of tangles with an
even number of crossings produces links, while with odd numbers
of crossings the numerator closure produces torus knots.
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5.2 Physical incarnation of the Conway-Kauffman tangles
and rational knots

The Conway-Kauffman representation of rational knots and
links2,3 was of major importance for analysis of DNA recombi-
nation21.

The second remarkable incarnation of the rational knots and
links was found by Tkalec et al.8 who studied knots and links tied
from m=1/2 disclinations in suspensions of colloidal particles in
nematics.

The double-helix tangles of cholesteric dislocations observed
previously7 as well as in experiments reported here (see Figures
3e and 7b), can be seen as the third incarnation of the Conway-
Kauffman’s concept of tangles.

5.3 Double-helix tangles made of cholesteric dislocations

The double-helix tangle shown in Figure 7b was produced by
the isotropic → cholesteric phase transition inside a droplet of
5CB/CB15 mixture contained by capillarity between two cylindri-
cal mica sheets (see Figure 4a). The schematic perspective view
in Figure 7c shows that this double-helix tangle is levogyre and
contains 12 over/under crossings (π-twists). We determined the
levogyre handedness from the behavior of this tangle in a shear
deformation driven by shifts of the upper mica sheet in ±y direc-
tions (see Figures 4a and 7c). The displacement of points A and
C, indicated by the double dashed arrow, is larger than those of
the points B and D. Points A and C are therefore closer to the mov-
ing upper mica sheet than points B and D. Knowing the direction
of the tilt, the left handedness of the double-helix was inferred
from the visual aspect of the tangle.

5.4 Selective immunity of cholesteric dislocations against
rewiring

At the first sight, the existence of this tangle (+12) is surprising
because rewiring of any of its crossings would shorten the total
length of dislocations and by this means would lower the excess
free energy of the elastic distortion. Why does this rewiring of
dislocations inside this tangle not occur ? Are the cholesteric dis-
locations immune against the rewiring ?

The same questions were asked previously7 while describing
a controlled generation of the double-helix entanglements (lev-
ogyres and dextrogyres) by application of a tensile strain to a
cholesteric layer. The immunity against the rewiring of the in-
ternal crossings in double helix tangles was discussed briefly in
ref.12. It has been stressed there that the edge dislocations
in cholesteric layers confined between the mica sheets separate
fields with N and N+1 cholesteric pitches. Therefore, they should
not be seen as one-dimensional lines but rather as linear objects
having two different sides (depicted with yellow and red lines in
Figures 9d-f and 10) which are adjacent respectively to the N and
N+1 fields. In experiments reported here, the two types of sides
differ by their behavior during collisions. Collision of the N-type
(yellow) sides of two coplanar dislocations appeared to be im-
mune against the rewiring and for this reason the double-helix
tangles7 could be wound up under dilation strain. In contrast, as
we will see below, collisions of the (N + 1) type (red) sides of two

coplanar dislocations lead to the rewiring (Figures 8d and 8f). A
more detailed discussion of the immunity against the rewiring is
postponed to another paper.

6 Generation of the necklace state by the tan-
gle - necklace rewiring

Figure 3 shows how the necklace state is generated by the
isotropic-cholesteric phase transition. As already stated in section
3.4, the pattern of dislocations resulting from the phase transition
(see Figure 3e) is more complex than the one generated by the
strain pulse17, because beside dislocations with Burgers vectors
b = p, it contains also dislocations with Burgers vectors b = p/2
indicated with white arrows in Figure 3e.

Moreover, during its decay, the skein of dislocations shown in
Figure 3e contains the levogyre double-helix tangles labeled t1
and t2 coexisting with necklace segments labeled n1 and n2. Dur-
ing the subsequent decay, all double-helix tangles are rewired into
necklaces.

6.1 Double-helix tangle - necklace rewiring

Three experimental examples of the double-helix tangle→ neck-
lace rewiring are shown with a better resolution in Figures 8a (see
Video S5), 8b (see Video S6) and 8c (see Video S7). In the first
one in Figure 8a, the tangle (+4) with four crossings is trans-
formed into the necklace made of two bangles: (+4) → 2(+2).
In the second one in Figure 8b, the tangle (+6) with six cross-
ings is transformed into the necklace made of three bangles:
(6) → 3(+2). The last one in Figure 8c, corresponds to the the-
oretical scheme depicted in Figures 8d-f. In Conway’s notation it
can be described as (+8) → 4(+2).

The double-helix tangle with eight crossings in Figure 8d has
four extremities A,B,C and D. They are connected in pairs: A is
connected with B (this connection is visible in Figure 8c) and C is
assumed to be connected with D. With its numerator closure3, this
tangle +8 becomes a part of a two-component link made of two
loops AB (yellow) and CD (blue) linked four times. The linking
number is thus L=4.

The subsequent evolution of this two-component link is de-
picted in the series of six images in Figure 8c as well as in the
three schemes shown in Figures 8d, e and f.

As already noted above, dislocations with the Burgers vector
b = p separate fields with different numbers N of full cholesteric
pitches lodged between the mica surfaces. In particular, in Figures
8c and 8d, the number of cholesteric pitches is N+1 inside the
loop AB and N outside of it. During the subsequent evolution,
the shape of the loop AB changes under the action of the Peach-
Koehler force discussed previously in section 4.2.3.1.

6.1.1 Rewiring due to the action of the Peach-Koehler force

For fP K > 0, the segment AB of the numerator closure is pulled
toward the double-helix tangle, as shown in Figures 8d and 8e,
and collides with it. This collision leads to rewiring events inside
the dashed circles. By this means, the necklace shown in Figure
8f is formed. For better visibility, details of these collisions are
depicted at a higher magnification in Figure 9 (see Video S8).
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Fig. 8 Tangle → necklace rewiring. a-c) View in a microscope. a) Transformation [4] → 2(2) generates the chain of two bangles. b) Transformation
of the tangle (6) into a chain of three tangles (2) (bangles). c) Transformation of the tangle (8) into a chain of two bangles. d) Numerator closure of
the tangle (8) produces a link of two loops, AB and CD. The two loops are linked four times. The linking number is thus L=4. e) The Peach-Koehler
force given by equation 15 alters the shape of the yellow loop AB and leads to self-collisions inside the dashed circles. f) Due to the rewirings detailed
in Figure 9 below, the loop AB belonging to the tangle (8) is split into a chain of four bangles tethered on the blue loop CD.

7 Discussion
7.1 Conservation of the linking number during tangle - neck-

lace rewiring

To our knowledge, rewiring of tangles into necklaces has neither
been observed nor theoretically considered previously. It does not
involve, as expected, the crossings between the two components
of the (2L) link but only one of its two components and results
in its transformation into L loops, each linked once with the sec-
ond component. In the example of Figures 8c-8f, three rewiring
events inside the dotted circles split the yellow AB component of
the two-component link with the linking number L=4 into a five-
components link made of four bangles linked each once (L=1)
with the blue component CD.

In terms of the Conway notation2,3, in all above examples, the
two components links (2L) with L=2, 3 and 4 made of 2-tangles
with 2L horizontal twists are rewired into necklaces made of L
bangles tethered on cargo loops. Thus, the tangle → necklace
rewiring (2L) → L(2) conserves the linking number L.

7.2 Chirality of kinks and of necklaces

Our experiments have shown that besides its geometrical details,
the necklace state generated in the 5CB/CB15 mixtures has an-
other, even more striking feature: it is chiral as stated in the Sec-
tion 4.2 (see Figure 4). The chirality of the necklace is a conse-
quence of the fact that in the 5CB/CB15 mixtures all bangles are
tethered only on the positive kinks of the cargo loops (see Figures

a d

α

α

γ

β

δ

γ

β

δ

α

γ

β

δ

e

f

b

c

N

N

N

N+1

N+1

N+1

N+1

Fig. 9 Detailed view of the tangle → necklace rewiring. a) Perspec-
tive view of the double helix tangle shown in Figure 8d. The cross-
ings inside the tangle are immune against the rewiring as explained in
ref. 7. The crossing αβ+ γδ inside the dotted circle and the two other
equivalent crossings undergo the rewiring αβ+ γδ → αγ+βδ. b) The
rewiring detailed in panels d-e produces three loops tethered on the blue
dislocation. c) The same after relaxation. d-f) Detailed view of the
αβ+γδ → αγ+βδ rewiring.
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4d and 10b) and not on the negative ones (see Figures 4d and
10a).

The configuration of the bangle shown in Figure 10b is de-
picted with more details, in a perspective view, in Figure 10c. Its
symmetry can be analyzed as follows. Let us walk on the cargo
loop in the x direction indicated by blue arrows. This direction
is such that during the walk, the fields with N+1 and N pitches
are located respectively on the left (red) and right (yellow) sides.
The green unit vector nN,N+1, orthogonal to the direction of the
walk, is directed from the right to the left side. After the ascent
of the kink during the walk of the length ∆x (turquoise arrow)
in the x direction, the level z increases by +p as indicated with
the yellow arrow p. The triad of the mutually orthogonal vectors
(∆x,nN,N+1,p) is right-handed.

The same analysis applied to the -p kink in Figure 10a would
deliver the triad (∆x,nN,N+1,p) with the opposite left handed-
ness because the vector -p would be pointing down.

In conclusion, kinks on edge dislocations, in all kinds of layered
systems, are chiral and their handedness, right or left, is determined
by their sign "+" or "-".

N+1N+1

N+1

NN

N

top view

side view side view

top view

a

+2

+p-p

-2

N

N+1

nN,N+1
p p∆x

xy

z

c

b

Fig. 10 Chirality of kinks and necklaces. The bangles can be tethered on
kinks of the cargo loops in two different manners. a) Bangle tethered on
the −p kink. b) Bangle tethered on the +p kink. Only this configuration
is observed in our experiments with 5CB/CB15 cholesteric mixtures. c)
By analogy with the right-handedness of the (x,y,z) reference frame,
the triad (∆x,nN,N+1,p) of three orthogonal vectors defines the right-
handedness of the system "kink + bangle". ∆x is the displacement in x
direction along the dislocation. nN,N+1 is a unit vector orthogonal to
the dislocation directed from the field with N cholesteric pitches to the
adjacent field with N+1 pitches. p is the displacement in z direction due
to the presence of the kink.

Let Fh be the energy of kinks with the handedness h = "right"
or "left". In non chiral systems (such as Smectic A) Fh cannot
depend on the handedness h. On the contrary, in cholesterics
which are chiral themselves, kinks with the opposite handedness
can have different energies Fh and can differ in their detailed
structure as it has been found previously22.

For the same symmetry reasons, the energy of kinks wearing
bangles can also depend on their handedness. As our observa-
tion indicates that the bangles are tethered exclusively on kinks

with the positive handedness defined in Figure 10c we conclude
that this configuration has lower energy than the one with the
negative handedness, shown in Figure 10a.

7.3 Stability of necklaces in the limit of the infinite pitch

The radius rcl of the cargo loop given by equation 19 decreases
when hmin grows and tends to zero when hmin tends to hN . For
hmin > hN the cargo loop becomes unstable and collapses. Our
experiments have shown the collapse of the cargo loop driven
by an excessive increase of the gap thickness hmin leads to the
collapse of the necklace as a whole. On the contrary, as long as
hmin is large enough, the cargo loop wearing bangles remains
stable.

The critical thickness of the order of hN given by equation 11
is proportional to the equilibrium pitch po so that it diverges in
the limit po → ∞. As, in this limit, the cholesteric phase becomes
equivalent to the nematic phase, we can infer that entanglements
of disclinations in nematics confined in the cylinder/cylinder gap
should always decay into the the defect-less state in agreement
with the experiment described above in Section 2.

7.4 Inchoate decay of skeins of nematic disclinations in the
presence of fibers or of colloidal particles

Let us emphasize, however, that in the presence of spherical in-
clusions or of cylindrical fibers immersed in nematics, the decay
of skein of disclinations is incomplete because it leads, respec-
tively, to knots or links tethered on inclusions8 and to disclination
loops (unknots) tethered on fibers9,23. These topologically non-
trivial systems of defects owe their survival to the boundary con-
ditions for orientation of molecules on surfaces of the spherical,
cylindrical and other topologically more complex inclusions. Thus
the anchoring of the director field brings about the interplay be-
tween topologies of confining and inclusion-related surfaces and
fields4,8.

8 Conclusion
8.1 Necklaces as composite defects

The liquid crystal droplet maintained by capillarity between
curved mica surfaces still has the overall genus-zero topology of
a sphere. If the anchoring direction on mica surfaces was not
parallel but orthogonal to them like it is on the surface of the lat-
eral meniscus, topological theorems4,8 would imply necessarily
the presence of a global topological charge 1. In our experiments,
the boundary conditions at the drop’s meniscus and mica surfaces
are different and make the situation more complex.

Energetically stable straight dislocation lines in dihedral wedge
confinement and more complex loops in thickness-varying con-
finement between cylindrical mica sheets enrich the system’s
complexity much further, making dislocation defects inherently
present in our experimental system due to the varying number
N of the cholesteric quasi-layers. The existence of long-term-
stable bangles and tangles of dislocations as a result of a relax-
ation (decay) after the disorder-order isotropic-cholesteric tran-
sition is particularly interesting because it is not necessarily the
lowest-energy state that the system could adopt while complying
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with surface boundary conditions and thickness gradients. As an
example, the lowest-energy state for dislocations in a wedge con-
finement geometry (Figure 5) would correspond to shortest edge
dislocations in the middle of the wedge cell22 but we also find
long-lived (thus, at least metastable) kinks and bangles of such
dislocation lines (Figure 5). The localized composite defects of
necklaces are also particularly interesting, potentially indicating
that straining cholesteric pitch by complex gradients of cholesteric
layer thickness can stabilize a host of localized defects that other-
wise would be destined to disappear. Furthermore, our study re-
veals that the defect-generating disorder-to-order transition leads
to rather slowly-decaying defect networks.

8.2 Genesis of dislocations during the first-order isotropic-
cholesteric phase transition

In contrast with the cosmological Kibble-Zurek mechanism in-
voked in references24,25, dislocation defects in cholesterics are
forming as a result of merging of cholesteric droplets nucleated
inside the isotropic phase with different orientations of the heli-
cal axis. Moreover, various metadefects, such as the double-helix
tangles, can pre-exist within the individual droplets like those
studied earlier experimentally26 or by means of numerical mod-
eling27. This, along with (meta)stability of bangles and kinks,
could be among the factors responsible for such a slow decay of
cholesteric defect networks.

8.3 Theoretical consequences

Our study demonstrates the need for theoretical explorations of
the role of chirality and quasi-layered nature of cholesterics in the
slow defect dynamics during phase transitions the disordered to
the long-range ordered confined liquid crystal state.

Our study may provide insights for understanding similar de-
fect transformations in other condensed matter systems, ranging
from chiral magnetic colloids to solid-state noncentrosymmetric
magnets28–30, and even more distant branches of science and en-
gineering. From the standpoint of view of technological applica-
tions, the complex (meta)stable structures that we observe could
be potentially used in controlling solitonic beams of light31.

Remarkably, in chiral nematics, knots of nonsingular disclina-
tions within topological solitons like heliknotons can be related to
topological invariants like Hopf indices and remain stable due to
the soliton stability30,32.
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The data supporting this article have been included as part of the Supplementary Information.
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