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Unavoidable multilevel biaxial symmetry breaking in chiral hybrid liquid crystals
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Chiral nematic or cholesteric liquid crystals (LCs) are fluid mesophases with long-ranged orientational order
featuring a quasilayered periodicity imparted by a helical director configuration but lacking long-range positional
order. Doping molecular cholesteric LCs with strongly anisotropic uniaxial colloidal particles adds another level
of complexity because of the interplay between weak surface-anchoring boundary conditions and bulk-based
elastic distortions near the particle-LC interface. Using cylindrical colloidal disks and rods with different
geometric shapes and surface conditions, we demonstrate that these colloidal inclusions generically exhibit
biaxial orientational probability distributions which may impart anomalously strong local biaxiality onto the
hybrid cholesteric LC structure. Unlike nonchiral hybrid molecular-colloidal LCs, where biaxial order emerges
only at critical colloid volume fractions exceeding some uniaxial-biaxial transition value, the orientational
probability of the colloidal inclusions immersed in chiral nematic hosts is unambiguously biaxial even at infinite
dilution. We demonstrate that the colloids induce local biaxial perturbations within the molecular orientational
order of the LC host medium which strongly enhances the weak but native biaxial order of chiral nematic LC
induced by the chiral symmetry breaking of the director field. With the help of analytical modeling and computer
simulations based on the Landau–de Gennes free energy of the host LC around the colloids, we rationalize
the observed multilevel biaxial order and conclude that it is not only unavoidable but also strongly enhanced
compared to both achiral hybrid LCs and purely molecular cholesteric LCs.
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I. INTRODUCTION

More than 150 years ago, the discovery of chiral nematic
liquid crystals (LCs) initiated a wealth of research focused
on LC mesophases characterized by chirality and long-range
orientational order [1,2]. These foundational studies on the
geometry and topology of chiral nematic LCs, when used as
model systems, offer significant insights into physical princi-
ples relevant to more experimentally challenging fields such
as particle physics and cosmology [3–12].

In contrast, biaxial nematic mesophases characterized by
an orthorhombic (D2h) point-group symmetry have been a
major area of interest in soft-matter research since they
were first theoretically put forward in 1970 [13]. How-
ever, despite the existence of soft-matter systems composed
of strongly biaxial building blocks such as brick-shaped
molecules, the experimental demonstration of macroscopic
biaxial order in equilibrium systems has proven to be
elusive. Observations of biaxial nematic order have been
reported in experiments on micellar and molecular LCs cre-
ated from amphiphilic and bent-core molecules, respectively

*Contact author: ivan.smalyukh@colorado.edu

[14,15]. Recently, orthorhombic LCs with long-range bi-
axial order have also been identified in colloidal disper-
sions of highly anisotropic particles embedded in molecular
host nematic LCs, known as hybrid molecular-colloidal
LCs [16–18].

The relationship between chirality and biaxiality has been
the subject of extensive study in LC systems [19–28]. For
cholesteric LCs it has been found that a helical twist of the di-
rector field reinforces local biaxial nematic order. This means
that a chiral director twist must be accompanied by the molec-
ular building blocks exhibiting some level of biaxial order in
their orientation distribution. However, in purely molecular
systems, the degree of chirality-enhanced biaxiality has been
predicted and experimentally observed to be relatively weak
[19–26]. According to the prediction by Priest and Lubensky
for single-component molecular LCs [19], the extent of biax-
ial order scales as (qLm )2 where q = 2π/p with p denoting
the helical pitch of the chiral nematic, and Lm the typical
molecule size. Regarding hybrid molecular-colloidal LCs, no
attempts have thus far been made to explore the extent of bi-
axial orientational symmetry breaking of anisotropic colloidal
particles dispersed in a chiral molecular nematic host and the
response at the level of distortions of the molecular LC near
the colloid surfaces.
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FIG. 1. (a) Chiral LC molecules (red ellipsoids) in a helical
alignment spanning a half period p/2. The corresponding molecular
frame consists of three orthogonal directors: the LC director n̂ (red),
helical axis χ̂ (green), and a third axis τ̂ (blue). (b),(c) Numerical
simulation of colloidal disks (gray) with perpendicular anchoring
boundary conditions immersed in a chiral LC at their equilibrium ori-
entation along n̂. The contours (orange) indicate a molecular director
n̂ deviation of 0.7◦ away from the unperturbed helical structure.
(d),(e) Simulated rods with equilibrium orientation along τ̂. For all
simulations the anchoring at the colloidal surface is perpendicular
(homeotropic) with strength W0 = 10−4 J m−2. Cholesteric pitch p =
10 µm, disk diameter Dc = 1 µm, and rod length Lc = 3 µm.

In this work, we report enhanced biaxial order for uniaxial
colloidal particles dispersed in a weakly chiral molecular host
[29]. The biaxial symmetry breaking is not only manifested
in the orientational probability of the cylindrical colloidal
particles under various boundary-anchoring conditions, it is
also found to happen in the chiral molecular LC host that
surrounds the colloidal particle. The ground-state symme-
try of the cholesteric LC is described by three mutually
perpendicular director fields (Fig. 1): the molecular direc-
tor field n̂ = −n̂ representing the local average molecular
alignment, the helical axis field χ̂ = −χ̂ along which n̂ ro-
tates, and a third orthogonal field τ̂ = ±n̂ × χ̂, all nonpolar
[30,31]. The helicoidal director configuration described by
an orthogonal molecular frame (n̂, χ̂, τ̂ ) and helical pitch
p is hardly perturbed by the introduction of thin colloidal
disks or rods in view of their low concentration and weak
surface-anchoring boundary conditions. The colloidal parti-
cles are shaped as uniaxial cylinders with high aspect ratios,
and their preferential alignment within the molecular LC is
controlled by predesigned boundary conditions at the colloid
surface. We find that the colloidal orientational distribution is
distinctly biaxial for both thin colloidal rods as well as for
thin disks under a variety of surface-anchoring conditions.
In contrast to the orientational distribution of colloidal inclu-
sions in nematic hybrid molecular-colloidal LCs, in which
biaxial order emerges only at modest to high volume frac-
tions of anisotropic colloidal particles [17], the orientational

probability of the colloidal inclusions in chiral nematic hosts
is unavoidably biaxial even at very low colloidal volume
fractions. In cases where the colloids align along the τ̂ axis,
biaxial order is found to be anomalously large, an effect that is
attributed to the subtle role of weak elastic distortions of the
molecular LC near the colloidal surface. We further identify
that all studied cases of hybrid LC exhibit a leading-order
quadratic dependency of colloidal biaxial order with molec-
ular chirality �cc ∝ (qa)2 in line with Ref. [19] but each with
different, nontrivial prefactors. At the molecular level, biax-
ial symmetry breaking of the LC host medium is reinforced
through surface-anchoring-induced distortions emerging at
the edges of the colloidal particles which enhances the weakly
biaxial order that is native to any chiral LCs due to the sym-
metry breaking caused by the presence of the helical axis.
Combining findings from experiment, computer simulation,
and analytical theory we conclude that the biaxial order of
chiral molecular-colloidal LCs is strongly enhanced compared
to that of (achiral) nematic molecular-colloidal systems as
well as compared to cholesteric molecular systems. Ampli-
fied, multiscale biaxial order is therefore a universal feature of
chiral hybrid LCs. Finally, we discuss how chiral molecular-
colloidal LCs may be used as powerful model systems to
enable future studies of biaxial and non-abelian topological
defects and solitons embedded in more complex order param-
eter spaces which are at present very challenging to realize.

II. METHODS AND TECHNIQUES

A. Synthesis of colloidal disks and rods

Silica microrods synthesized following an emulsion-
templated wet-chemical approach [32] are adopted. To
synthesize them, 1 gm of polyvinylpyrrolidone (molecular
weight 40 000) is dissolved in 10 ml of 1-pentanol, followed
by the addition of 950 µl of absolute ethanol (Decon labs),
280 µl of deionized water, 100 µl of sodium citrate solution
(0.18 M), and 130 µl of ammonia solution (28%). The bottle
is shaken vigorously using a vortex mixer after each addition.
Then, 100 µl of tetraethyl orthosilicate (98%) is added under
agitation. The bottle is incubated at 25 ◦C for the next 8 h.
The solution becomes milky white after the reaction, and
it is centrifuged at 6000 revolutions per minute (rpm) for
10 min to separate the as-synthesized rods. The precipitated
rods are then washed two times with water followed by an-
other two rounds of washing with ethanol at 3000 rpm for
5 min. Finally, to improve the monodispersity and to remove
other lightweight impurities, the rods are centrifuged at 500
rpm for 30 min and dispersed in ethanol, with the proce-
dure repeated twice. For the case of a thin colloidal disk,
β-NaYF4:Yb/Er particles are synthesized following the hy-
drothermal synthesis methods described in detail elsewhere
[17,18,29,33–35]. In short, 0.7 g of sodium hydroxide (from
Alfa Aesar) is dissolved in 10 ml of deionized water and then
5 ml of oxalic acid solution (2 g, 19.2 mmol) and 5 ml of
sodium fluoride solution (202 mg, 4.8 mmol) are added under
stirring that lasts 15 min. Then, 1.1 ml of Y(NO3)3 (0.88
mmol), 0.35 ml of Yb(NO3)3 and 0.05 ml of Er(NO3)3 are
added into the mixture while the stirring continues for another
20 min at room temperature. The solution is then transferred
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to an oven (Col-Int Tech) and kept at 200 ◦C for 12 h. The
mixture is cooled down naturally to room temperature after
which the particles precipitated at the bottom are collected by
centrifugation.

B. Surface functionalization of the colloids

Surface chemical treatment of the synthesized colloids
not only provides the desired anchoring preference but also
controls the particle aspect ratio. Specifically, the emulsion-
templated rods are slowly etched in a mild basic condition
[36] with 0.5 mM NaOH for 24 h, followed by drying at 80 ◦C
for another 4 h. After this, the functionalization of the silica
rods is done by adding 100 µl of perfluorooctyltriethoxysilane
(TCI America) to 0.9 mL ethanol dispersion of the silica
rods. The mixture is kept at room temperature for 3 h before
being washed and redispersed three times in ethanol. After
vacuum drying inside a desiccator and heating at 60 ◦C for
1 h, the microrods are immersed in a perfluorocarbon liquid
(Fluorinert FC-70, Alfa Aesar) and kept at 60 ◦C for 1 h before
being cooled down to room temperature and redispersed into
ethanol for storage. The fusion of perfluorocarbon oil onto the
perfluorosilane functionalized rods results in a fully covered
and stable slippery surface layer, giving desired boundary con-
ditions. On the other hand, the homeotropic surface-anchoring
boundary on the β-NaYF4:Yb/Er disk surfaces is controlled
through surface functionalization with a thin layer of silica
and polyethylene glycol. Details are given in Ref. [18].

C. Colloidal particle dispersion in chiral molecular LC

A small amount of left-handed chiral dopant cholesterol
pelargonate (Sigma Aldrich) is added into molecular 5CB
(pentylcyanobiphenyl or 4-cyano-4′-pentylbiphenyl; Frinton
Labs and Chengzhi Yonghua Display Materials Co. Ltd). To
obtain the equilibrium pitch p of the molecular chiral mixture,
the weight fraction of the chiral additive is roughly estimated
using cd = 1

6.25p with p the desired cholesteric pitch. The
actual pitch is later measured using optical microscopy by
observing the periodicity of defect lines in Gradjean-Cano
wedge cells [37]. The surface-functionalized particles are then
dispersed into such prepared molecular chiral LC. In a typical
experiment, 20 µl of colloidal dispersion in ethanol is mixed
with 20 µl of the molecular LC. The mixture is then heated to
75 ◦C and kept for 2 h to completely evaporate the organic
solvent. A well-dispersed molecular-colloidal hybrid LC is
usually obtained after quenching back to room temperature
under mechanical agitation [38–40]. Additional centrifugation
can be carried out to remove possible particle aggregates
formed during the isotropic to chiral nematic phase transition
of the molecular LC.

Hybrid LCs obtained from the colloidal dispersion are
then infiltrated into glass cells with a gap thickness typically
between p/2 and 10p, which is experimentally set using My-
lar films or silica spheres. To achieve unidirectional planar
boundary conditions for the 5CB host molecules, cell sub-
strates are coated with 1 wt.% aqueous polyvinyl alcohol and
rubbed unidirectionally. Typically, the geometry and planar
boundary conditions of the cell give a sample with its heli-
cal axis χ̂ perpendicular to the glass substrate and with the

helical twist of the cholesteric host LC in compliance with the
designed boundary conditions at the confining glass surfaces.

D. Characterization of the colloidal orientations

A combination of microscopy-based studies, including
photon-upconverting confocal microscopy, phase contrast mi-
croscopy, and polarizing optical microscopy, are performed
using a multimodal three-dimensional (3D) nonlinear imaging
system built around a confocal system FV300 (Olympus) and
an inverted microscope (Olympus IX-81), with details pro-
vided in Refs. [39,41]. Briefly, upconversion luminescence
signals are emitted by the β-NaYF4:Yb/Er particles when
excited with a laser light at 980 nm (80 MHz coherent from
a Ti:Sapphire oscillator by Chameleon ultra). The signals
are epi-collected by a 100× objective (Olympus UPlanFL,
numerical aperture 1.4) with a set of Galvano mirrors used
to adjust the focal position, providing a high 3D spatial reso-
lution. The phase contrast images, on the other hand, are taken
using a 60× objective (Olympus UPlanFL N, variable nu-
merical aperture 0.65–1.25), mounted on another microscope
system (Olympus IX-83), at various positions controlled by a
motorized sample stage.

Analysis of the colloid orientations has been detailed in
Ref. [29]. Briefly, the normal direction of disks or the long
axis of rods are analyzed on two-dimensional (2D) slice im-
ages of a 3D sample with the error in measured colloidal
angles about ±1◦. The micrographs perpendicular to the heli-
cal axis χ̂ reveal the azimuthal orientational distribution ϕ.
Particles out of focal depth are discarded using processing
software (imagej) based on color and brightness in phase
contrast micrographs. Average azimuthal colloidal orienta-
tions are calculated from the data obtained in each n̂-τ̂ slice
plane and plotted against the sample depth (z) position of
the cross-sectional plane, revealing the helical twist of the
colloidal axes. The corresponding helical pitch p of each 3D
sample is calculated from the rotation rate of the colloidal axes
across the sample depth (�ϕ/�z = 360◦/p = q). Finally, the
colloidal orientation distribution is projected to and visual-
ized in the molecular director coordinate system frame using
δ = ϕ − qz, representing the fluctuation of colloidal orien-
tation around that of a perfect helix. Histograms of angular
probability distribution with 5◦ bin width are calculated and
numerical fitting based on the theoretical model Eq. (14) is
performed. Data from the histograms and results from the
fits are presented using dots and curves, respectively. Each
distribution is scaled by its maximum population. In certain
cases, the strength of orientational fluctuations of the col-
loidal particles out of the imaging plane are estimated using
the free energy from the analytical model (see Results and
Ref. [29]) due to the limit of vertical resolution in phase
contrast microscopy. Subsequently, the colloidal orientational
order parameters [Eqs. (22) and (23)] are computed based on
the histogram data and are listed in Table I.

E. Computer simulation of perturbed order of the molecular
LC host around the colloidal particle

Computer simulations are carried out to study the molec-
ular LC order in the vicinity of the colloidal surface as well
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TABLE I. Colloidal uniaxial (Sc) and biaxial (�c) order param-
eters measured within the colloidal frame (second subscript c) or
the molecular frame (second subscript m). Strongly enhanced biaxial
order emerges for the case of homeotropic rods (in bold). In addition
to the current experimental data shown in Figs. 3–5, results from a
previous publication [29] are also included here.

Sample Scc �cc Scm �cm

Homeotropic disk 0.66 0.067 0.66 0.067
Planar rod 0.94 0.016 0.94 0.016
Homeotropic rod (Lc = 1.7 µm) 0.70 0.12 −0.28 0.79
Homeotropic rod (Lc = 3.0 µm) 0.80 0.018 −0.39 0.81

as its impact on colloidal orientation preference. The simu-
lations are based on minimizing the mean-field Landau–de
Gennes free energy for the molecular LC host [5,17,42–44].
The bulk free-energy density consists of thermotropic effects
representing the isotropic-nematic transition of LCs and spa-
tial derivatives associated with LC director elastic distortions
occurring in the bulk volume of the LC

f LC
bulk = A
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∂x j
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Q(m)
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∂xi

∂Q(m)
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∂x j
, (1)

with the molecular tensorial order parameter Q(m) being a 3-
by-3 matrix describing the local average molecular ordering,
xi (i = 1, 2, 3) the cartesian coordinates, and ε the 3D Levi-
Civita tensor. Summation over indices is assumed. Among the
LC material parameters in these bulk energy contributions, A,
B, and C are thermotropic constants and Li (i = 1, 2, 4, 6) are
the elastic constants. LC chirality is determined by L4, which
is inversely proportional to the cholesteric pitch p [43]. The
energy induced by the boundary condition at the colloidal
surfaces is expressed as [45]

f LC
surf = W0

(
PikQ̃klPl j − 3

2 S(m)
eq cos2θePi j

)2
, (2)

with W0 the surface-anchoring strength, P = v̂ ⊗ v̂ the sur-
face projection tensor, v̂ the surface normal director, Q̃ =
Q(m) + 1

2 S(m)
eq I, and θe the energetically preferred angle made

by LC molecular director n̂ and surface normal direction.
For instance, θe = 0 corresponds to vertical or homeotropic
anchoring at the molecular-colloidal boundary, and θe = π

leads to planar degenerate anchoring.
The dimensions of the colloids and their surface-anchoring

types are represented as boundary conditions within the sim-
ulation box. The interior of the colloids is irrelevant and
excluded from the simulation. Typically, disks are represented
by a diameter Dc = 1 µm and thickness Lc = 10 nm for most
cases while long rods have dimensions Dc = 28 nm and Lc =
1.7 µm. Integration of Eq. (1) over the box volume along with
the anchoring contribution Eq. (2) running over the colloid-
host interfaces produces the total bulk and surface energies
for the host LC, respectively.

The molecular LC configuration under thermal equilibrium
is established from minimization of the total free energy based
on the forward Euler integration method

dQ(m)

dt
= − dF LC

total

dQ(m)
, (3)

with t being the scaled energy-relaxation time of the LC.
To increase numerical efficiency and stability, the adaptive
Runge-Kutta method (ARK23) and a Fast Inertial Relax-
ation Engine are adopted [46,47]. Once a steady-state or
equilibrium structure is obtained, the molecular director n̂ is
identified from the eigenvector corresponding to the largest
eigenvalue of Q(m) [42]. To model a 5CB molecular LC
with chiral dopants and a 30 µm pitch the following parame-
ters are used [17,43] : A = −1.72 × 105 J m−3, B = −2.12 ×
106 J m−3, C = 1.73 × 106 J m−3, L1 = 3.29 × 10−12 J m−1,
L2 = 5.32 × 10−12 J m−1, L4 = 1.97 × 10−6 J m−2, and L6 =
3.52 × 10−12 J m−1.

III. RESULTS

A. Symmetry breaking at the single colloid level

The symmetry breaking of the nematic colloidal geometry,
induced by the twisted alignment of chiral molecules, can
be revealed at the single particle level by visualizing the LC
distortion field around a single colloidal particle (Fig. 1).
For cylinder-shaped particles dispersed in an isotropic fluid
solvent, such as thin disks or slender rods in ethanol, a con-
tinuous rotational symmetry can be observed locally with the
symmetry axis being the disk normal or the long axis of the
rod because the other two orthogonal axes are geometrically
equivalent. When the cylindrical colloids are dispersed into
a chiral nematic, however, the uniaxial symmetry is broken
in view of the boundary condition at the particle-molecule
interfaces and also because of the far-field helical configura-
tion of the molecular LC director. The rotational symmetry of
the surface-defect-dressed cylindrical colloids becomes dis-
crete (twofold rotation) once the colloids are immersed in
a chiral LC even when the realigning effect induced by the
boundary conditions at the colloidal surfaces is rather weak
and the deviation angle is small (Fig. 1). Clearly, stronger
surface-anchoring forces and higher levels of host chirality
(shorter cholesteric pitch) lead to significantly stronger distor-
tions of the molecular LC and enhanced emergent biaxiality
as inferred from computer simulations of the local director
field of the host LC. Remarkably, biaxial symmetry breaking
at the single-particle level is observed even when the heli-
cal pitch p is much larger than the particle dimensions of
1-2 µm. This demonstrates that the shape biaxiality of the
dressed colloidal particle, imparted by the molecular chirality
of the host, unavoidably develops even at the weak levels
of surface anchoring and molecular chirality prevalent in our
experiments.

B. Orientational distribution of the colloidal particles

To analyze the equilibrium orientation of the cylindrical
particles, we perform several sets of simulations at various
colloidal orientations and resolve the corresponding free en-
ergies. A thin disk with perpendicular boundary condition
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FIG. 2. (a) Free energy obtained from computer simulation of a molecular chiral LC in the presence of a homeotropic disk at different
surface-anchoring strengths W0 as a function of the azimuthal angle δ describing a rotation of the disk normal about the pitch axis χ̂ (green).
Inset defines the molecular frame and the deviation angle δ of the disks normal away from n̂ towards τ . Data points for W0 = 10−4, 10−5, and
10−6 J/m2 are marked with triangles, squares, and circles, respectively. The energy is scaled by K p where K = 5.6 pN is the average elastic
constant and p = 30 µm the cholesteric pitch. (b) Numerical free-energy profile for a homeotropic disk rotated about τ̂ (blue axis). (c) The
energy difference in (a) and (b) calculated for W0 = 10−6 J/m2. The lowest energies (disk normal aligned along the red axis n̂, δ = ζ = 0) for
each simulation set are chosen to be 10−6K p instead of 0 to avoid singularities when converting to a logarithmic scale in (a) and (b). Cholesteric
pitch p = 30 µm and disk diameter Dc = 1 µm for all simulations.

(Fig. 2), for example, favors alignment in which the disk
normal vector orients along the molecular director n̂. Devi-
ations away from the equilibrium direction give rise to an
increase in the overall free energy of the system [Eqs. (1)
and (2)]. We emphasize that the free-energy profiles are dis-
tinct for the two deviation angles δ and ζ in Fig. 2 (with
lower energy penalty for orientational fluctuation along δ).
Though weak, the difference between the two angles and the
broken uniaxial symmetry as a consequence of the chirality
in the molecular LC host are unambiguous, as demonstrated
empirically in Ref. [29]. Furthermore, a stronger surface-
anchoring force with a higher value of W0 leads to a more
pronounced energetical nondegeneracy of the two deviation
angles. Using mean-field numerical simulation of the LC host,
we are able to validate the local biaxial symmetry of the
orientational probability distribution of an individual colloid,
arising from the inequivalence of χ̂ and τ̂ in the molecular
LC host.

C. Experimental observation and analysis
of the colloidal orientation

The orientational distributions obtained for thin disks dis-
persed in a chiral LC are shown in Fig. 3 [29]. Probed
using upconversion luminescence confocal microscopy, the
normal directions of the colloidal disks with homeotropic
surface rotate along the sample depth [Fig. 3(a)], forming
a helical alignment with a rotating rate consistent with our
predesigned cholesteric pitch �ϕ/�z = 360◦/p [Fig. 3(b)].
We conclude that the low particle density (≈0.026% in
colloidal volume fraction) guarantees a helical alignment
[Fig. 1(a)] undisturbed by the introduction of the colloids.
In addition, a statistical analysis of colloidal orientations
in such experiments reproduces the results from the sin-
gleparticle simulation demonstrated above (Fig. 2) since
particle-particle interactions are insignificant. As shown in
Fig. 3(c), the peak width of the δ (24.2◦) orientational

distribution is larger than that in ζ (22.5◦). This asym-
metry in angular fluctuations suggests that homeotropically
anchored disks more easily fluctuate away from n̂ to-
wards τ̂ than towards χ̂, a result that is consistent with
the results of the single-particle-based simulations shown
in Fig. 2.

While the case of homeotropic disks has been discussed
in detail in our previous work [29], here we additionally
present rods with planar degenerate surface anchoring (Fig. 4),
a case with a similar energy landscape in terms of parti-
cle reorientation. With the molecular director preferentially
pointing parallel to the colloid surface, a long colloidal rod
with planar boundary condition adopts an equilibrium di-
rection along n̂ (red axis) when immersed in a chiral LC.
The molecular orthogonal frame (n̂, χ̂, τ̂), which is marked
in each phase contrast micrograph, is robustly controlled by
substrates with planar-anchoring forces (Methods). The av-
erage orientations of the colloidal rod in each vertical focal
plane, again, align consistently with the designed background
helix, which rotates along the sample depth [Fig. 4(a)]. The
twisting rate, corresponding to the cholesteric pitch, is found
by plotting the rod orientation (which is along n̂) against
the depth along the helical χ̂ axis [Fig. 4(b)] and by per-
forming a linear fit. The orientational distribution of the
thin rod is then projected and visualized within the corotat-
ing molecular frame. The fluctuations are optically observed
from depth slice planes (along the angle δ, from n̂ towards
τ̂) as demonstrated in Fig. 4(c) with empirical data points
fitted. Due to restrictions on the vertical resolution of the
phase contrast microscopy, we calculate the orientational
distribution of rod angles η (from n̂ towards χ̂) based on
the theory outlined in the sections below and in Ref. [29].
The model also provides adequate fitting expressions for
the distribution curves shown. The orientational fluctuations
along the two distinct directions are weakly asymmetric,
demonstrating a clear biaxial signature imparted by the chiral
molecular host.
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FIG. 3. (a) Depth-resolved luminescence confocal micrographs of homeotropic disks dispersed in a chiral LC host. The image slice planes
are perpendicular to χ̂, showing the side view of the thin colloidal disks orientating along n̂. Sample depths z and corresponding cholesteric
directors n̂ and τ̂ are marked in each optical slice. (b) Average azimuthal orientation ϕ of disks in each z slice (dots) and their linear fit (red
line), showing helixlike alignment of disks along the depth z. Dots corresponding to the slices in (a) are marked using arrows. The 360◦-rotation
period, identified with cholesteric pitch, is found to be p ≈ 30 µm. The inset defines the fluctuation angle δ = ϕ − 360◦/(pz). (c) Orientational
fluctuations of the disks visualized in the corotating molecular frame (n̂, χ̂, τ̂). Deviation angles δ (from n̂ towards τ̂) and ζ (from n̂ towards
χ̂) are defined in the inset. Dots represent experimental data with fitting curves derived from theory detailed in Sec. III D. Scale bars are 30 µm.
Similar experimental data have been reported in a previous work [29].

The symmetry-breaking behavior observed for rods with
perpendicular boundary conditions is more pronounced com-
pared to the planar case. For homeotropic surface anchoring,
the rods align towards the τ̂ axis under thermal equilib-
rium [Fig. 5(a)]. Using a similar approach, we measured
the azimuthal angle ϕ of the long rod axis in each z slice
[Fig. 5(b)] and converted these data to a 3D distribution within
the molecular frame [Fig. 5(c)]. We find that the orienta-
tion probability distribution is much more strongly biaxial
than for rods with a planar boundary. Furthermore, com-
pared to previously reported results for homeotropic rods [29],
a larger energy cost develops for the longer colloidal rods
to fluctuate away from the energetically ideal configuration
along τ̂ (the peak width in γ being 16.6◦ compared to 28.1◦
in Ref. [29]) due to the larger surface area of the longer
particle, to which the surface energy is proportional. The
orientational distributions of homeotropic rods behave dra-
matically differently from the nonchiral limit, in which case
a degeneracy of alignment along the χ̂ and τ̂ axes is expected
and the distribution along η should be uniform leading to a
uniaxial orientational symmetry. Instead, we find an excep-
tionally strong energetic hindrance for rods deviating along
η towards the helical axis χ̂ [Fig. 5(c)]. The symmetry of
the hybrid LC system is thus strongly biaxial as illustrated

by the distinctly different peak widths of the orientational
probability distributions. We will demonstrate that in the case
of homeotropic anchoring the rod orientation distributions
cannot be rationalized from surface-anchoring effects alone,
but require consideration of the elastic distortions generated
in the bulk of the molecular host. This is addressed in detail
in the following sections using a comprehensive analytical
model.

D. Analysis of the surface-anchoring free energy of thin colloids
immersed in a cholesteric host

In order to aid the interpretation of our experimental ob-
servations with a simple analytical model, we consider a
low-molecular-weight chiral liquid crystal with a director field
n̂(z) twisted along the χ̂ axis of a Cartesian laboratory frame
that we denote by the normalized unit vectors (x̂, ŷ, ẑ) where
ẑ coincides with the helical axis χ̂ in Fig. 1. The helical
director field of a cholesteric, denoted by subscript “h,” may
be parametrized as follows

n̂h(z) = x̂ cos qz + ŷ sin qz, (4)

in terms of the cholesteric pitch p = 2π/q and handed-
ness q < 0 that we assume left-handed in agreement with
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FIG. 4. (a) Phase contrast micrographs showing depth-dependent slices of planar rods dispersed in chiral molecular 5CB. (b) Average rod
orientation in each z slice (dots) and linear fit (red line). The cholesteric pitch is p ≈ 100 µm. (c) Azimuthal and polar orientational distribution
of the rods preferentially pointing along n̂ (red axis). Experimental data for δ distribution are marked by black dots with a fitting curve provided
by the theoretical model (see Sec. III D). Scale bars denote 30 µm.

experimental reality without loss of generality. Next, we im-
merse an infinitely thin cylindrical disk with aspect ratio
Dc/Lc → ∞ into a cholesteric host. The main symmetry axis
of the colloidal disk is the surface normal parametrized within
a Cartesian laboratory frame {x̂, ŷ, ẑ} via û = x̂ sin θ sin ϕ +
ŷ sin θ cos ϕ + ẑ cos θ in terms of a polar θ and azimuthal
angle ϕ with respect to the helical axis ẑ = χ̂. The presence
of the colloid will generate elastic distortions of the uni-
form director field n̂h(r) due to the specific anchoring of the
molecules at the colloidal surface, quantified by the surface-
anchoring strength W0 > 0 (units of energy per surface area).
The extent of the elastic distortions around the colloid surface
depends on the surface extrapolation length �s = K/W0 where
K denotes the average elastic constant of the thermotropic
liquid crystal [48]. In our analysis, we first focus on the regime
of infinitely large surface extrapolation length (�s → ∞), in
which case the elastic distortions around the immersed colloid
are absent. For finite �s, such as in the experimental situation,
elastic distortions are weak but non-negligible and will be
discussed in Sec. III F. The reader is referred to Ref. [29] and
the Appendix for the technical details of these calculations.
We start by assuming the molecular director field n̂ to remain
completely undistorted by the presence of the colloids so that
there are no nematoelastic forces within the bulk of the host.
Then the only forces at play are the anchoring of the molecular
host at the surface of the colloid. The corresponding free
energy can be obtained from the Rapini-Papoular model for
Eq. (4) and integrating over the colloid surface denoted by S

[49,50]

Fs = −1

2
W0

∮
dS[n̂h · v̂(S )]2, (5)

where v̂ represents a unit vector normal to the colloid surface
in the case of homeotropic (H) anchoring and tangential to the
surface if the anchoring is planar (P). Let us denote its normal
by û and ignore anchoring at the rim. We further define two
unit vectors ê1,2 orthogonal to the disk normal vector û. The
two principal anchoring scenarios, H and P, are expressed as
follows

v̂ =
{

û, H

ê1 cos ξ + ê2 sin ξ, P.
(6)

The angle 0 < ξ < 2π must be chosen randomly in the case
when planar anchoring is degenerate across all directions on
the disk surface, which is the case in most experimental sit-
uations. Using suitable parametrizations of the disk surface,
the integral can be worked out in closed form. Details of
the computations are given elsewhere in [29]. The following
generic expression is obtained

Fs,disk = −π

4
W0D2

c

(
w1 + w2 cos(2δ)

J1(qDc| sin θ |)
qDc| sin θ |

)
(7)

with J1(x) a Bessel function of the first kind, δ = ϕ − qz the
azimuthal angle with respect to the local cholesteric director,
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FIG. 5. (a) Phase contrast micrographs of a dispersion of homeotropically anchored rods immersed in a chiral LC taken at different focal
depths as labeled on each image. (b) Average orientation of the long axis of each rod ϕ in each depth z slice (dots) and its linear fit (blue
line). Cholesteric pitch p ≈ 150 µm and average rod length Lc = 3 µm. (c) Orientational fluctuations of the rods measured within the LC
molecular frame (inset) with average direction τ̂ (blue axis). Black dots denote the experimental distribution of γ while the yellow curve is the
corresponding prediction from the theoretical model (see Sec. III D). Scale bars denote 30 µm.

and coefficients

w1 =
{

1
2 sin2 θ, H
1
8 [3 + cos(2θ )], P,

(8)

and

w2 =
{

sin2 θ, H

− 1
2 sin2 θ, P.

(9)

The surface-anchoring strength of disks is expressed in
dimensionless form by W̄ = βW0D2

c with β−1 = kBT the
thermal energy in terms of temperature T and Boltzmann’s
constant kB. Taking disks with diameter Dc ≈ 2 µm and
W0 ≈ 10−6–10−5 J m−2 we find W̄ ∼ 103–104, indicating
that surface-anchoring realignment is robust against ther-
mal fluctuations in the experimental regime. For the case of
homeotropic anchoring, the surface-anchoring energy, Eq. (7),
reaches a minimum at an equilibrium angle θ∗ = π/2 and
δ∗ = 0, demonstrating preferential alignment of the disk nor-
mal along the local LC host director n̂, in agreement with
experimental observation (Fig. 3).

We may repeat the previous analysis to describe the case
of a thin colloidal rod with Lc/Dc → ∞ by neglecting small
contributions associated with the ends of the cylinder so we
only consider anchoring forces at the cylindrical surface of
magnitude following the principal contour along û. In order
to describe various anchoring situations, we define two unit

vectors ê1,2 orthogonal to û and parametrize

v̂ =

⎧⎪⎨
⎪⎩

ê1 cos φ + ê2 sin φ, H

−ê1 sin φ cos ξ + ê2 cos φ cos ξ + û sin ξ, DP

û, SP.

(10)
In the case of homeotropic (H) anchoring, the molecular direc-
tor favors perpendicular alignment at the cylindrical surface,
whereas for a simple planar (SP) surface anchoring, the di-
rection along the main rod is favored. For completeness, we
also include the more general case of a degenerate planar (DP)
surface, where all anchoring directions perpendicular to the
local surface normal are equally probable. In order to account
for all possible rod orientations with respect to the molecular
field, the angle ξ can take values between 0 and π . We obtain
the following generic expression

Fs,rod = −π

8
LcDcW0

(
w1 + w2 cos(2δ)

sin(qLc cos θ )

qLc

)
.

(11)

Similar to the previous case of disks, w1 and w2 are angle-
dependent coefficients that depend on the particular anchoring
situation

w1 =

⎧⎪⎨
⎪⎩

(1 + cos2 θ ) H
1
2 (3 − cos2 θ ) DP

2 sin2 θ SP

(12)
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and

w2 =

⎧⎪⎨
⎪⎩

− sin θ tan θ, H
1
2 sin θ tan θ, DP

2 sin θ tan θ, SP,

(13)

in terms of the polar θ and azimuthal rod angle ϕ with respect
to the helical axis along the χ̂ direction.

For the H case the free energy is minimal at an equi-
librium angle θ∗ = 0 (with the azimuthal angle ϕ randomly
distributed), which corresponds to the rod being aligned along
the χ̂ direction. However, there is a second, degenerate mini-
mum at θ∗ = π/2 and δ∗ = π/2, that describes a rod pointing
along the τ̂ axis. The minimum surface-anchoring energy is
Fs = −(π/4)LcDcW0 for both cases. The energy barrier be-
tween the two minima is only about 1kBT per rod so thermal
fluctuations should easily make the colloids switch from one
state to the other while staying perpendicular to n̂. In Sec. III F
we argue that this degeneracy is lifted by the elastic distortions
around the rod, which are commensurate to the twisting of
the chiral host in the one but remain untwisted in the other
[29]. For both SP and DP anchoring, we only find a single
minimum at θ∗ = π/2 and δ∗ = 0, i.e., the rod preferentially
aligns along the revolving local nematic director n̂ as observed
in experiment (see Fig. 4).

E. Biaxial symmetry breaking of the colloid orientational
probability distribution

Balancing the surface-anchoring free energy against the
orientational entropy of the individual colloids, we establish
their orientational probability through the Boltzmann distri-
bution

f (û) ∝ exp(−βFs). (14)

It is straightforward to infer from Eqs. (7) and (11) that the
polar and azimuthal angles are strongly coupled in general.
Taking, for instance, Eq. (7) for homeotropic disks, reexpress-
ing the angular components in terms of the projections of
the disk normal û onto the local tripod (χ̂, τ̂, n̂) comoving
along the helical pitch direction (Fig. 1), and Taylor expanding
the Bessel function up to leading order for weak chirality
qDc � 1, we obtain a more insightful expression

Fs,disk ≈ − π

4
W0D2

c

×
[

(û · n̂)2 − (qDc)2

16
[(û · τ̂ )2 + (û · n̂)2]

]
. (15)

This demonstrates that the distribution of colloid orientations
around the principal alignment direction n̂ is strictly uniaxial
around n̂ for achiral hosts but is rendered biaxial for any
nonzero chiral twist |q|Dc > 0 with the τ̂ axis taking the role
as a secondary axis of alignment. The biaxial symmetry break-
ing featured in the orientational probability about the main
direction of alignment is clearly reflected in all three cases
we considered in our experiments: homeotropic disks [29],
planar rods [Fig. 4(c)], and homeotropic rods [Fig. 5(c)]. The
response of the biaxial order parameter with increasing chiral
strength is, however, different for each of these cases. This
will be further discussed in Sec. IV. The case of homeotropic

rods constitutes a more extreme case of biaxial symmetry
breaking that is broken by the elastic distortions enveloping
the rod, as we will discuss next.

F. Role of elastic deformations surrounding the colloid surface

So far we have ignored the role of weak elastic defor-
mations of the host director (�s = K/W0 → ∞) by assuming
colloidal reorientation to be dominated entirely by surface-
anchoring torques acting on the immersed particles. The
experimental reality, however, is that the surface-anchoring
extrapolation length is large but finite (�s ≈ 600 nm � Dc).
The observations compiled in Fig. 5 point at a scenario
where rods orient preferentially along the τ direction, rather
than the helical axis (χ̂) as predicted from minimizing the
bare Rapini-Papoular surface-anchoring energy. In Ref. [29]
we have demonstrated that the discrepancy is due to a
twisting of the surface disclination that runs along the rod
contour, which costs elastic energy. No such twisting is
required if the rod points along τ̂. The cost in elastic en-
ergy between the twisted (χ̂) and untwisted (τ̂) alignment
directions is independent of the surface-anchoring extrapola-
tion length �s and increases logarithmically with system size
�max [29]

�F (el)
twist ∼ π

12
(qLc)2Lc�K ln

(
2�max

Dc

)
. (16)

Taking �max = Lc as the typical size cutoff, and a splay-
bend elastic anisotropy �K = 4 pN, we find that �Ftwist ∼
O(102kBT ). The corresponding change in the Rapini-Papoular
surface-anchoring free energy associated with the director
distortions is estimated as

�F (s)
twist ∼ −πW0LcDc

92

Dc

�s
(qLc)2, (17)

which is only a fraction of the thermal energy so that the total
distortion-induced free-energy change can be safely estimated
from �Ftwist ≈ �F (el)

twist.
By including the twisted disclination effect, we revisit the

realigning potential acting on a rod immersed in a cholesteric
host. The total external potential is given by the bare Rapini-
Papoular contributions for the undistorted host director plus
the free-energy contributions from elastic distortions

Fs,tot = Fs,rod + �Fdist. (18)

Since the distortion term cannot be resolved for any rod ori-
entation but only for cases when the rod is aligned along
either of the directions of the local frame (n̂, τ̂, χ̂) of the
helical LC host frame, we propose the following interpolation
form

�Fdist (η, γ ) ∼�Ftwist sin2 η + �Ftilt cos2 η sin2 γ , (19)

in terms of the two angles η = θ − π
2 and γ = δ − π

2 rep-
resented in Figs. 5(c) and 5(f) and key elastic contributions;
�Ftwist = F (û ‖ χ̂) − F (û ‖ τ̂) [Eq. (16)] and �Ftilt = F (û ‖
n̂) − F (û ‖ τ̂ ) associated with tilting the rod away from
the τ axis towards the n̂ direction. An expression for
the energy cost associated with tilting has been obtained
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in Ref. [29]

�Ftilt ∼ W0LcDc

(
1 − 49ζ (3)

8π3�s

)
γ 2 + O

(
γ 2/�2

s

)
(20)

with ζ (3) ≈ 1.2 a constant from the Riemann-Zeta function
ζ (x). While Ftwist amounts to a few hundreds of kBT , the
elastic distortions due to tilting turn out smaller than the
thermal energy (�Ftilt < kBT ) and may, in fact, be neglected
altogether for the weak anchoring regime the rods operate
in. The total energy Fs,tot experienced by a hometropically
anchored rod is minimal (zero) when the rods align along
the τ̂ directions (θ∗ = π/2 and δ∗ = π/2) as observed in our
experiment (Fig. 5). In fact, the energy contribution associated
with the twisted disclination can be estimated from the width
of the distributions depicted in panel (c). For small angles
η the Boltzmann factor of Eq. (19) translates into a simple
Gaussian distribution

f (η) ∝ exp(−�Ftwistη
2), (21)

and we identify a standard Gaussian FWHM =
2.355/

√
2�Ftwist . This subsequently gives �Ftwist ≈ 33kBT

for the long rods with Lc = 3 µm suggesting that the thermal
motion of the rods is assuredly insufficient to overcome the
energy barrier between the τ and χ alignment directions. The
values are in qualitative agreement with the prediction from
our analytical model, Eq. (16), where �Ftwist ∝ L3

c suggests
that the elastic energy cost of orientating the rods from the τ̂

to χ̂ directions is indeed quite sensitive to the colloidal rod
length Lc. The actual values from Eq. (16), however, should
be considered as an upper bound for �Ftwist mainly because
in our model the local nematic order parameter Sm of the host
is constrained at its far-field bulk value and is not allowed to
relax in regions where director distortions are the largest, as
observed in our experiment and simulations.

As for homeotropic disks, similar weak deformations of the
director are incurred near the colloid surface [Figs. 1(b) and
1(c)] [29]. As expected, the topology of these deformations
is strictly chiral [29]. The elastic distortions around the disk
have been analyzed in the Appendix but turn out to be rather
immaterial for the realignment potential of the disks which
remains dominated by the Rapini-Papoular surface-anchoring
free energy given by Eq. (7) (Fig. 6), so that in good approx-
imation we have Fs,tot ≈ Fs,disk. Analogously for the case of
rods with planar anchoring (Fig. 4), we expect an outcome
similar to that of disks, namely, surface anchoring enforces
the rods to align along n̂ with fluctuations away from the
preferred direction being strongly penalized by unfavorable
surface-anchoring conditions at the colloid surface.

G. Colloidal nematic order parameters

To connect to the conventional representation of orienta-
tional order, we define colloidal nematic order parameters that
measure the principal direction of alignment of the colloids
along the cholesteric helix. Taking the local molecular LC
director n̂ as a reference frame, we define a colloidal uniaxial
order parameter as follows

Scm = 〈P2(û · n̂)〉 f , (22)

with 〈· · · 〉 f denoting a thermal average, and a colloidal biaxial
nematic order parameter that measures the relative orienta-
tional order with respect to the principal directions orthogonal
to n̂h

�cm = 〈(û · τ̂)2 − (û · χ̂)2〉 f . (23)

Alternatively, we can probe the orientational order from the
tensorial order parameter for colloids Qc = 3

2 〈û ⊗ û〉 f − 1
2 I

which measures orientational order with respect to the prin-
cipal colloidal alignment direction independently from the
chosen reference frame. The corresponding uniaxial and bi-
axial order parameters defined within the colloidal frame are
denoted by Scc and �cc, respectively. In case the colloids align
along the molecular director n̂, such as a homeotropic disk
(Fig. 3) or a planar rod (Fig. 4), the colloidal and molecular
frames coincide and the corresponding values of order param-
eters are identical.

To quantify the biaxial symmetry breaking of the colloidal
orientational distribution found in experiment, we determine
the uniaxial Scm and biaxial �cm order parameters for both
disks and rods (Table I). The uniaxial order parameter Scc, as
a measure of unidirectional ordering [Eq. (22)], represents the
strength of orientational alignment which depends sensitively
on the synthesized material and on the surface-anchoring type.
Subsequently, the strict nonequivalence of the two axes or-
thogonal to the principle molecular alignment directions is
evaluated from the biaxial order parameter �cm [Eq. (23)],
with −1 < �cm < 1. The values of S are determined to be
Scc = Scm = 0.66 for homeotropic disks dispersed in chiral
5CB-based LC (Fig. 3) and Scc = Scm = 0.94 for rods with
a planar boundary condition (Fig. 4). The values of �cm are
found to be 0.067 and 0.016, respectively, with the nondegen-
eracy among χ̂ and τ̂ imparting robust biaxial orientational
symmetry.

When the average orientations of the two components dif-
fer, the values of the order parameters depend on the choice of
reference frame. Stronger orientational fluctuations are found
for the shorter rods with homeotropic anchoring (Table I)
with Scc = 0.70 and �cc = 0.12, while the longer rods in
Fig. 5 exhibit a larger uniaxial order parameter Scc = 0.80 but
weaker biaxiality �cc = 0.018, at a similar level to what was
measured for planar rods.

The enhanced biaxiality for homeotropic rods aligning per-
pendicular to the molecular director n̂ will be discussed in the
following section. Calculated within the molecular reference
frame, the negative values of Scm and the large values of �cm

simply reflect the geometry where the colloidal director lies
perpendicular to the molecular director n̂.

IV. DISCUSSION

A. Enhanced biaxial symmetry breaking at perpendicular
molecular-colloidal alignment

For colloidal rods immersed in a chiral LC, the biaxial
order developed at the level of the colloids is much more
pronounced for rods with a homeotropic boundary condition,
whose energetically favored orientation is along τ̂ perpendic-
ular to the local molecular director n̂. As a consequence, the
rotational symmetry around the rotation axis τ̂ is no longer
continuous, with n̂ being the material axis representing the
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FIG. 6. (a) Molecular LC surface-anchoring energy obtained from computer simulation with (solid line) or without (dots) the elastic
distortion energy. The energy is obtained using a Q-tensor description of a chiral 5CB-based LC surrounding a homeotropic disk at different
angles δ defined in the inset. The left and right plot axes denote different energy units. (b) The corresponding prediction from analytical
theory for different values of LC chiral strength qDc. Solid lines correspond to the surface-,anchoring energy alone, while dots include the
contribution of weak elastic distortion around the colloidal disk (see Appendix). (c), (d) Numerical simulation (c) and theoretical prediction
(d) of the free energy for homeotropic disks at different angles ζ (defined in the inset). Note that biaxiality is manifested by the small but
unavoidable energy difference between (a), (b) and (c), (d) and is also shown in Fig. 2(c). Surface-anchoring strength W0 = 10−6 J m−2 and
cholesteric pitch p = 30 µm. Disk dimensions Lc = 10 nm and Dc = 1 µm for all simulations and calculations. The energy zero points are
chosen at δ = 0 or ζ = 0.

actual molecular direction and χ̂, in contrast, an “imaginary”
one (see Fig. 5). The resulting symmetry breaking is thus
much more outspoken than in the case of colloids prefer-
entially aligning along n̂. This remarkable manifestation of
biaxial symmetry breaking for the case of homeotropic rods is
rationalized from analytical theory which highlights the subtle
role of weak but non-negligible elastic distortions enveloping
each rod. These induced distortions more strongly disrupt the
alignment of the surrounding molecules than for the case of
rods with planar or parallel anchoring boundary conditions.
The significant contribution from the elastic energy of the
background molecular LC to the total free energy [Eq. (19)]
affords additional control of emergent biaxiality, for instance,
by tuning the elastic properties of the molecular host to further
boost the intrinsic biaxiality of the hybrid LC. Likewise, disks
with planar anchoring, which could be realized through appro-
priate surface functionalization [33], are expected to exhibit
equivalent perpendicular alignment (but this time along the

helical axis χ̂) which would also impart strongly enhanced
biaxial order in the disk orientation distribution.

B. Quadratic scaling of the biaxial order
parameter with chirality

In the weak molecular chirality regime, we may charac-
terize the leading-order contribution of chirality to colloidal
biaxiality by expanding the biaxial order parameter up to the
quadratic order in the inverse pitch q = 2π/p [29]

�cc = �0(qa)2 + O[(qa)4], (24)

where the length scale corresponds to the colloidal dimen-
sions; a = Dc for thin disks and a = Lc for cylinderical rods.
The zeroth-order term must be zero given that no intrinsic
biaxiality can be expected from purely uniaxial components
at zero chirality. Also, the linear term proportional to qa
must vanish since the value of biaxiality should not depend
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FIG. 7. (a) Quadratic scaling of the biaxial order parameter �cc for the colloidal orientation distribution in the weak chirality regime
qa � 1, with a the typical colloid size. The results are based on the Rapini-Papoular surface-anchoring energy Eqs. (5) and (14) using W0 =
10−6 J m−2. (b) Dependence of the prefactor �0, defined by �cc ∼ �0(qa)2 on the anchoring strength based on the colloidal dimensions
Lc = 1.7 µm and Dc = 28 nm for the rods and Lc = 20 nm, Dc = 2 µm for the disks.

on the handedness of the host material. Following the re-
sults Eq. (14), Eq. (23), and the free energies for each type
of colloids, we computationally verify the quadratic scal-
ing �cc ∼ �0(qa)2 within the weak chirality approximation
qa � 1 [Fig. 7(a)]. Interestingly, the quadratic scaling of bi-
axial order with the parameters qLc or qDc resembles the
theoretical prediction by Priest and Lubensky for a single-
component molecular LC [19], in which case Lc needs to be
replaced by Lm denoting the size of the molecules. Despite the
different derivations of biaxiality from component material(s),
the agreement between the results from our hybrid LC sys-
tem and single-compound LC reveals the underlying physical
principle, namely, a close relationship between biaxial order
and chirality. Most interestingly, the prefactor �0 turns out to
be very different for each system considered and has a dis-
tinct, nontrivial dependence on the surface-anchoring strength
[Fig. 7(b)].

C. Enhanced biaxiality of the molecular host
at the colloidal surface

The molecular biaxial order parameter �m measures the
broken uniaxial symmetry of the LC host (which in our ex-
periment is 5CB). The �m is associated to the tensorial local
mean-field order parameter by [17,42]

Q(m) = Sm
(

3
2 n̂ ⊗ n̂ − I

2

) + �m
(

3
2 m̂ ⊗ m̂ − I

2

)
, (25)

with the molecular director field n̂ and the biaxial director m̂
orthogonal to each other. Here, Sm is the scalar order param-
eter measuring the unidirectionality of n̂, with Sm � �m � 0.
Accordingly, in the numerical computation, the order param-
eters are determined by the diagonalization of the Q tensor

�m = 2
3 (λ2 − λ3), Sm = λ1 + �m/2, (26)

where λ1 > λ2 > λ3 are the eigenvalues of Q(m). The direc-
tors n̂ and m̂ are then found by calculating the eigenvectors
corresponding to λ1 and λ2, respectively. Since eigenvalues

are interpreted as the “directionalities” along each orientation
(eigenvector), the calculation of �m in Eq. (26) corresponds
exactly to finding the inequivalence of the two minor axes
(m̂ and n̂ × m̂), and the value of biaxiality is a measure of
the broken rotational symmetry along n̂, analogous to the
colloidal orientation distributions illustrated above. Using nu-
merical modeling based on the Q-tensor representation of the
LC order parameters, we find �m at a far-field helical back-
ground to be of the order of 10−7, which is precisely the value
predicted using �m ∼ (qLm )2 with the size of a 5CB molecule
being in the nanometer range Lm = 2 nm [19], showing
the intrinsic biaxial order in the molecular chiral liquid
crystal.

Interestingly, we also discover that �m greatly increases
from 10−7 in the far-field limit to 10−4 or even 10−3 near
the colloidal surfaces (Fig. 8), being especially prominent at
regions where the surface-anchoring force favors a distinct
molecular director alignment from the helical far field, lead-
ing to increased surface free energy, Eq. (2). The enhanced
biaxiality induced by the colloidal particles is qualitatively
interpreted as the mismatch of two axes: the particle surface-
anchoring orientation v̂ and the background helical aligning
direction n̂h. As a quantification of the broken uniaxial ro-
tation symmetry of n̂, higher values of �m can be found at
particle surfaces with a greater discrepancy in the two orienta-
tions, with maximum �m located at regions where the surface
normal director is perpendicular to the background far field
(Fig. 8). Furthermore, within LC regions with a �m dominated
by the particle surface and far exceeding the background value
10−7, the biaxial director m̂ is found to coincide with the
perpendicular component of the surface-anchoring director to
the nematic director, m̂ = v̂ − (v̂ · n̂)n̂, confirming the idea
that the colloidal surface induces molecular biaxial order by
introducing an energy landscape for n̂ beyond uniaxial sym-
metry.

In case of no host chirality, biaxial order stabilized by
correlations between colloidal particles immersed in nematic
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FIG. 8. (a)–(c) Contours of molecular biaxiality (magenta)
around the colloids (gray) marking the regions with �m larger than
10−3 (a) and 10−4 (b),(c), respectively. The orthogonal frame defin-
ing the molecular axes is colored as in Fig. 1. Homeotropic anchoring
condition is used for (a) and (c) and planar anchoring for (b). Surface-
anchoring strength W0 = 10−6 J m−2 and LC helical pitch p = 30 µm
are used for all simulations.

5CB was reported in [18]. Furthermore, compared to pure
molecular LCs without colloids, the frustrated alignment of
n̂ induced by the presence of colloidal particles also leads to
a reduced bulk nematic order parameter Sm and the forma-
tion of defects in cases with strong surface anchoring. In our
systems, though, we expect the two independent contributions
to the “biaxialization” of uniaxial 5CB liquid crystal—the in-
troduction of chiral dopant and of surface-anchored colloidal
particles—to have negligible effects on the free energies in
our analytical model, which is evident by the relatively small
induced values of �m � Sm and has been confirmed by the
numerical modeling using a tensorial order parameter Q(m).

D. Biaxial interpretation of field configurations
in chiral liquid crystals

As suggested in the section above, the intrinsic biaxiality
of a chiral nematic LC allows us to define local biaxial direc-
tors even in the absence of colloidal particles. The molecular
biaxial order persists, �m ∼ (qLm )2, as long as the chirality q,
or the helicity in the director alignment, is nonvanishing. To
accurately account for this unavoidable biaxiality, we modify
and expand the calculation in Refs. [51,52] for uniaxial chiral
nematics, in which the chirality-associated directors (n̂, χ̂, τ̂)
are found by diagonalizing a 3-by-3 handedness tensor H
defined as

Hi j = εikl n̂k
∂n̂l

∂x j
, (27)

with summation over indices assumed. The trace
∑

i Hii =
−n̂ · (∇ × n̂) gives the helicity of the LC director alignment

FIG. 9. (a) Director profiles simulated inside a solitonic Bloch-
wall-like structure resembling a helical twist. Treated as in a uniaxial
LC, n̂ (red) and χ̂ (green) are calculated using a chirality tensor [52]
and visualized as ellipsoids (left). The directors simulated instead
by a biaxial Q-tensor-based approach are visualized using bricks
(right), with red, blue, and green faces, respectively, corresponding
to principal n̂, biaxial m̂, and the third n̂ × m̂ orthogonal axes [53].
(b) Numerical simulations of molecular n̂ and helical χ̂ axes in a
twisted defect structure using chirality-based (left) and biaxiality-
based (right) approaches.

field. Considering the intrinsic biaxial order in chiral LCs,
we can similarly construct the handedness tensor using the
molecular tensorial order parameter Q(m)

Hi j = 4

9S2
m

εikl Q
(m)
kn

∂Q(m)
ln

∂x j
. (28)

The uniaxial definition, Eq. (27), can be recovered by expand-
ing the equation using Eq. (25) with �m = 0. Note that the
trace of the handedness tensor again represents the helicity
and is identical to the chiral part of elastic free energy [the
L4 term in Eq. (1)]. Strikingly, in our numerical simulation
we discovered that the helical director field χ̂, which is com-
puted as the eigenvector corresponding to the eigenvalue with
the largest absolute value, closely matches the directors cal-
culated by diagonalizing Q(m): χ̂ = m̂ (Fig. 9), which also
immediately suggests τ̂ = n̂ × m̂. (Note that all directors are
head-tail symmetric.) The excellent overlap of the two or-
thogonal frames, (n̂, χ̂, τ̂) originating from chirality and (n̂,
m̂, n̂ × m̂) representing biaxiality, directly demonstrates the
biaxial feature in chiral nematic LCs. The energy minimizing
of Q(m) automatically incorporates these symmetries once all
degrees of freedom beyond those for pure uniaxial nematics
are allowed for. Consequently, one can straightforwardly iden-
tify chirality through the concomitant biaxial properties using
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q ∼ √
�m/a and χ̂ = m̂ instead of investigating the helical

twisting and spatial derivatives of the LC directors. These
values are well defined from the biaxiality calculation even
inside LC defects where the uniaxial order parameter Sm is
reduced compared to the bulk value.

Therefore, with the chirality-driven biaxial symmetry taken
into account, one can naturally analyze structures within a
chiral LC using considerations similar to those derived for
biaxial nematics (Fig. 9). Since the theory describing the
topological classification of defects and solitons in biaxial
nematics, which has an order parameter space SO(3)/D2, is
distinct from those emerging in a uniaxial LC with an S2/Z2

counterpart [3,31,54–56], the biaxial symmetry in a chiral LC
offers an alternative interpretation of topological objects in
cholesterics differing from their more conventional descrip-
tion. For example, a helical configuration resembling a Bloch
wall can be found across our experiments. By identifying
the χ̂ director field within, which is uniformly aligned, we
can visualize the configuration as a one-dimensional soliton
formed in bricklike LCs with matching director fields (Fig. 9)
with a uniform χ̂ field and helical twisting in the n̂ and τ̂

fields. Furthermore, unlike uniaxial LCs with a single director
field, biaxial systems with three orthogonal director fields
cannot accommodate a fully nonsingular solitonic structure
such as 2D translationally invariant fully nonsingular objects,
implied by π2[SO(3)/D2] = 0 [3,54]. As shown in Fig. 9(b),
a meronlike arrangement of directors is a nonsingular soli-
ton embedded in the molecular director n̂. The meron, or
half-skyrmion structure, has been constructed as a 2D soliton
composed of a single director or vector with the absence
of singularity [5,57,58]. The structure becomes, however, a
singular defect in a biaxial system, as demonstrated by the
emergence of singularities found at the center in the χ̂ and
τ̂ director fields orthogonal to the material director field.
Similarly, 3D topological solitons, fingers, and other nonsin-
gular structures in cholesterics can be viewed as defect lines
and loops in a biaxial system by thoroughly analyzing all
three directors as well [3,59]. In addition, some phenomena
of the topological defects and soliton structures in a system
of chiral nematics, including non-Abelian disclinations and
their entanglement behaviors, can be elucidated only from the
perspective of biaxial nematics’ topological descriptions that
are distinct from uniaxial nematics’ topology [3,31,60,61].
With the biaxial directors defined and simulated in consis-
tency with the chiral description, the biaxial features of chiral
nematics, including their topological defects, solitons, and
frustrated structures, can be easily and naturally explored.
This opens up the possibility of using molecular-colloidal
chiral nematics as model systems in the exploration of non-
abelian vortices, solitonic structures with low-symmetry order
parameters, etc.

V. CONCLUSION AND OUTLOOK

We demonstrate that immersing uniaxial, nonchiral col-
loidal rods and disks into a low-molecular-weight cholesteric
liquid-crystal host leads to emergent biaxial order that
we identify at both colloidal and molecular levels by
combining experiment with numerical simulation and ana-
lytical theory. Unlike the previously studied case of hybrid

molecular-colloidal biaxial phases [16–18], we observe mul-
tilevel biaxial symmetry breaking at ultralow colloidal content
where colloid-colloid interactions are negligible. By exploring
a variety of colloidal shapes and surface-anchoring symme-
tries, we report biaxial order emerging at three distinct levels.
First, molecular director distortions develop around each col-
loid which, although being of marginal extent because of weak
surface-anchoring conditions, display a distinct twofold signa-
ture imparted by the cholesteric host. Second, the orientational
distribution of the colloids around the local cholesteric direc-
tor adopts a clear biaxial signature, and the response of the
corresponding biaxial order parameter depends nontrivially
upon the surface-anchoring strength as well as on the ratio
of the cholesteric pitch and the principal colloidal dimension
(rod length or disk diameter). Finally, at the molecular scale,
we demonstrate that enhanced biaxiality emerges close to the
colloidal surface at levels strongly exceeding those expected
for purely molecular cholesterics.

A particularly striking manifestation of biaxial symme-
try breaking is encountered for thermotropic cholesterics
doped with colloidal rods with homeotropic surface anchor-
ing. Driven by a combination of surface-anchoring forces and
an energy penalty incurred by twisting a weakly developed
surface disclination along the rod main axis, these rods have a
strong tendency to align perpendicular to both the helical axis
and the local cholesteric director, thus imparting a twofold
D2h orientational symmetry onto the hybrid system at each
point along the cholesteric helix. By means of numerical
minimization of the Landau–de Gennes energy and mean-
field theory based on the Rapini-Papoular surface-anchoring
energy, we reveal that the multilevel expression of emer-
gent biaxiality in our systems is essentially a single-colloid
effect that already becomes manifest at ultralow colloid
concentrations.

Our results pave the way towards controlled biaxial order
at both colloidal and molecular levels. By harnessing the
interplay of chiral and biaxial symmetries, future research
efforts could be directed along the following several emergent
avenues. At larger colloidal concentrations a richer phe-
nomenology could be expected and explored due to the more
prominent roles expected to be played by steric, electrostatic,
or defect-mediated colloid-colloid interactions, further enrich-
ing the surface anchoring and elastic forces discussed here.
Besides the emergent symmetry breaking discussed here, one
could, in principle, also apply electric or magnetic fields to
reconfigure either molecular or colloidal subsystems, or both,
to achieve even lower externally induced symmetries of LCs,
for instance, corresponding to triclinic or monoclinic point
groups.

Finally, by realizing topological solitons in the molecular-
colloidal hybrid system with nontrivial chirality and biaxiality,
one could reveal the stability of topological structures for
various low-symmetry order parameter spaces. While ferro-
magnetic colloidal particle dispersions have already provided
insight into the possibility of the formation of solitons in
polar chiral liquid crystals [62], this study could be extended
to symmetries differing from nonpolar and polar uniaxial
LCs, for example, by exploring multidimensional solitonic
structures corresponding to the SO(3)/D2 order parameter
space.
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APPENDIX: ELASTIC DISTORTIONS AROUND
THE DISK SURFACE

Ignoring elastic distortions, we find that disks with
homeotropic surface anchoring tend to orient along the local
molecular director n̂, as observed in experiment. This is the
optimal situation that incurs the least amount of elastic dis-
tortions, compared to the other principal directions in which
cases the disk surface would experience strongly unfavorable
tangential surface ordering. However, even when the disk
normal is aligned along the local nematic director, there are
local mismatches between the far field and preferred surface
director due to the weak twisting of the host director along
the helix axis χ̂ and when the rod normal fluctuates away
from its equilibrium orientation. The elastic distortions are
expected to be weak but they will become more outspoken
at shorter cholesteric pitches. It is instructive to compute
the extent of these distortions along the lines of our pre-
vious analysis for rods [29]. Let us consider an infinitely
thin disk with its normal pointing along n̂ and rotated over
an angle δ through the helix axis χ̂ so that the disk vec-
tor is restricted to lie in the plane perpendicular to it. We
assume weak elastic distortions � developing in this plane.
Defining a host director in the Cartesian laboratory frame
n̂h = x̂ cos �(x, y) + ŷ sin �(x, y) we find, assuming elastic
isotropy, that the distortions are described by the Laplace
equation (

∂2
x + ∂2

y

)
� = 0. (A1)

The effect of a twisting host director is accounted for through
the surface-anchoring free energy

Fs = −W0

2

∮
dS{n̂h · [R(qz + δ) · v̂(S )]}2, (A2)

where S parametrizes the face of the disk (as previously we
ignore finite thickness effects for disks with Dc � Lc) and v̂ =
(1, 0, 0) indicating homeotropic anchoring along the surface

normal. The rotation matrix reads

R(qz + δ) =
⎛
⎝cos(qz + δ) − sin(qz + δ) 0

sin(qz + δ) cos(qz + δ) 0
0 0 1

⎞
⎠. (A3)

A key feature is that the distortions are not uniform across the
disk surface but depend on the location of the surface element
with respect to the helical axis. A convenient way forward is
to divide the disk surface into infinitely thin strips, with each
surface element on the strip being equidistant from the center
of mass along the helical axis χ̂ thus experiencing the same
degree of elastic distortions.

For notational brevity, we implicitly normalize all lengths
in units of the disk diameter Dc and parametrize the disk
surface in terms of y = 1

2 cos α and z = 1
2 sin α with −π <

α < π . Each strip then has length Ls = cos α, thickness Ds =
1
2 cos αdα, and surface ds = LsDs. The surface-anchoring free
energy of an arbitrary strip with surface ds and center-of-mass
distance z then reads

F strip
s = −W0{cos [�(0, y) − qz − δ]}2ds. (A4)

The boundary condition at the strip of the disk equator (α =
0) is defined as

�(∞, 0) = 0

�s∂x�(0, y) = − 1
2 sin {2[�(0, y) − qz − δ]}

≈ 1
2 sin[2(qz + δ)] − cos[2(qz + δ)]�(0, y),

(A5)

where we take 0 < y < 1 for convenience. The distortions
should be symmetric at the edges [�(0, 0) = �(0, 1)]. The
general solution of the Laplace equation (A1) is given by

�(x, y) =
∞∑

n=1

e−nπxbn sin(nπy). (A6)

Applying the boundary conditions we obtain the following
expression for the coefficients

bn = sin[2(qz + δ)]

cos[2(qz + δ)] − nπ�s

(
1 − (−1)n

nπ

)
. (A7)

Given that q and −q do not give equivalent results, we con-
clude that the distortions created near the disk surface carry
a distinct chiral signature imparted by the chirality of the
host LC, as evidenced by the Landau–de Gennes simulations
(Figs. 1 and 8). The nature of the imprint depends on the twist
angle δ between the disk normal and the molecular director
n̂. We further deduce that the distortions vanish at infinitely
weak surface anchoring (�s → ∞) and in the absence of twist
and tilting (q = 0 and δ = 0), as we expect. The elastic free
energy for the total disk is given by

�Fel = πKDc

4

∫ π/2

−π/2
dα cos α

∑
n

nb2
n, (A8)

which may be evaluated as a function of the angle δ between
the disk normal and the molecular director taking the surface-
anchoring extrapolation length (in units of the disk diameter
Dc) to be about �s ≈ 3. The change in surface-anchoring free
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energy induced by the distortions follows from linearizing
Eq. (A4) and integrating over all strips:

�Fs = W0D2
c

2

∫ π/2

−π/2
dα cos2 α sin[2(qz + δ)]

×
∑

n

bn

(
1 − (−1)n

nπ

)
. (A9)

We reiterate that z depends on the angle α via z = Dc
2 sin α.

We finish our analysis by considering the case where the
disk normal rotates over the τ̂ axis by an angle ζ . This is
equivalent to the situation depicted in Figs. 2(c) and 2(d).
In this situation, the tilting will generate additional weak LC
director distortions across the χ̂ direction that we denote by
the angle ε. The spatially dependent host director now reads

n̂h(r) =
⎛
⎝cos �(r) cos ε(r)

sin �(r) cos ε(r)
sin ε(r)

⎞
⎠, (A10)

with r = (x, y). Each distortion angle obeys the Laplace equa-
tion in the n̂-τ̂ plane(

∂2
x + ∂2

y

)
� = 0,

(
∂2

x + ∂2
y

)
ε = 0. (A11)

The surface-anchoring free energy now takes the following
form

Fs = −W0

2

∮
dS{n̂h · [RζR(qz) · v̂(S )]}2, (A12)

where the matrix Rζ describes a rotation of the disk normal
over the τ̂ axis [cf. Fig. 2(c)]

Rζ =
⎛
⎝ cos ζ 0 sin ζ

0 1 0
− sin ζ 0 cos ζ

⎞
⎠. (A13)

Analogous to the previous case, we may derive boundary
conditions from linearizing Fs for weak distortions � � 1
and ε � 1. Plugging in the general solution [Eq. (A6)] and
defining bn as the distortion modes pertaining to �(x, y) and
dn as those for ε(x, y), we find that both distortion angles are
intricately coupled, as expected

bn = cn cos ζ sin(2qz), dn = cn sin(2ζ ) cos2(qz). (A14)

From these we immediately assert the most basic scenarios:
both distortions vanish for a disk in an achiral host (q = 0)
at zero tilt (ζ = 0), whereas at nonzero tilt angle only ε(dn)
is nonzero. For a disk immersed in a chiral host (q �= 0) at
zero tilt (ζ = 0), we recover the previous scenario with �(bn)
given by Eq. (A7) and ε(dn) = 0. Both distortion angles are
expected to be nonzero in case the disk normal is tilted away
from the local director of the chiral host. The common prefac-
tor reads

cn = 2
( 1−(−1)n

nπ

)
1 + 2�snπ − cos(2ζ ) − 2 cos2 ζ cos(2qz)

. (A15)

The change in elastic free energy is a simple superposition of
amplitudes

�Fel = πKDc

4

∫ π/2

−π/2
dα cos α

∑
n

n
(
b2

n + d2
n

)
. (A16)

The contribution arising from the host chirality turns out to be
zero for symmetry reasons

�Fchiral = Kq
∫

dr ∂yε(x, y) = 0, (A17)

which is easily inferred from inserting the expansion Eq. (A6)
and integrating over y. The reduction in surface-anchoring
free energy caused by the distortions � is as follows

�Fs,� =W0D2
c cos ζ

∫ π/2

−π/2
dα cos2 α sin(2qz)

×
∑

n

bn

(
1 − (−1)n

nπ

)
, (A18)

supplemented with a similar contribution accounting for the
distortions ε

�Fs,ε =W0D2
c sin(2ζ )

∫ π/2

−π/2
dα cos2 α cos2(qz)

×
∑

n

dn

(
1 − (−1)n

nπ

)
. (A19)

We find that the surface anchoring is always negative and
outweighs the cost in elastic free energy thus lowering the
overall free energy of the system, as it should. The results
are included in Figs. 6(c) and 6(f). We find that the elastic
distortions are most developed at oblique orientations (δ or
ζ ≈ π/4) and do not strongly depend on the direction along
which the disk is rotated.

If we now reconsider the total alignment potential for disks
accounting for corrections derived above, we conclude that the
ordering of the disks is hardly affected by the distortions. The
free-energy changes are typically several tens of kBT , which
is about 2 orders of magnitude smaller than the typical Rapini-
Papoular surface-anchoring free energy W0D2

c , which is about
1500kBT . disks experiencing weak surface anchoring with
a cholesteric host with large pitch (qDc < 1) will therefore
simply follow the local molecular director with thermal fluc-
tuations around the optimum angle being strongly suppressed.
The considerable penalty incurred by angular fluctuations
away from the local cholesteric director is demonstrated in
Figs. 6(c) and 6(f) for a number of different host pitches.
Although the presence of elastic distortions around the disk
surface leads to a systematic reduction of the total free energy,
their effect on the realigning properties of a colloidal disk
immersed in a cholesteric host LC seems rather marginal.
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