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We study topologically stable defect structures in systems where the defect line classification in three
dimensions and associated algebra of interactions (the fundamental group) are governed by the non-
Abelian eight-element group, the quaternions Q8. The non-Abelian character of the defect algebra leads
to a topological rigidity of bound defect pairs, and trivalent junctions which are the building blocks of
multijunction trivalent networks. We realize such structures in laboratory chiral nematics and analyze their
behavior analytically, along with numerical modeling.
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I. INTRODUCTION

Topological defects of various intrinsic dimensions, from
superfluid filaments to the atmospheric polar vortex, play
important roles in a wide variety of physical systems [1–5].
Dislocation motion and entanglement are key determinants
of the mechanical response of solids to applied stresses, and
superconducting vortices, pinned or unpinned, are a critical
source of dissipation in superconductors. Topological
defects are also essential singularities in the sense that,

provided topology allows them, they inevitably form in
finite-rate continuous phase transitions due to critical
slowing-down and, being the slowest degrees of freedom,
they control the rate of such transitions [6–8]. They
are distinctive fingerprints of phase transitions involving
spontaneously broken symmetries in that the specific
topological classes they form often distinguish different
symmetry-breaking patterns and the associated order-
parameter spaces.
In most cases, and especially in three dimensions, the

pure interactions of the minimal-energy defects are gov-
erned by an Abelian (commutative) symmetry structure
such as a discreteZn or the group of integers Z [1,5]. These
minimal-energy defects interact only at a distance, or
indirectly through their coupling to other material fields [2].
Defects then have only energetic barriers to crossing and do
not form stable defect junctions or networks in the absence
of pinning centers. This is the case for superfluid filaments,
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superconducting flux lines, and uniaxial three-dimensional
liquid crystals (nematics), as well as elastic disclinations
and dislocations.
Both biaxial liquid crystals and liquid crystals with

intrinsic twist (chiral nematics) have a rich class of
topological line defects that are, instead, governed by a
non-Abelian (noncommutative) algebraic structure, leading
to junctions where three defects meet, the physical entan-
glement of defects and history-dependent interactions.
Here we show that all these features can be experimentally
realized in a laboratory chiral nematic and agree well
with theoretical predictions and the results of numerical
simulations.
We experimentally visualize and demonstrate that a

conventional chiral nematic displays all the key topological
features expected from the non-Abelian algebra of its
associated defects, including two distinct types of trivalent
junctions, topological entanglement of defect pairs and
stable parallel defect lines.
After introducing the key background material in

Secs. II–V [1–5] and following the methods of Sec. VI,
we exhibit the two basic types of trivalent defect junctions:
three distinct defects meeting at a point or two defects
from the same class producing or annihilating a nontrivial
radial defect—the so-called −1 defect. The −1 defect is
also necessarily generated when two braided defects of the
same class fixed at their ends are pulled across each other,
thus providing a topological obstruction to disentangle-
ment, or said differently, generating topological rigidity for
a braided pair. Such a pair is then a fundamental excitation
in the system, analogous to a topologically protected and
therefore stable bound state [1–5].
We then show that trivalent junctions can be joined to

create an extended flexible and stable trivalent network,
a filamentous and fluid fishnet, paving the way for creating
a wide variety of larger-scale networks. By experimentally
patterning defects of a fixed class at the surface of the
experimental cell, we show that disclination lines can form
handles connecting the surface to itself and bridges con-
necting one surface to another, all controlled by the relative
sign of the topological class of the surface defects.
Finally, we analytically demonstrate the robustness of

the biaxiality in chiral nematics, including the estimation
of biaxial elasticities and the energetics of two parallel
disclination lines where intrinsic defect repulsion is bal-
anced by the need to minimize the energy in the twist of
the chiral nematic, again leading to a stable bound state
observed in our experiments.
From a broader perspective, our results apply to all

three-dimensional, rotationally symmetric liquid-crystal
systems with an isotropy given by the dihedral group (D2).
This occurs whenever there is a well-defined orthorhombic
frame, either local or global. The global case arises in
biaxial nematic liquid crystals formed from bricklike build-
ing blocks [9–15], while the emergent local counterpart case

occurs in chiral nematics (cholesterics) and in hybrid
molecular or colloidal systems, where the symmetry break-
ing in molecular and colloidal order relies crucially on the
presence of a helical axis [10,15–18]. For clarity of notation,
we will call the entire class D2CLC (order-two dihedral
chiral liquid crystals).
D2CLC systems can be realized experimentally by

exploiting the biaxiality of a chiral liquid crystal (CLC),
as implemented here, or in hybrid molecular-colloidal
systems (colloidal elements in a liquid-crystal environ-
ment) [10–14,17,18]. The associated topological defects
are at least partially classified by the homotopy classes of
the order-parameter manifold, which specifies the space
of inequivalent ground states. For D2CLC, the first homo-
topy group of the space of ground states, known as the
fundamental group, is the non-Abelian eight-element
group, the quaternionsQ8 [19] first introduced by Hamilton
in 1843 in an attempt to find a three-dimensional version
of the complex plane [1,2]. The quaternionic fundamental
group leads to five classes (conjugacy classes) of topo-
logically stable line defects in three dimensions, one trivial
class (the identity), and four nontrivial classes. The
quaternionic algebra has several important consequences.
Braids of two defects from distinct classes are topologically
entangled [1,20,21] and can be disentangled only by
creating a third distinct bridging defect. Perhaps more
importantly, there are stable trivalent junctions where three
defects meet, allowing the spontaneous formation of
extended line-defect networks consisting of nodes (junc-
tions) of coordination number (degree) 3 [20].
While quantum entanglement and braiding of anyons in

hard condensed matter systems with topological order in
two spatial dimensions is very rich [22–24], we explore
here a different mechanism for physical entanglement and
braiding in three spatial dimensions based solely on the
nontrivial topology of the ground-state manifold.

II. BIAXIAL MODELS OF CHIRAL NEMATICS

Chiral liquid crystals are nematic systems with broken
mirror symmetry, which manifests itself as helicoidal twist
configurations in the apolar nematic director λðrÞ ¼ −λðrÞ.
Locally, the twist defines a helical twist axis χ ¼ −χ ,
orthogonal to λ, providing a length scale p=2 over
which λ rotates by π, forming one cholesteric quasilayer
[Fig. 1(a)]. The local set of fields ðλ; χ ; τÞ derived from the
twist defines the molecular field, helical axis field, and
a third orthogonal direction (τ ¼ λ × χ ), respectively [see
Fig. 1(a)]. This establishes a local triad of orthogonal
directors and leads to a connection between CLCs and
orthorhombic biaxial systems described by three mutually
orthogonal fields ðn;m; lÞ. Conceptually, the nondegener-
acy of ðλ; χ ; τÞ (and most importantly, the latter two)
already breaks uniaxial symmetry because of the intrinsic
biaxial features of twist alignment. Physically, the orienta-
tional distributions of molecular orientations relative to
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χ and τ are different [16,18]. To see the actual mapping
between chiral and biaxial nematics, however, one needs to
examine the free-energy models of CLCs from the per-
spective of biaxial nematics. First, it is straightforward that
the molecular orientation is identical to the nematic director
λ≡ n. The remaining mapping from the chiral nematic
frame ðλ; χ ; τÞ to the biaxial frame ðn;m; lÞ is revealed by
the tensorial model of CLC free energies detailed below.
In the tensorial model, the orientational order in a CLC is

encoded in the traceless, symmetric tensor order parameter
Qij given in terms of the directors n and m by

Qij ¼ S

�
ninj −

δij
3

�
þ T

�
mimj −

δij
3

�
; ð1Þ

where S and T are the uniaxial and biaxial orientational
order parameters, respectively, and δij is the Kronecker
delta. One may write the strain-free elastic free-energy
density as a sum of derivatives of Qij [25–27]:

felastic ¼ γ1∂kQij∂kQij þ γ2∂jQij∂kQik

þ γ6Qij∂iQkl∂jQkl: ð2Þ

Another second-order term γ3∂kQij∂jQik is sometimes
considered in the tensorial model. In our analysis of the
bulk elastic energies, however, γ3 differs from γ2 only by a
surface integral and so this term is dropped [25]. A third-
order term is also necessary to incorporate anisotropy of the
elastic contributions [28,29]. Chirality may be introduced,
to lowest order, by adding a term of the form

fchiral ¼ γ4ϵijkQil∂jQkl; ð3Þ

where ϵijk is the Levi-Civita tensor [29].
The diagonalization of theQ tensor sets the orthonormal

triad ðn;m; lÞ, as in Eq. (1) (see Sec. VI). On the other
hand, by identifying the molecular axes and the principal
director λ≡ n, one can also reconstruct the chiral directors

FIG. 1. (a),(b) Field definition in the (a) chiral nematic setting and (b) respective biaxial fields under the mapping established in Sec. II.
The cholesteric pitch p is defined as the distance for a nematic constituent director λ to rotate by 2π along helical axis χ as shown in (a).
The corresponding fields describing biaxiality ðn;m; lÞ define the biaxial triad parallel to brick edges in (b). (c)–(f) Cross sections of
line-defect textures in chiral nematics belonging to Cλ, Cχ , Cτ, and −1 defect classes, respectively. (g)–(j) Corresponding biaxial “brick”
textures showing defects are nonsingular in n,m, l, and n, respectively, while being singular in the two other fields orthogonal to them.
Here we show only one of the three representatives of the −1 defect class.
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ðλ; χ ; τÞ based on methods connected to the twist in
n [30–32]. For a variety of CLC structures derived from
minimizing the free energy Eqs. (2) and (3), we find that the
helical axis χ , along which λ rotates, is consistently aligned
with the direction of the biaxial director χ ≡m (Fig. 1). In
our CLC systems then, where twist is the dominant elastic
deformation, the biaxiality comes mainly from minimizing
the chiral term Eq. (3). Lastly, the transverse molecular axis
is the cross product of the other two directors and represents
the third axis τ ≡ l, and the mapping of chiral nematic
directors to orthorhombic biaxial directors is valid for CLC
systems with a consistent twisting handedness.
Figures 1(a) and 1(b) show a comparison of the chiral

and biaxial field definitions indicating the direct mapping
of the molecular and helical axes. In a variety of structures,
such as elementary defects in Figs. 1(c)–1(j), we can see
how the twisting alignment of the molecular director λ
determines the orientation of the corresponding biaxial
directors. Furthermore, the degree of biaxiality T ∝ q2,
with chirality q ¼ 2π=p the principal eigenvalue of the
handedness tensor [16,17], suggesting an interchangeable
interpretation of biaxiality and chirality in CLCs based
on their symmetries. In all, this leads to a biaxial structure
coupled to that of the helical configuration of the D2CLC
[16,18]. In fact, any deformation (not just twist) in the
material director field λ causes weak biaxiality and, thus,
the biaxial tensor field is always well defined unless the
helical structure is fully unwound and the material director
field is spatially uniform [33]. A biaxial frame derived from
all possible deformations, for example, of the uniaxial
LC director field, is discussed in Ref. [33]. The biaxial
description of CLCs based on our mapping is thus more
robust when applied to the analysis of defects (see Sec. VI).

III. HOMOTOPY ANALYSIS OF
BIAXIAL NEMATICS

After the possibility of a biaxial phase of liquid crystals
was first introduced and analyzed by Freiser [9], the
topological character of the ground-state manifold (or
order-parameter space) associated with symmetry breaking
from an isotropic phase to a biaxial phase was analyzed
by Toulouse [19]. The order-parameter space is SOð3Þ=D2,
the space of all three-dimensional rotations that obey
the symmetry of the rectangular box, and the resultant
line defects following from its fundamental group are
classified by the group of quaternionsQ8: π1½SOð3Þ=D2� ¼
Q8 ¼ f�1;�i;�j;�kg [21,34–36]. Unknotted ring
defects were also classified in Ref. [35]. There has been
much work in this area in the last 50 years (for a review,
see Ref. [37]).
In contrast to uniaxial nematics, whose fundamental

group algebra is Abelian (the integers in two dimensions or
Z2 in three dimensions), the quaternions are non-Abelian.
In fact, the quaternion group is the smallest non-Abelian
group that arises by modding out a discrete group from the

rotation group [1]. The multiplication table for the group
elements of Q8 is given in Table I. We proceed with the
biaxial analogy of CLCs and relabel the quaternion
elements using the fields λ, χ , τ: ði; j; kÞ → ðλ; χ; τÞ [38].
A subtler consequence of having a noncommutative

fundamental group is that one-dimensional defects are
more properly classified by the associated conjugacy
classes [1,39]. Biaxial systems have five conjugacy classes
Q8 ¼ f1g ∪ f−1g ∪ Cλ ∪ Cτ ∪ Cχ where Cλ ¼ f�λg,
Cτ ¼ f�τg, Cχ ¼ f�χg. One can interpret the defect class
Cλ=τ=χ as a defect texture in which there is a singularity in
all directions except the direction corresponding to λ=τ=χ .
Examples of defects of class Cχ (singular in both λ and τ

TABLE I. Multiplication table of the quaternion group ele-
ments Q8 using the chiral nematic fields λ, τ, χ as relabelings
of the elements ði; j; kÞ. Conjugacy class assignments are high-
lighted by different colors.

× 1 −1 λ −λ τ −τ χ −χ

1 1 −1 λ −λ τ −τ χ −χ
−1 −1 1 −λ λ −τ τ −χ χ
λ λ −λ −1 1 χ −χ −τ τ
−λ −λ λ 1 −1 −χ χ τ −τ
τ τ −τ −χ χ −1 1 λ −λ
−τ −τ τ χ −χ 1 −1 −λ λ
χ χ −χ τ −τ −λ λ −1 1
−χ −χ χ −τ τ λ −λ 1 −1

(a) (b)

(c)

FIG. 2. (a) þχ representative of the Cχ class forming a 1=2
disclination in both the λ and τ fields and nonsingular in χ . (b) −χ
representative of the Cχ class forming a −1=2 disclination in λ
and τ and nonsingular in χ [same as Fig. 1(h)]. (c) One of the
three representatives of the −1 class of defects. Note that unlike
in 3D uniaxial nematics, such a defect configuration is topologi-
cally stable.
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but nonsingular in χ ), as well as a nonremovable −1
disclination, are shown in Figs. 1(d), 1(h), and 2 [40].

IV. GEOMETRY OF BIAXIAL AND CHIRAL
NEMATIC DEFECTS

As noted, the order-parameter space spanned by the
chiral triad comprised of the molecular axis λ and the
helical axis χ shares the same structure as the biaxial triad
and thus has the same ground-state topology [41–43]. An
alternative description of chiral nematics has been recently
studied experimentally in molecular-colloidal chiral hybrid
systems [12,17,18]. Such systems exhibit biaxiality that
depends on the colloidal concentration. It was found that,
in chiral nematic hosts, biaxiality persists even at low
concentrations. Moreover, the existence of a mapping from
the elastic properties of chiral nematics to the biaxial free
energy, described below in Sec. VIII A for conventional
chiral nematics and in Ref. [44] for hybrid molecular-
colloidal chiral nematics, allows one to analyze chiral
nematic defects as a biaxial system. Here we treat the
biaxial interpretation of CLCs as an approximation that is
exact on the ground-state manifold.

V. NON-ABELIAN SIGNATURES

A. Path dependence

The loss of commutativity for a non-Abelian fundamen-
tal group of an order-parameter space has as its main
consequence the loss of path independence in the compo-
sition of loops [1,38]. Mathematically, the noncommuting
elements allow only one to relate two fundamental groups
defined at different points up to inner automorphisms
generated by a path connecting the two base points [39].
This path dependence manifests itself physically as an

ambiguity in the combination of two defects; one must
know the history of the paths the defects have taken to
combine. As shown in Table II, the combination of two
defects of the same class, say, Cτ, leads to two different
results depending on the path taken. Figure 3 is an example
of two such paths. In the presence of a third defect, such

asCχ , we can form two nonhomotopic curves c1 and c2 that
are possible path histories. The path given by c1 avoids the
third defect and leads to the two defects annihilating, which
is algebraically equivalent to a þ1. The path given by c2 is
equivalent to the composition c1 ∘ c3, which braids the left
defect around the top defect along c3 and then takes c1 to
combine the defects. This total path leads to a −1 defect
line, meaning that the act of braiding c3 changes the
composition of the defect without changing its topological
classification under the lens of the fundamental group.

B. Entanglement of defects

Arguably of more importance is the result of braiding
two non-Abelian defects around each other. A loop drawn
around the crossing can be deformed up to homotopy to

TABLE II. Multiplication table for the conjugacy classes ofQ8.
Note that combining two defects belonging to the same class
produces an ambiguous result, 2ðþ1Þ ⊕ 2ð−1Þ, where the 2
indicates the degeneracy of the result (see Table I), in which case
the actual result is determined by the path taken to combine the
two initial defects.

þ1 −1 Cλ Cτ Cχ

þ1 þ1 −1 Cλ Cτ Cχ

−1 þ1 þ1 Cλ Cτ Cχ

Cλ Cλ Cλ 2ðþ1Þ ⊕ 2ð−1Þ 2Cχ 2Cτ

Cτ Cτ Cτ 2Cχ 2ðþ1Þ ⊕ 2ð−1Þ 2Cλ

Cχ Cχ Cχ 2Cτ 2Cλ 2ðþ1Þ ⊕ 2ð−1Þ

FIG. 3. Fusion of two defects belonging to the same class Cτ

with the result dependent on the path taken in physical space.
Path c1 avoids other defects, resulting in the annihilation of the
two Cτ defects, i.e., forming theþ1 element. On the other hand,
the path c2 surrounds a third defect belonging to a different
class, Cχ . The fusion of two Cτ defects through c2 results in a
−1 defect instead. Note that path c2 is equivalent to compo-
sitions of c3 and c1.

VIDEO 1. A braid of two defect lines is topologically equiv-
alent to the commutator of the two defect classes.
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show that the configuration is equivalent to the commutator
of the two defect classes [1,20,21] (Video 1).
To see this, suppose we take two defects α; β∈Q8 and

braid them around each other as shown in Fig. 4(a). In order
to figure out the topological classification of the effective
defect generated by the braid, we may draw a loop c around
the middle braid [see Fig. 4(a) and Video 1]. We may
continuously deform c in such a way that we can form the
collection of loops shown in Fig. 4(b). We recall that a loop
around defect lines defines the topological charge of the
defect, so each of these loops signifies different factors of
the corresponding defect charge. In other words, if we were
to pull apart the braid, the effective defect charge formed in
the middle could be read off from the loops in Fig. 4(b) and
it corresponds to the commutator

½α; β� ¼ αβα−1β−1: ð4Þ

Because of the structure of the quaternion group, this
commutator can result only in either �1 (see Table II).
Technically, the commutator subgroup of Q8 is Z2. The
trivial result occurs when α and β belong to the same
conjugacy class or one of the �1 classes. On the other
hand, when the two lines belong to different conjugacy
classes, we obtain the nontrivial result−1. This means there
are nontrivial entangled structures that are topologically
stable to external perturbations.

Considering the chiral-to-biaxial nematic mapping
described above, we can now pursue an experimental
verification of this key classical prediction [1].

C. Junctions

Another important consequence of having a quaternionic
fundamental group is the existence of nontrivial trivalent
junctions. The algebra of the quaternion conjugacy classes
states that combining two defects of two different classes
(≠ �1) results in a defect in the third. This is simply a
restatement of the usual cyclic identities of the quaternions,
all contained within ijk ¼ −1. These trivalent junctions
provide elementary building blocks from which one can
construct more complex structures, such as trivalent net-
works and lattices.
Table II shows the types of junctions possible. Quaternion

elements have the property that i2¼ j2¼k2¼−1, which in
terms of conjugacy classes reads C2

λ ¼C2
τ ¼C2

χ ¼þ1⊕−1,
where we drop the degeneracy of 2. This leads to junctions
of the type shown in Fig. 4(c), where two defects of the
same conjugacy class meet with a −1 line. There is also a
trivial junction joining two defects of the same class to the
identity element.

D. Network structures

Among the possible complex structures there are non-
trivial links and networks (Fig. 5). The simplest possible

FIG. 4. (a) Braided structure formed by two defect lines of conjugacy classes α and β. The black loop classifies the homotopy class of
the braided crossing. (b) The black loop can be isotopically deformed to the equivalent set of four loops shown (see Video 1) which
reveals that pulling the lines apart results in a third defect of charge given by the commutator of the two initial defects ½α; β� ¼ αβα−1β−1

as shown in (c). (d)–(f) Three classes of trivalent junctions formed from the quaternion algebra. (d) Junction consisting of three
disclinations belonging to three distinct conjugacy classes. (e),(f) Junctions that represent the path-dependent result of combining two
disclinations in the same conjugacy class C2

λ ¼ þ1 ⊕ −1, respectively. Note that similar junctions to (e) and (f) also exist for the Cτ and
Cχ classes.
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network can be realized minimally with two junctions.
Take, for example, a ðλ; τ; χÞ junction in Fig. 4(d). One can
take two legs and connect them on the third leg, creating a
closed two-junction structure [see Fig. 5(a)].
Here we focus on more complex structures. One such

structure can be realized from the entanglement viewpoint
as follows: Considering several defect lines of alternating
defect classes, we then perform the braid operation shown
in the left-hand side of Fig. 5(b). This structure is
topologically equivalent to the set of junctions shown in
the right of Fig. 5(b). Such a structure can then be repeated
to form an arbitrarily large hexagonal network, which can
be seen as either a network or a braid. Similarly, one can
create a repeating network of ðλ; τ; χÞ junctions as shown in
Fig. 5(c). In practice, implementation of such networks will
have the topology shown in Fig. 5, although the geometry
may not be exactly hexagonal due to energetic differences
in the elastic tension of each defect line following from
the precise values of the elastic constants in the energy
modeling below Eq. (8).

VI. METHODS

A. Simulations

1. Numerical simulations

We model the CLC equilibrium structures by numerical
minimization of the Landau–de Gennes expansion of bulk
free-energy density, including terms given by Eqs. (2)
and (3) and the thermotropic term governing the isotropic-
nematic phase behavior:

Fbulk ¼
Z

dr3
�
A
2
TrðQ2Þ þ B

3
TrðQ3Þ þ C

4
TrðQ2Þ2

þ felastic þ fchiral

�
; ð5Þ

where Q is the tensorial order parameter; A, B, and C are
parameters related to the isotropic-uniaxial phase behavior
of CLCs [25,45,46]. Here we consider only the nematic-
isotropic transition for a chiral nematic system and keep up
to fourth-order terms. Without higher-order (fifth and sixth)
terms and with biaxiality dominated by fchiral, we have a
precise mapping of chiral and biaxial director structures
shown in Fig. 1.
Surface boundary conditions Q0 for Q are added to the

calculation of the total energy via

Fsurface ¼
Z

dr2
W
2
ðQ −Q0Þ2

Q0
ij ¼ S0

�
n0i n

0
j −

δij
3

�
ð6Þ

with W being a surface anchoring coefficient. Q0, the
preferred order-parameter value on the surface, is calcu-
lated according to the surface pattern n0, which varies from
uniformly planar alignment to one containing half-integer
defects or twist walls depending on experimental designs
(see Sec. VI B 2 below). S0 is set using the expected
equilibrium values in bulk. We found that controlling
surface biaxiality T0 and m0 was unnecessary in our
system, where m spontaneously aligns with the helical
axis in bulk during energy relaxation.
Equilibrium structures are found based on a gradient

descent method with a finite-difference mesh [47], using
a home-built MATLAB program provided in Ref. [11]. The
director fields and the uniaxial and biaxial order parameters
are obtained by identifying the eigenvalues λi and eigen-
vectors vi of the tensor Q [see Eq. (1)] at each grid point:

S ¼ λ1 − λ3;

n ¼ v1;

T ¼ λ2 − λ3;

m ¼ v2; ð7Þ

(b)

(a)

(c)

FIG. 5. (a) Simplest possible connected structure made from
connecting all the free ends from the junction in (c) together. Note
that such a structure can be obtained by “fusing” closed loops
of two defect lines belonging to distinct classes. (b) Braided
structure of four defect lines belonging to two different conjugacy
classes gives rise to a topologically equivalent network “unit cell”
where the green line belongs to the −1 class. This unit cell can be
repeated to form a junction network (right). (c) A stable junction
of three defect lines belonging to separate conjugacy classes also
generates a unit cell for more complex lattice structures (right).
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with λ1 > λ2 > λ3 and corresponding vi; i ¼ 1–3 being the
eigenpairs of the energy-minimizing Q. The third director
is then l ¼ n ×m. In the approach described here,
our biaxiality analysis and interpretation of disclinations
is not hindered by the emergence of vanishing biaxiality
or reverse twisting at point defects [48], and the biaxial
topology prescribed by chirality is consistent throughout
the volume since it is energetically costly to fully unwind
all the twist structure to a uniformly aligned state, even with
such small biaxiality T.
In the examples illustrated in this work, the following

parameter values were used [11,49,50]: A ¼ −1.72×
105 J=m3, B ¼ −2.12 × 106 J=m3, C ¼ 1.73 × 106 J=m3,
γ1 ¼ 7.4 pN, γ2¼12 pN, γ4¼−0.0017N=m, γ6¼11.9 pN,
and W ¼ 10−3 J=m2. These constants give an equilibrium
S ≈ 0.6 and T ≈ 0.001. Note that a negative γ4 represents
left-handed chirality in our numerical model.

2. Numerical visualization

The analysis and visualization of disclination positions
were performed in MATLAB by rendering the smoothness of
the director fields. For instance, a λ disclination is repre-
sented by discontinuity in the χ and τ director fields but not
in the λ field [51]. τ disclinations, likewise, are revealed by
finding regions with a continuous τ field but singularities
in the λ and χ fields. In practice, we quantified the
smoothness of a director field based on the inner product
of the directors at neighboring grid points.
Another more conceptually straightforward, but more

computationally intensive approach, is to calculate the
actual topological winding numbers in the three director
fields for all grid points. A λ disclination is then identified
by vanishing winding number in λ but nonzero (� 1

2
)

winding in the other two director fields. The contour
regions of director smoothness, or winding number, are
plotted for each field individually and then superimposed.
The two methods give consistent results.
For defects in which the helical axis director χ is

not uniquely defined [52], we performed the visualization
based instead on the matching biaxial directors ðn;m; lÞ
(see Sec. II) obtained from tensor diagonalization [Eq. (7)].
In some cases, we manually picked the combination of
regions and one of the two director sets to circumvent
numerical artifacts.

B. Experimental techniques

1. Sample preparation

The CLC cells in our work were made of two glass slides
or coverslips, both chemically treated to have a specifically
designed surface anchoring determined by the boundary
conditions for the LC molecular directors. Specifically,
1.0 wt % (weight percentage) of poly(vinyl alcohol) (PVA,
Sigma-Aldrich) in water was used to generate a unidirec-
tional parallel configuration for the CLC directors, and an

azobenzene dye SD1 1.0 wt % in dimethylformamide was
applied for photoalignment [53,54]. Chemical solutions
were evenly spread on the glass surfaces by spin coating
at 700 rpm for 15 s then 3000 rpm for 45 s, followed by
heating at 100 °C for 1 min to thoroughly evaporate the
solvents. For PVA-coated surfaces, the anchoring direction
was defined by gently rubbing a piece of cloth against the
surface along the desired anchoring direction. The boun-
dary conditions for SD1-treated glasses, on the other hand,
were designed using photoalignment techniques (detailed
below) [53,54].
The gap distance between the two glass pieces was set

by silica spacer spheres (with diameters ranging from 7 to
40 μm, from Thermo Fisher). The CLC sandwiched
between them was prepared by doping cholesterol pelarg-
onate (Sigma-Aldrich) into 4-Cyano-4’-pentylbiphenyl
(5CB, EM Chemicals) to form a left-handed CLC and
subsequently used to fill the glass cells. The cholesteric
pitch p controlled by the doping concentration ranged from
2 to 10 μm. To control the positions of disclinations (which
is pinned to the surface; see photopatterning below) after
the CLC filling, the top glass was shifted or reoriented
using a steel tweezer under the microscope.

2. Photopatterning of the confining surface

To precisely control the types and locations of defects,
we photopatterned the SD1-coated surfaces with topologi-
cally nontrivial boundary conditions. Specifically, surface
patterns with topological point defects or domain walls
were imprinted to facilitate the formation of disclinations.
Each half-integer defect imprinted on the surface served as
a pinning point for one disclination, which provides control
over the start and end positions of the disclination [53,55].
Twist domain walls, on the other hand, help induce layer
dislocations such as bounded λτ pairs (by π-twist wall) or
−1 disclinations (by 2π-twist wall) in CLC within planar
cells [31,56,57].
With the designed surface director alignment, the photo-

responsive azobenzene dye was locally reoriented by
polarized blue light to render it perpendicular to the
incident polarization in the controlled illumination area.
We performed the illumination with a commercial micro-
display and generated configurations based on identifying
regions with the same director orientations in the prede-
signed director boundary conditions [58]. The optical
alignment involved a wave plate and a polarizer to adjust
the polarization of the illumination light and a 4× objective
(numerical aperture, NA 0.13) to focus the light on our
sample glass surface. The detailed optical setup for photo-
patterning can be found in Refs. [53,58]. CLCs were
subsequently introduced into the glass cell, after which
we found the reorientation of azobenzene dye to be
negligible. In our experiments with a uniform background
far field, the helical axis stayed perpendicular to the
substrate throughout the photopatterned areas.
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3. Microscopy

To observe non-Abelian defects, a charge-coupled-device
camera (PointGrey) mounted on inverted microscopes
(Olympus, IX-83) with 4× objective (Olympus, NA 0.13)
was used for opticalmicroscopy, such as bright-field imaging.
Polarizers anda phase ringwere inserted for polarizingoptical
microscopy and phase contrast microscopy, respectively.
Three-photon excited fluorescence polarizing microscopy
(3 PEF PM) [59] was also carried out to verify the molecular
director λ configuration around defects. In brief, the three-
photon excitation of the 5CBmolecules involved the incident
light generated from a Ti:sapphire pulse laser (Chameleon
Ultra II, Coherent) operating at 870-nm wavelength passing
through a linear polarizer, and the fluorescence signal
was epicollected using a 60× objective (Olympus, NA
1.35) and magnified by a photomultiplier tube (H5784-20,
Hamamatsu). In the three-photon process, the fluorescence
intensity scaled as cos6 θn, where the angle θn was the angle
made by the 5CB molecular director λ with the polarization
of the excitation light. The microscopy was thus used to
probe the director alignment, and numerical simulations of
3 PEF-PM images were performed accordingly.

VII. RESULTS

The quaternion algebra governing biaxial defects con-
tains three classes of three-defect junctions [see Fig. 4(d)].
Here, we describe the observations and analysis of such
structures in both computer simulations and experiments.
While experimentally, various junctions are observed in
unconstrained sample geometries, they are typically uncon-
trolled transient features of polydomain samples. In con-
trast, our surface photopatterning approach allows us to pin
the end points of these defect lines so that their structure
can be thoroughly analyzed.

A. ðλ; τ; χ Þ junctions
We first simulate a chiral nematic system with the

methods laid out in Sec. VI A. Figure 6 shows two different
simulated ðλ; τ; χÞ junctions corresponding to the processes
in Fig. 6(a) τ−λþ ↔ χ− and Fig. 6(b) τ− ↔ χ−λ−. These
disclination junctions are not only topologically stable but
also energetically robust against thermal fluctuations with
the chosen numerical parameters. Figure 6(c) and Videos 2
and 3 show the complete set of junction types that are
numerically observed and energetically relaxed for a left-
handed CLC. Though one would expect that defects are
free to deform to all the topologically equivalent structures
conserved in such a soft fluid system, we note that the
energy-minimizing junction structures obtained from com-
putation inherit chirality from the underlying molecular
chiral nematic host medium. The mirror images of these
junctions were found numerically to exist in right-handed
CLCs, thus providing an extra control knob for chiral
biaxial systems. In addition, the structure of a bound pair

(a) (b)

(c)

FIG. 6. (a),(b) Numerically simulated χ=λ=τ threefold junctions
for the cases (a) τ−λþ ↔ χ− and (b) τ− ↔ χ−λ− with their
respective diagrams shown. The results are obtained from the
minimization of the Landau–de Gennes energy (see Sec. VI) with
the λ director field on the bottom surface rendered in black rod
patterns corresponding to the experimental photopatterning of
the same field structure. (c) Schematic representations of eight
geometries of junctions obtained from the numerical computation
of a left-handed chiral nematic LC. Here, the direction of the χ
disclination is represented by a cross and a dot for into and out of
the page, respectively.

VIDEO 2. Visualization of the director field near the simulated
χ=λ=τ threefold junctions in a left-handed CLC. Each schematic
shows the defect types and orientations. The moving vertical
cross section is colored according to nematic director orientation
(yellow for λ parallel to the moving direction; dark blue for λ
perpendicular to all three disclinations).
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of parallel λ and τ disclinations (side by side) can be found
in Fig. 6(c) top row with notable energetic stability.
In Sec. VIII B, we argue that the chirality of the system
provides the elastic tension required for the formation of
stable bound states of defects.
The threefold junctions discussed so far consist of one λ,

one χ, and one τ disclination, that is, all of the classes
shown in Fig. 4(d). Beyond the single-junction (elementary)
structures, multijunction structures were also numerically
stabilized by gluing junctions with matching topology and
geometry. Figures 7(a) and 7(b), for example, show how a χ
disclination splits into a parallel pair of λ and τ defects,
which thenmerge to form a χ again. Interestingly, numerical
minimization of the free energy suggests that there is a
preference for χ− or χþ depending on the relative orientation
of the defects. In other words, energy-minimizing structures
of multiple junctions are assembled from connections of the
geometries found in Fig. 6(c). As a result, we found that χ
defects connected at the same side of the numerical volume
tended to have the opposite signs [Fig. 7(a)], and conversely,
χ lines with the same sign extended out in different directions
as in Fig. 7(b). This feature of the junction geometry is further
confirmed experimentally later below.
Threefold junctions can also serve as the building

blocks for multijunction disclination networks, such as those
shown in Fig. 5. By properly joining individual defect
junctions, we numerically realized multijunction networks
that could be repeated to build infinitely large networks
[Figs. 7(c) and 7(d)]. Note that the equilibrium structure of χþ
in numerical simulations is a spiral-like trace of the discli-
nation core due to the strong elastic anisotropy [K1; K3 > K2

in Eq. (8) below], while χ− is straight and has lower elastic
energy cost, as shown in Fig. 7.
Experimentally, we also generated defect junctions

and robustly controlled disclination orientations by surface
patterning techniques (see Sec. VI). Figure 8 shows a
trijunction depicting the process χ− ↔ λþτ−, with the χ

disclination attached to the bottom surface. Since the χ is
parallel to the viewing direction under the microscope
[along z, Fig. 8(b)], it renders a dark spot where the λþτ−
defects terminate, characterized by the color contrast in
POM. Note that among the simulated junctions [Fig. 6(c)],
this form (χ− ↔ λþτ−) is most energetically favored due
to the strong anisotropy of the system [31] and thus is
frequently observed in numerics and experiments.
Furthermore, consistent numerical simulations of 3 PEF-

PM (see Sec. VI) images were performed, which effectively
revealed and confirmed the director configurations [59]. We
compared the director configuration around a defect junc-
tion in the whole 3D volume shown in Fig. 8(a), which
appears like a color contrast reaching an end under POM
[Fig. 8(b)]. Good agreement is found between the computa-
tional and empirical results of the fluorescence signal,
including the representative 2D slices in Figs. 8(c) and 8(d)
parallel or perpendicular to the λτ pair. Figure 8(e) shows
the director configuration around a disclination pair, with

VIDEO 3. Visualization of helical layers near T-shaped three-
fold junctions in a left-handed CLC.

FIG. 7. Examples of numerically modeled disclination structures
based on ðχ; λ; τÞ junctions with their corresponding diagrammatic
representations and λ fields on the bottom surfaces shown. (a),(b)
Two examples of joined elementary trijunctions with χ disclination
ending on the surfaces. (c),(d) Two examples of a composite
junction series comprised of two and three elementary junctions,
respectively, can be extended to larger disclination networks.
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bricks showing red faces indicating n along the y direction
and a stronger 3 PEF-PM signal in Fig. 8(d). This structure
for n is often found with mismatching helical layers and
resembles a dislocation, as evident in Fig. 8(d). This provides
an in situ verification of the simulated defect structures as
well as immediate identification of junction types. Since the
vertical χ− connects to the bottom surface with the −1=2
windingnumber,wewill label the surface pinning site as− for
the experiments with multiple junctions demonstrated below.
As shown in Figs. 7(a) and 7(b), the preferred geometries

of the defect connections in equilibrium are a combination
of the junctions in Fig. 6(c) with matching types and
orientations of defects. Accordingly, by focusing on cleanly
separated elementary defects (χ), we see a selective con-
nection to the surface pinning defects in Fig. 9. Simply put,
“defects with the same topological charge connect on
opposite surfaces, while defects with opposite charges
connect on the same surface,” as summarized schematically
in Fig. 9(a). The case of opposite charge adds a handle
to the boundary surface, providing a means of communi-
cating between spatially separated points on the boundary
via the bulk. The case of same charge defects allows
one boundary surface to connect to a distant boundary via a
line defect passing between them. We then designed an
experiment based on such selective defect connections
[Figs. 9(b)–9(g)]. The preprinted pinning surface defects
with þ1=2 or −1=2 winding number are placed in several

relative positions. Figures 9(b) and 9(c), for instance, show
that defects (each being λτ≡ χ) extend across the sample
area to have larger disclination length instead of connecting
to nearby surface defects. In contrast to a typical soft matter
system where energy-costly defects would be shortened
whenever possible, here the selective connections of dis-
clinations are a result of the interplay between the non-
Abelian biaxial topology and the geometry of non-Abelian
defect junctions, on top of energetic considerations in a
CLC. Furthermore, by simply rotating the upper glass
substrate [Figs. 9(d)–9(g)], we clearly observed disclination
arrangements being “same charge xor (i.e., exclusive or)
same surface” as summarized in Fig. 9(a), consistent with
our interpretation of non-Abelian defect topology in CLCs.
Thicker and brighter under the microscope [31,60], �1
lines enable more complex arrangement of disclinations.
For instance, we additionally found junctions connecting
four þ1=2 surface defects such as those in Figs. 9(h)
and 9(i). With twoþ1=2 surface defects on each side of the
substrate, the central segment linked to multiple χ lines is
interpreted depending on its connection: The segment is −1
if defects from the same surface merge first as in Fig. 9(h),
or þ1 is assigned instead if χ connects across surfaces
and the middle segment is topologically trivial and free to
remove [Fig. 9(i)], consistent with the theory prediction in
Figs. 4(e) and 4(f). Below, we perform more detailed
analyses on defect junctions containing −1.

FIG. 8. (a) A defect junction visualized in computer simulations. (b) Experimental top view of such a defect junction obtained with
POM. Diagrammatic representation of the junction; orientations of polarizer and analyzer are marked. (c),(d) Simulated (left) and
experimental (right) three-photon excitation fluorescence polarizing microscopy (3 PEF-PM) images along or across the λ − τ
disclination pair. The slice planes correspond to those in (a). (e) An enlarged brick visualization where brick edges represent biaxial
director fields (from long to short: n, m, l, respectively). The 3 PEF-PM signal is strongest when molecular director n is aligned along
the y direction (see Sec. VI). The junction structure is also described as a dislocation in systems viewed as chiral nematic quasilayers.
All scale bars are 5 μm.
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B. ðχ ; χ ; − 1Þ junction
Another important type of trijunction beyond the

class with one each of λ, χ, and τ disclinations discussed
above is that resulting from the entanglement of two
defects—algebraically equivalent to the negation of a group
element [Fig. 4(e)]. Experimental realizations of this
junction are shown in Fig. 10. For the crossover of a χþ
disclination with a −1 disclination, see Figs. 10(a)–10(c).

The individual creations of a χ line and a −1 defect on
separated glass surfaces guaranteed the correct assignments
of quaternion group elements (see Sec. VI). The crossing
was then created by overlapping the two glass surfaces with
their relative position carefully adjusted under the micro-
scope. Near the defect crossing, the overall elastic energy is
reduced by rendering the two defects parallel. Brightness
and color contrast, however, allow for an unambiguous

FIG. 9. (a) Topologically selected defect connections (through χ, green curves) based on the junction geometries in Fig. 6(c). The
isolated, uninterfered defect lines connect only two defects on the same surface or with the same sign, but not both. The “þ” and “−”
signs represent surface point defects with winding number �1=2, respectively. Defects on different surfaces are distinguished by
colors. (b),(d),(f) Schematics representing the upper and lower boundary conditions for LC directors with half-integer defects,
which serve as pinning sites for the disclinations. (c),(e),(g) Corresponding connections through disclinations between surface
defects when upper and lower glass plates are overlaid. From left to right, images of the same area are taken using bright-field, phase
contrast, and polarizing optical microscopy. (h),(i) The defect junctions that involve four surface defects and elements�1. (j) Pattern
used for photoalignment of the molecular λ director field on confining glass surfaces. Cholesteric pitch p ¼ 7.4 μm, cell thickness
d ¼ 50 μm, and scale bars are 300 μm.
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identification of the two distinct defect classes (Fig. 10).
By locally melting the CLC with laser tweezers near the
defect crossing (Video 4), and then allowing the system to
reorient in a quench, we produced a set of two connected
threefold junctions [Figs. 10(d)–10(f)] of the ðχ; χ;−1Þ
class. As evidenced by the microscopic characterization
Figs. 10(d)–10(f), the two junctions are connected by a χ
line corresponding to the defect algebra χþ × −1 ¼ χ−

following Table I. We also assessed the topological stability
of these junctions by repeated laser-tweezer-based heating
and mechanical excitations: We found these ðχ; χ;−1Þ

junctions to be unbreakable due to the topological protec-
tion imposed by intrinsic biaxiality. Furthermore, by
recognizing this −1 defect as a combination of two parallel
λ disclinations, given its resemblance to a dislocation of one
helical layer [31], we can associate the ðχ; χ;−1Þ defect
junction with a χχ ↔ λλ process. We want to note that,
however, such examples of −1 defect structure are different
from those discussed in Ref. [30], in which case, the
process of χχ ↔ λλ is shown to be nontrivial.
Following the discussion in Sec. V C, we also exploited

the robustness of the single-junction structure to experimen-
tally construct a topologically stable network with ðχ; χ;−1Þ
defect junctions as building blocks [Figs. 11(a)–11(c)].
To create the defect network, we defined the surface
boundary conditions that contains an array of π-twist walls
[Fig. 11(d)]. By controlling the width and separation dis-
tances of the twist walls, manipulation of the surface pattern
controls the formation of defect junctions. Specifically,
larger distances between and sizes of π-twist walls prefer
forming χ defects, while smaller distances and sizes (essen-
tially become a 2π-twist wall) generate a −1 line instead (see
Sec. VI). As presented in Fig. 11, the χ and −1 defects
are characterized and easily distinguished microscopically.
The experimental realization of the network is expandable
by including more repeating units of the surface pattern,
reconfigurable by employing laser tweezers, and most
importantly, always topologically stable as guaranteed by
the non-Abelian biaxial topology of the fundamental group
elements of CLCs.

FIG. 10. (a)–(c) Crossover of a−1 and χþ disclination imaged using (a) bright field, (b) phase contrast, and (c) POM, respectively. The
χþ line ends at a surface pinning point defect on the upper boundary of the CLC sample (see Sec. VI). (d)–(f) Two topologically stable
threefold junctions formed from merging the crossover in (a)–(c) accompanied by the generation of χ− (see Video 4). Insets in (b) show
the surface alignment of the molecular director λ field. Orientations of the polarizers are marked in (c),(f), cholesteric pitch p ¼ 7.4 μm,
cell thickness d ¼ 50 μm, and scale bars are 100 μm. The displacement of the junctions is due to the fluidity in our soft matter system.

VIDEO 4. Laser tweezer manipulation of a defect line crossing
formed by −1 (thick) and χþ (thin) disclinations under micros-
copy, showing a real-time χþ × −1 ⟶ χ− process.
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VIII. RIGIDITY OF CHIRALITY-INDUCED
BIAXIALITY IN D2CLCS

The biaxiality in our system is dominated by the twisting
alignment of molecules. It is thus important to investigate
the robustness of such biaxiality; for example, here we
assume a weak but persistent biaxial order contributed
solely from the chiral nature in CLCs. Below, we analyti-
cally demonstrate how the chirality contributes to biaxial
elastic moduli, and based on such a relation, the role of

chirality in stabilizing a bound state of biaxial disclinations
that is widely observed in both lab and simulation.

A. Biaxial elasticities of chiral nematics

The mapping of the chiral and biaxial director fields,
as introduced in Sec. II, allows us to use the biaxial free
energy written in terms of derivatives of the orthonormal
directors ðn;m; lÞ to describe a CLC [26],

fFOelastic ¼
K1

2
ð∇ · nÞ2 þ K2

2
ðn ·∇ × nÞ2 þ K3

2
ðn × ∇ × nÞ2 þ K4

2
ð∇ ·mÞ2 þ K5

2
ðm · ∇ ×mÞ2 þ K6

2
ðm ×∇ ×mÞ2

þ K7

2
½n · ðm ×∇ ×mÞ�2 þ K8

2
½m · ðn ×∇ × nÞ�2 þ K9

2
½m · ∇ × l�2 þ Kð10Þ

2
½n ·∇ × l�2

þ Kð11Þ
2

ð∇ × lÞ2 þ Kð12Þ
2

ð∇ · lÞ2; ð8Þ

with the first three terms resembling the uniaxial Frank-
Oseen model: K1, K2, K3 are the elastic constants for splay,
twist, and bend deformations, respectively.
By expanding the tensor-based Eq. (2) and comparing to

the director-based Eq. (8), one can relate the two elastic
models and write the elastic constants Ki (in the biaxial
director model) in terms of γi in the tensorial model (see
Appendix B). This yields a biaxial description of the elastic
properties of chiral nematics. Since the intrinsic biaxiality
of our chiral liquid crystal is much smaller than its

uniaxiality order parameter T ≪ S, we can further approxi-
mate the coefficients γi; i ¼ 1, 2, 6 as [61]

γ1 ¼
1

12S2
ð3K2 þ K3 − K1Þ;

γ2 ¼
1

2S2
ðK1 − K2Þ;

γ6 ¼
1

4S3
ðK3 − K1Þ; ð9Þ

FIG. 11. (a)–(c) Experimental realization of a stable disclination network based on the (χ; χ;−1) junctions imaged using (a) bright-
field, (b) phase contrast, and (c) polarized optical microscopy, respectively. (d) A repeating unit of the designed surface alignment with
changing distance between two π-twist walls. Cholesteric pitch p ¼ 7.4 μm, cell thickness d ¼ 50 μm, and scale bars are 300 μm.
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which give an estimation of the orthorhombic biaxial
elastic moduli Ki; i ¼ 4–12 up to OðT=SÞ for a CLC:

K4 ¼
�
−
1

3
K1 −

2

3
K3

�
T
S
;

K5 ¼
�
2

3
K1 − K2 −

2

3
K3

�
T
S
;

K6 ¼
�
−
1

3
K1 −

2

3
K3

�
T
S
;

K7 ¼ ðK3 − K1Þ
T
S
;

K8 ¼ ðK1 − K3Þ
T
S
;

K9 ¼ ð2K1 − K2 − K3Þ
T
S
;

Kð10Þ ¼ ðK1 − K2Þ
T
S
;

Kð11Þ ¼
�
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2

3
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2

3
K1

�
T
S
;

Kð12Þ ¼
�
1

3
K1 þ

2

3
K3

�
T
S
: ð10Þ

Equation (10) represents the elastic moduli of orthorhombic
biaxial nematics that originate purely from chirality, in
addition to the intrinsic chiral deformations that might exist
within such models (see Appendix B). We found that the
elastic constants Ki; i ¼ 4–12 scale proportionally to the
biaxiality order parameter OðTÞ, which is scaled as T ∝ q2

in single-component materials with chirality q [16].
Vanishing biaxiality reduces to the conventional uniaxial
Frank-Oseen model (with only the first three elastic terms)
as expected. On the other hand, the chirality-induced
biaxiality [16,62–64] gives rise to elastic contributions
beyond bend, twist, or splay in the molecular director field.
Equation (10) is especially useful for studies where the
precise measurement of biaxial elastic constants in the lab is
challenging. Furthermore, this mapping of the elasticities of
CLCs to biaxial nematics strengthens the fundamental
connection of the two systems, allowing us to analytically
model experimental observations of bound states as detailed
below while using parameters measured in experiments.

B. Energetic stability of a bound state of two defect lines

We now analyze the bound state of two parallel defect
lines within the elastic model given by Eq. (2). Bound states
of this kind are seen experimentally and numerically in
junctions such as in Figs. 6(a) and 8.
Suppose we have two defect lines with topological

charge q1 and q2 separated by distance ρ in a cylindrical
region Ω ¼ DR × ½0; L�, where DR is a disk of radius R.
The region of interest away from the defect core with radius
rc is the annular region rc ≪ r ≪ R. Here, the Q tensor

may be continuously deformed to satisfy the sliding
boundary condition ∂rQij ¼ 0, which allows us to
assume that the order parameter chiefly depends on the
azimuthal angle. The elastic free-energy density can then
be approximated by

felastic ≈
fðϕÞ
r2

þ gðϕÞ
r

; ð11Þ

where fðϕÞ is the angular dependence of the expansion
of the γ1,γ2, and γ6 terms in Eq. (2). Similarly, gðϕÞ is the
angular dependence of the chiral γ4 term in Eq. (3). The free
energy can now be approximated by integrating over
the volume of Ω which, for convenience, can be split into
three terms:

F ¼ F q1 þ F q2 þ F q3 : ð12Þ
The first two terms are identical up to the interchange
q1 ↔ q2 and represent the individual energies of each
defect. The radial integrals for these two terms are
calculated in the annulus rc < r < ρ surrounding each
defect line, as shown in Figs. 12(a) and 12(b), and take
the form

F q1;2 ≈
Z

L

0

dz
Z

2π

0

dϕ
Z

ρ

rc

rdr

�
fðϕÞ
r2

þ gðϕÞ
r

�
ð13Þ

¼ γ1LS2K
ð1Þ
q1;2 ln

�
ρ

rc

�
þ γ4LS2ðρ − rcÞKð6Þ

q1;2 : ð14Þ

Similarly, the third term is computed over the annular
region ρ < r < R surrounding the bound state [Fig. 12(c)]

F q3 ≈
Z

L

0

dz
Z

2π

0

dϕ
Z

R

ρ
rdr

�
fðϕÞ
r2

þ gðϕÞ
r

�
ð15Þ

¼ γ1LS2K
ð1Þ
q3 ln

�
R
ρ

�
þ γ4LS2ðR − ρÞKð4Þ

q3 ; ð16Þ

where we have introduced the elastic constants associated
with each defect class. They are obtained from the
azimuthal integrals

K̄ð1Þ
qi ≡ Fð1Þ

qi

�
T
S
;
γ2
γ1

�
þ γ6
γ1

SFð6Þ
qi

�
T
S

�
ð17Þ

≡Kð1Þ
qi þ γ6

γ1
SKð6Þ

qi ; ð18Þ

Kð4Þ
qi ≡Gqi

�
T
S

�
; ð19Þ

where the functions Fð1Þ
qi and Fð6Þ

qi are the azimuthal
contributions of the γ1, γ2 terms and γ6 term, respectively.
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Similarly, Gqi is the azimuthal contribution of the γ4 term.
Additionally, upon defining the elastic energy losses

ΔK̄ð1Þ ≡ K̄ð1Þ
q1 þ K̄ð1Þ

q2 − K̄ð1Þ
q3 ; ð20Þ

ΔKð4Þ ≡ Kð4Þ
q1 þ Kð4Þ

q2 − Kð4Þ
q3 : ð21Þ

The energy then becomes

F ¼ γ1S2L

�
ΔK̄ð1Þ ln

�
ρ

rc

�
þ Kð1Þ

q3 ln

�
R
rc

��

þ γ4S2L½ΔKð4Þðρ − rcÞ þ Kð4Þ
q3 ðR − rcÞ�: ð22Þ

The minimum energy occurs at the separation

ρmin ¼ −
γ1ΔK̄ð1Þ

γ4ΔKð4Þ ; ð23Þ

and the second derivative at this point is

∂
2F
∂ρ2

����
ρmin

¼ −
γ24ðΔKð4ÞÞ2
γ1ΔK̄ð1Þ ; ð24Þ

which requires ΔK̄ð1Þ < 0 corresponding to defect repul-
sion for ρmin to be a minimum.
Recall that the sign of γ4 ∝ q determines the handedness

of the system. For γ4 > 0, ρmin > 0 requires ΔKð4Þ > 0.
On the other hand, if γ4 < 0, we must have ΔKð4Þ < 0.

Seemingly, the sign of the ΔKð4Þ term depends on the
handedness. If we instead focus on the sign of the product
γ4ΔKð4Þ, we see that it must be positive in both cases. This

must be the case, because unlike the constants K̄ð1Þ
qi , which

have some memory of the elastic moduli γ1 and γ6, the K
ð4Þ
qi

do not, as seen in Eq. (19). Thus, it is more appropriate to
consider the sign of γ4ΔKð4Þ > 0 for a minimum to exist in
the repulsive case, with ΔK̄ð1Þ < 0.
One can check that upon writing the elastic constants

Kð1Þ
qi in terms of the Frank elastic constants in Eq. (8) and

using the mapping described in Appendix B to relate to the
biaxial coupling constants γi, the repulsive condition is
satisfied subject to labeling the defects corresponding to Cλ

with the smallest Kð1Þ
qi . Doing the same for Kð4Þ

qi reveals that
this condition is met when T=S < 2=ð ffiffiffi

5
p

− 1Þ.
Unlike the achiral nonanisotropic case in Ref. [65],

where the repulsive condition leads to the energy being
minimized when the defects are as far apart as possible,
here we have an energy-minimizing separation distance
that is stabilized within the bounds of the medium by none
other than the elastic tension provided by the intrinsic chiral
nature of the bulk. Figure 13 shows the energy in Eq. (22)
along with the achiral braided and unbraided cases. This
agrees with the observation of bound states of the λ and τ
defect pairs in the D2CLCs.
We can further compare this observation to the braided

achiral nonanisotropic case in which there is a stable
minimum radius. The tension that creates the bound state
in that case is provided by an extrinsic chirality generated
by physically braiding the two defects.

IX. CONCLUSIONS

The non-Abelian properties of the three-dimensional line
defects have been of interest for decades but rarely seen in

FIG. 13. Elastic free energy for three different bound-state
configurations: (1) achiral, unbraided (red, dashed); (2) chiral,
unbraided (blue, solid); (3) achiral, braided (green, dashed). Of
the three, only the achiral, unbraided case does not have a stable
minimum radius.

(a) (b)

(c)

FIG. 12. Integration regions within the disc of radius R use to
compute the integrals that define the free energies (a) F q1,
(b)F q2, andF q3 in Eq. (12). The darker annular region shows the
region in which the integrals are computed.
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experiments [36,66–68]. Here we uncover new metastruc-
tural features of such systems and realize them in the
laboratory in a chiral liquid crystal with orthorhombic
biaxial symmetry breaking.
In particular, we show that the four nontrivial classes

of line defects have several distinct realizations: They may
be stand-alone elementary defects, bound states of two
elementary defects, as well as elements of junctions, both
single and extended networks, all consistent with the well-
known quaternionic algebra that governs their classification
and possible defect couplings.
In this way, we reveal features of such systems beyond

those obvious from their well-known mathematical classi-
fication and point the way to the construction of even
more elaborate topologically rigid structures that pose
theoretical and experimental challenges and may well
have technological utility. The demonstrated experimental
embodiments of defect networks not only comply with
topological rules and constraints but also feature low-free-
energy states, showing how our specific physical system
selects lowest-energy configurations out of all allowed by
topology rules. Enhanced manipulation over director align-
ments, such as tilting χ [69], would facilitate the realization
of more complex topological structures in D2CLC. In
addition to the rich topological behaviors of the D2CLCs
realized in our specific material system, future research on
materials with atypical elasticities, such as CB7CB (100,700-
bis(4-cyanobiphenyl-40-yl)heptane) [70], could reveal other
energetic pathways of non-Abelian algebra. In addition to
defect junctions and networks, our system may allow for
realizing non-Abelian analogs of combinatorial vortex
lattices [71] that have not yet been observed experimentally.
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APPENDIX A: FUNDAMENTAL GROUP OF
SYSTEMS WITH BIAXIAL SYMMETRY

The fact that biaxial nematic systems have disclinations
whose algebra is that of the quaternion group Q8 is well
known and quoted with confidence. However, for the sake
of self-containment, here we prove the statement. In a more
mathematical language, we want to prove that

π1(SOð3Þ=D2) ≃Q8: ðA1Þ

To do so, we require the following theorem which proves
useful in computing homotopy groups of coset spaces:
Theorem 1. Let G be a simply connected Lie group

with subgroup H ≤ G and identity component H0 ⊴ G.
Then,

π1ðG=HÞ ≃H=H0: ðA2Þ

Proof of this statement establishes an isomorphism
between the fundamental group and the quotient space
H=H0 by relating the loops in G=H based at H to paths
in G from a connected piece of H to the piece that contains
the identity H0.
Theorem 1 allows one to compute π1(SOð3Þ=D2) by

lifting to a universal cover map. This is

SOð3Þ ⟶ SUð2Þ; ðA3Þ

D2 ⟶ Q8: ðA4Þ

Here, the covering map sends π rotations about each
symmetry axis of the rectangle into π rotations in SU(2)
parametrized by the Pauli matrices. The set of such
rotations forms the lift of D2, that is

f�1;�iσx;�iσy;�iσzg; ðA5Þ

which is simply the group of quaternions Q8.
Now, applying Theorem 1, we have π1(SOð3Þ=D2) ≃

π1(SUð2Þ=Q8) ≃Q8=ðQ8Þ0 ¼ Q8 since ðQ8Þ0 ¼ f1g.

APPENDIX B: RELATION BETWEEN
THE ELASTIC MODULI OF THE BIAXIAL
Q-TENSOR MODEL AND THOSE OF THE

VECTORIAL MODEL

In addition to the sum of 12 linearly independent
bulk elastic terms in the biaxial director model Eq. (8),
the chirality contribution to orientational elasticity is
expressed as
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fFOchiral ¼ Kð13Þðn · ∇ × nÞ þ Kð14Þðm ·∇ ×mÞ
þ Kð15Þðn ×mÞ · ðm ·∇Þn
þ Kð16Þðm × nÞ · ðn · ∇Þm
þ Kð17Þðn ×mÞ · ðm ×∇ × n − n ×∇ ×mÞ:

ðB1Þ

Together with Eq. (8), the total elastic free energy describes
a chiral biaxial system characterized by the three ortho-
normal directors fn;m; lg.
Following the approach similar to Ref. [61], the elastic

constants in the Q-tensor model and the vectorial model,
which describes energy in terms of gradients of director
fields, can be related by expanding Eqs. (2) and (8) and
collecting terms with the same invariants, which serve as
linear-independent bases for the projection. Ignoring
the surface terms (those with the form ∇ · f [26]), the
equations read

K1 ¼
2

3
S½ðS− TÞð6γ1 þ 3γ2Þ− 2ðS2 − ST þ T2Þγ6�;

K2 ¼
4

3
S½3ðS− TÞγ1 − ðS2 − ST þ T2Þγ6�;

K3 ¼
2

3
S½ðS− TÞð6γ1 þ 3γ2Þ þ ð4S2 − 4ST − 2T2Þγ6�;

K4 ¼ −
2

3
T½ðS− TÞð6γ1 þ 3γ2Þ þ 2ðS2 − ST þ T2Þγ6�;

K5 ¼ −
4

3
T½3ðS− TÞγ1 þ ðS2 − ST þ T2Þγ6�;

K6 ¼ −
2

3
T½ðS− TÞð6γ1 þ 3γ2Þ þ ð2S2 þ 4ST − 4T2Þγ6�;

K7 ¼ 4STðS− TÞγ6;
K8 ¼ 4STðT − SÞγ6;
K9 ¼ 2STðγ2 − 2Sγ6Þ;

Kð10Þ ¼ 2STðγ2 − 2Tγ6Þ;

Kð11Þ ¼
4

3
ST½3γ1 þ ðSþ TÞγ6�;

Kð12Þ ¼
2

3
ST½6γ1 þ 3γ2 þ 2ðSþ TÞγ6�; ðB2Þ

with scalars S and T being uniaxial and biaxial order
parameters, respectively. Similarly, the chiral twisting
parts (B1) have

Kð13Þ ¼ S2γ4;

Kð14Þ ¼ T2γ4;

Kð15Þ ¼ Kð16Þ ¼ Kð17Þ ¼ STγ4: ðB3Þ

Given the limited types of allowed deformations as in
Eq. (2), we can estimate the biaxial elasticities based on

the uniaxial moduli and scalar order parameters of chiral
nematic systems (see Sec. VIII A).
Taking a 5CB-dominated LC with a cholesteric pitch

p ¼ 5 μm, we estimated the 12 elastic moduli and com-
pared them to another studied biaxial LC system
(Table III) [44].
As one would expect, weaker biaxiality compared

to hybrid systems implies weaker biaxial elasticities.
Manufacturing technologies associated with cholesterics
are, however, much more developed for exploring the
biaxial topologies in D2CLC soft matter systems.
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