
Thanks for your interest in our response to the editorial statement by the American Journal of 
Public Health (AJPH) and the American Journal of Epidemiology (AJE) concerning the methods 
used in Masters et al. (2013).  

 
We organize our response by addressing central points about Dr. Hanley’s simulation exercises 
regarding our approach to estimating age-specific hazard ratios in the National Health Interview 
Survey-Linked Mortality Files (NHIS-LMF) data. By addressing these points, we answer 
Professor Hanley’s central question, “Is the cure worse than the bias?” with a definitive “No”. As 
we’ll show using his own example regarding the age-specific male:female (m:f) ratios in 
mortality risk, the approach we used to estimate mortality hazards in the NHIS-LMF data is 
preferred to conventional approaches. The exercise is a useful test of our approach to estimating 
obesity hazard ratios (HRs) in the NHIS-LMF data because we can use the observed population 
m:f hazard ratios to gauge the accuracy of different models’ estimates. We show that our “cure” 
was the preferred approach for estimating male-female differences in mortality risk in the NHIS-
LMF data, which, by extension, provides strong evidence in support of our approach to 
estimating obesity HRs in the same data.  
 
We also address Professor Hanley’s concern about the simplicity of our model assumptions (e.g., 
centering age-at-survey on the mean value) by presenting results from models that were refitted 
by centering age-at-survey on more plausible ages in the NHIS-LMF data. Although the age-
specific hazard ratios change, the overall results of our paper do not. Our original estimates 
suggested that 18.2% of U.S. adult deaths between ages 40 and 84 among the non-Hispanic 
white and black populations in the 1986-2006 period was associated with high BMI levels (95% 
confidence interval: 9.8-27.1). Results using age-specific hazard ratios from new models put the 
figure at about 16.8% (95% confidence interval: 7.1-26.0).  
 
Professor Hanley correctly points out that attenuation of HRs between sub-groups often occurs in 
unselect populations. Indeed, attenuation is actually quite common when sub-groups experience 
differential risk across long durations of time (Vaupel and Yashin 1985; Vaupel et al. 1979). The 
implication of this point is that the attenuation of obesity HRs observed in the NHIS-LMF data 
could, in fact, be true. Thus, our modeling approach used to adjust for health-related selection 
into the NHIS survey might be unnecessary and even introduce bias into our estimates of obesity 
HRs. Professor Hanley uses the case of male-female differences in age-specific mortality risk to 
simulate a scenario of gendered selection in sample data to test whether the approach we used in 
our paper would accurately estimate the true age-specific differences in male and female 
mortality risk. That is, could our modeling approach estimate age-specific m:f HRs that attenuate 
or will the approach estimate biased HRs? Upon first read, this exercise appears to provide clear 
evidence against the approach we used to adjust for differential selection into the NHIS-LMF 
data. From Professor Hanley’s exercise it appears that the application of our “cure” – adjusting 
model estimates for NHIS respondents’ baseline age-at-survey – is “worse than the bias” 
stemming from the selection effects. Indeed, when gender differences in age-at-survey are 
included in the model, Professor Hanley’s results show increasing m:f HRs across age when, in 
fact, the true m:f HRs attenuate to near 1.0. The takeaway is that our modeling approach in the 
NHIS data is “exchang[ing] one paradox for another” by estimating a rising mortality 
discrepancy by obesity when, in fact, attenuation might be reality.  

 



This lesson is echoed in Professor Hanley’s conclusion when he requests that researchers check 
their results against “data generated from known parameter values.” We fully agree with this 
sentiment. Therefore, we checked various model estimates against the age-specific mortality 
rates calculated with official U.S. mortality records and population counts in Census records. 
Although we didn’t use simulations to test model estimates against known data generating 
parameters, we compared proportionally-weighted estimates of hazards to the known parameter 
values for age-specific mortality rates in official U.S. population data. That is, we calculated 
aggregate age-specific mortality rates by combining estimates of age-specific mortality rates 
from the normal weight, overweight, class 1 obese, and class 2/3 obese samples with the 
respective age-specific prevalence of each BMI level in the NHIS data. It was through these 
checks that we decided to use the model that included five-year cohort fixed effects and 
respondents’ baseline age at time of survey. Below, for example, Figure 1 shows the aggregated 
age-specific mortality rates from different models fitted to the non-Hispanic white women’s 
sample (this figure was provided in a previous exchange with the AJPH editorial office), and 
Figure 2 shows the estimated amount of bias in model estimates at older ages.  

 
Figure 1. Estimated Age-specific Mx from Survival Models with 2000 Official Mx, US White 
Women. 
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Figure 2. Rate Ratio of Estimated Mx from Survival Models to 2000 Official Mx, US White 
Women 
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The models that do not account for age-at-survey (i.e., “Period” and “Cohort” models) both 
estimate older age mortality rates that are about 20% below the rates observed in the official 
data. The “Period_Adjusted” model, which accounts for respondents’ ages at time of survey, 
reduces this bias at the oldest ages, but by only a modest amount. The estimated mortality rates 
from the “Cohort_Adjusted” model, conversely, reveal no pattern of systematic biases at these 
older ages, and were therefore preferred models for estimating the age-patterns of the obesity-
mortality association in the US adult population. Thus, we used the “Cohort_Adjusted” models 
to estimate age-specific mortality differences by BMI-group in the US non-Hispanic black and 
white male and female populations, and used the estimated age-specific hazard ratios in the PAF 
equations. 
 
We therefore used the known parameter values in official mortality rates in the U.S. adult 
population to guide our modeling strategy by testing different model estimates against true rates. 
Yet because BMI status is not recorded on official death records, one cannot compare models’ 
estimates of HRs by high BMI status to those observed in the actual population. Thus, Professor 
Hanley used the case of m:f HRs in real populations to simulate how gender differences in age-
specific survey selection might produce biased hazard ratios, and to observe how the approach 
we used might attend to these biases. To do so, Professor Hanley assumed that male-female 
differences in sample selection would manifest as differences in mortality hazards during the 
first five years of mortality follow-up. He simulates such a selection process among men and not 
among women, and then refitted survival models controlling for age-at-survey to see how well 
(or poorly) the model adjusted HR estimates for the selection biases.  
 
However, a more straightforward and realistic test of our modeling approach would be to 
observe the m:f HRs in age-specific mortality rates in U.S. official mortality data for years 1986-
2006, and then to compare these true HRs to the age-specific HRs in the NHIS-LMF 1986-2006 
estimated from different models. By comparing the m:f HRs observed in the actual U.S. 
population to the m:f HRs estimated in the NHIS-LMF data, we can assess the size and direction 
of discrepancies between sample estimates of HRs and the known true HRs. We could then 
directly test how our approach might adjust estimates to match the true HRs. Such a comparison 



is very useful because it removes the need to impose simple and possibly incorrect assumptions 
about the size, direction, and duration of selection biases in simulated data. For example, in his 
simulation exercise, Dr. Hanley assumes positive-health selection among men when, in fact, it is 
more likely that positive-health selection exists among older women in the NHIS. We know, for 
instance, that living arrangements in the United States differ substantially for older men and 
women, with older men much less likely to live alone. In terms of the time range that we 
analyzed in the NHIS data (1986-2006), Current Population Survey (CPS) data show that 31.5 
percent of women over the age of 65 lived alone in 1990 compared with only 8.4 percent of men, 
and that respective percentages in 2000 were 27.8 compared with 8.8 (Vespa, Lewis, and Kreider 
2013). If we look at the NHIS data themselves, we see large gender differences in marital status, 
especially for currently married and widowed (see below in Figure 3). 
 
Figure 3. Married and Widowhood Status by Age for Female Respondents (Left Graph) and 
Male Respondents (Right Graph) of NHIS, 1986-2004. 

 
 
Figure 4. Male-to-Female Relative Rate Ratio of NHIS Reporting Status, 1986-2004. 

 
 
We also see that men in the NHIS are much more likely than women to have their information 
provided by a proxy, or to self-report only some information in the survey, and that these gender 
differences grow larger with age (Figure 4). The point in showing large gender differences in 
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marital status and reporting status is to provide empirical support for the argument that health 
selection at older ages is likely operating more among women than among men. That is, older 
men in poor health are likely still included in the NHIS sampling frame via their spouses’ proxy 
reporting on their behalf. Older women in poor health, conversely, are more likely to reside alone 
and/or in institutionalized settings that preclude them from participating in the NHIS. As such, 
those older women who participated fully in the NHIS were likely much more select on health 
than were men of comparable age. Consequently, there likely exists gender-based health 
selection in the NHIS data, but this evidence strongly suggests that works in the direction 
opposite to the selection assumed to exist in Professor Hanley’s simulation exercises.  
 
Further, Professor Hanley’s simulation assumes that differential survey-selection affects men’s 
mortality risk during only the first five years of mortality follow-up, which is consistent with a 
“reverse causality” explanation (Mehta and Stokes 2013). But we have shown elsewhere 
(Masters, Powers, and Link 2013) that the time metric over which the obesity-mortality 
association changes is likely age, not calendar time of mortality follow-up. Further, and 
consistent with this point, our exploratory analyses showed that the obesity-mortality association 
grew stronger across all 19 years of mortality follow-up in the NHIS-LMF data, inconsistent 
with both a “reverse causality” explanation as well as with Dr. Hanley’s exercise. Again, it is 
fortunate that Professor Hanley used m:f HRs as an example for his simulation exercise, because 
in this case we can actually see the true m:f HR in U.S. official mortality data (National Vital 
Statistics Systems [NVSS]). We can then compare different models’ (i.e., models fitted using a 
conventional approach vs. our approach) estimated HRs in the NHIS-LMF data to the actual age-
specific HRs in the NVSS data to determine if and how the sample estimates are biased.  
 
In Figure 5 below, we contrast estimated age-specific m:f HRs in the NHIS-LMF data with 
corresponding HRs calculated with NVSS data. The left panel of Figure 5 shows the age-specific 
m:f HRs in the official U.S. mortality data for years 1986-2006, which were estimated from a 
single-year piecewise-constant exponential model controlling for five-year birth cohort (solid 
black line). Also included in the left panel of Figure 5 are the age-specific m:f HRs in the NHIS-
LMF, 1986-2006, which were estimated from a Royston-Parmar survival model that controlled 
only for five-year birth cohort and an attained age-varying coefficient of male (dashed gray line). 
In short, this survival model fitted to the NHIS-LMF data allows the m:f HR to vary across age. 
If the NHIS-LMF data are not biased, then the estimated age-specific m:f HRs in these data 
should match closely the age patterns of the HRs observed in the NVSS data. The age patterns of 
the m:f hazard ratios observed in the U.S. official mortality data between 1986 and 2006 show 
strong attenuation from a relative risk over 2.0 at age 40 to 1.50 at age 60 to almost 1.0 by age 
89. In striking contrast, the age-specific m:f HRs estimated from a conventional survival model 
show no significant attenuation across age in the NHIS-LMF data. Through this simple exercise 
we see that estimates of age-specific m:f HRs in the NHIS-LMF are severely biased. 
 
The right-hand panel of Figure 5 shows the age-specific m:f HRs in the U.S. official mortality 
data for years 1986-2006 (solid black line), as well as age-specific m:f HRs in the NHIS-LMF, 
1986-2006, estimated from a Royston-Parmar survival model controlling for five-year birth 
cohort, a time-varying coefficient of male, age-at-survey (centered on age 50), and a two-way 
interaction between male and age-at-survey (dashed gray line). This model matches closely the 
approach we used in our paper by adjusting model estimates of age-specific HRs for 



respondents’ ages at time of survey (centering all ages at survey close to the mean, 50 years). 
The right-hand panel also plots age-specific m:f HRs in the NHIS-LMF, 1986-2006, estimated 
from a Royston-Parmar survival model controlling for five-year birth cohort, a time-varying 
coefficient of male, age-at-survey (centered on plausible ages-at-survey depending on attained 
age), and a two-way interaction between male and age-at-survey (solid gray line). This model 
also matches closely the approach we used in our paper, but instead of simply centering all 
baseline ages on the same value of 50 years, we centered age-at-survey on plausible baseline 
ages depending on respondents’ attained ages (i.e., centered on age 45 if attained age 40-50, 
centered on age 50 if attained age 50-60, centered on 55 if attained age 60-70, centered on age 60 
if attained age 70-80, and centered on age 65 if attained age 80-89). 
 
Figure 5. NHIS Male:Female Mortality Hazard Ratio by Age, 1986-2006, vs. NVSS 
Male:Female Mortality Hazard Ratio, 1986-2006, controlling for five-year birth cohort 
Left Panel: No control for NHIS respondents’ Baseline Age at time of survey 
Right Panel: Center Baseline Age at 50yrs (dashed gray) and Center Baseline Age on Plausible 
Ages (solid gray) 

 
 
Unlike the estimated m:f HRs in the NHIS-LMF plotted in the left-hand panel of Figure 5, which 
are severely biased at nearly all ages, the m:f HRs estimated in the NHIS-LMF from survival 
models that control for male and female respondents’ baseline ages at time of survey match 
closely the age patterns of the hazard ratios estimated in the NVSS population data. Specifically, 
the m:f HRs in the NHIS-LMF are estimated to grow significantly weaker with increasing age, 
and the overall bias in the age-specific HRs is much less than the respective bias in the HRs 
estimated from the conventional survival model that doesn’t adjust for baseline age.    
 
As a sensitivity test of our approach, we performed a similar exercise using a different U.S. 
survey-based data source, the National Health and Nutrition Examination Survey (NHANES) 
linked mortality files, 1988-2006. In the left-hand panel of Figure 6 below, we compare m:f HRs 
in the NHANES-LMF data estimated from conventional survival models (dashed gray line) with 
the m:f HRs in the U.S. official mortality data, 1986-2006 (solid black line). The contrasting age 
patterns of the HRs reveal that m:f differences in mortality risk in the NHANES-LMF data are 
biased in ways similar to the biases seen in the NHIS-LMF data. Estimates from survival models 
fitted using conventional approaches show m:f HRs that are relatively constant across age, 
showing no attenuation. 
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Figure 6. NNANES Male:Female Mortality Hazard Ratio by Age, 1988-2006, vs. NVSS 
Male:Female Mortality Hazard Ratio 1986-2006. 
Left Panel: No control for NHANES respondents’ Baseline Age at time of survey 
Right Panel: Center Baseline Age at 50yrs (dashed), Center Baseline age at 45 if attained age 40-
50; 50 if attained age 50-60; 55 if attained age 60-70; 60 if attained age 70-80; 65 if attained age 
80+ 

 
 
When we refitted models to control for NHANES respondents’ baseline ages at time of survey – 
and account for gender differences in mortality variation by age-at-survey – the m:f HRs in the 
NHANES data were estimated to grow significantly weaker with increasing age. The right-hand 
panel of Figure 6 plots the estimated age-specific m:f HRs from these models, revealing 
estimated age patterns of m:f HRs in the NHANES-LMF data that more closely approximate the 
age patterns found in the actual population.  
 
These exercises clearly indicate that survey-based data are biased sources of mortality 
differentials in the U.S. adult population. Due to gender differences in living arrangements, sex 
differences in survival, and/or other possible sex- and gender-based differences in health-related 
factors, U.S. men’s and women’s likelihood of being sampled into non-institutionalized survey-
based data sources appear to be very different from one another. As demonstrated above, these 
differences in survey selection result in biased estimates of age patterns of m:f HRs. As further 
demonstrated, the approach we used in our paper to account for selection into survey data was 
shown to provide good estimates of the true age-specific m:f HRs observed in the U.S. 
population. Thus, the adjustment strategy we used to account for differential selection into the 
NHIS-LMF by obesity status was shown to be quite effective at accounting for differential 
selection into the NHIS-LMF by gender. These adjustments were also shown to be effective at 
estimating age patterns of gender-based mortality differences in the NHANES-LMF data as well. 
Conversely, models fitted to these data that did not include this adjustment were shown to 
estimate m:f HRs that were badly biased at nearly all ages. Therefore, the evidence from these 
exercises answers Professor Hanley’s question, “Is the cure worse than the bias?” with a clear 
“No”. In both the NHANES-LMF and NHIS-LMF data, m:f HRs estimated from our modeling 
approach are much less biased than HRs estimated from conventional approaches. This is likely 
to be the case with obesity HRs in the NHIS-LMF data as well. 
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Finally, Professor Hanley correctly notes a limitation of our original model, namely that the 
adjustment for baseline age-at-survey is centered on mean age-at-survey across the full range of 
ages. By centering all baseline ages on this single value, “the ‘adjusted’ pattern poses a new 
question: at older ages HRs are raised considerably; but at younger ages they are now below 1.” 
This is a fair point, and one raised before (Wang 2014, 2014; Wang and Liu 2014) and discussed 
before (Masters, Powers, and Link 2014; Masters et al. 2014). We are happy to address the 
concern here as well, especially as it pertains to the PAF estimates.  
 
Although we observed only minor differences between the estimated m:f HRs from models that 
centered baseline age-at-survey on 50 years and those estimated from models that centered 
baseline age-at-survey on plausible ages (see right-hand panels of Figures 5 and 6), the models 
that center on the single mean age are likely too simple in their attempts to adjust for mortality 
variation in respondents’ baseline ages. As a result, age-specific estimates are set to be 
conditional upon being surveyed only at age 50, thereby extrapolating the estimates beyond 
possible ranges of age in the data. We believe it is to this point that Professor Hanley correctly 
notes that models be “as simple as possible but not simpler”. 
 
We have addressed this point more fully in a previous exchange with AJPH, but will provide a 
summary of our approach here. We first estimated age-specific HRs for overweight, grade 1 
obese, and grade 2/3 obese by refitting survival models that allow baseline age to vary. To 
simplify the models, we used 10-year age groups to model age-based variation in the obesity-
mortality association: [40-50), [50-60), [60-70), [70-80), and one five-year age group [80-85). 
We then held constant the baseline age within these grouped ages, but allowed the baseline age 
for each group to differ from one another. Thus, the models fit age-variation in the BMI-
mortality association in the following way: 
 
for attained ages 40-50, hold constant baseline age at 30;  
for attained ages 50-60, hold constant baseline age at 35;  
for attained ages 60-70, hold constant baseline age at 40;  
for attained ages 70-80, hold constant baseline age at 55; and 
for attained ages 80-85, hold constant baseline age at 60. 
 
We therefore attended to Wang’s (2014, 2014), Wang and Liu’s (2014), and Professor Hanley’s 
concerns by (1) allowing baseline age to vary by thirty years (30 to 60) and (2) the grouped age-
specific HRs are estimated on plausible baseline ages within the NHIS-LMF data. That is, the 
model estimates are not severely extrapolated beyond possible baseline ages, therefore 
estimating plausible age-specific HRs in these data. At the same time, the modeling approach 
holds constant baseline age within the grouped ages to estimate overweight, grade 1 obese, and 
grade 2/3 obese HRs, thereby still controlling for the fact that age-specific estimates of high BMI 
HRs are conditional on NHIS respondents’ ages at time of survey.  
 
To show an example of the changes in model estimates, we plot the grouped age-specific HRs 
and the HRs from the original RP models for non-Hispanic white male sample in Figure 7 below. 
The gray bars indicate grouped age-specific HRs from the new models, and the dashed black 
lines are the HRs from the original RP survival models holding baseline age constant at -1 
standard deviation (SD), the mean, and +1 SD. 



 
Figure 7. Dashed black lines are estimated age-specific HRs from the original RP survival 
models, holding baseline age = 33 (-1SD), 49 (mean), and 63 (+1 SD). Gray bars are estimated 
10-year age-specific HRs from survival models with baseline age held constant at 30, 35, 40, 55, 
and 60. 
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At young ages, the estimates of grouped age-specific HRs reflect the survival of those 
respondents who entered the sample at younger ages (baseline ages=30, 35, 40) whereas at older 
ages the estimates reflect those respondents who entered at relatively older ages (baseline 
ages=55 and 60). This approach, therefore, accommodates the concerns that the age-specific 
mortality estimates need to reflect reasonable baseline ages, but also partly controls variation in 
baseline age. Thus, we’re no longer estimating age-specific HRs conditional on baseline age of 
50 years at time of survey, but rather estimating age-specific HRs conditional on reasonable 
baseline ages for different attained ages. Overall, the estimated age-specific HRs for these 10-
year age groups move consistently within the “normal” range of the HRs estimated from the RP 
models fitted in our paper. That is, at younger ages, the 10-year age-specific HRs are close with 
the age-specific HRs from the models fitted at -1 SD baseline age (33 years). The HRs then 
move closer to the RP estimated HRs for mean baseline across mid-adulthood, and then at older 
ages are pulled downward to reflect older ages at baseline (e.g., 55 and 60 vs. the 63 +1 SD 
estimates). As a result, as opposed to the estimated age-specific HRs from our original RP 
model, which estimated low HRs at young ages and estimated high HRs at older ages, these 
grouped age-specific HRs move consistently with the estimated HRs for appropriate baseline 
ages. 
 
We refitted these survival models for the non-Hispanic black and white male and female NHIS-
LMF samples and used the respective HRs to recalculate the PAFs. Estimates of non-Hispanic 
black and white men’s and women’s PAFs for overweight, grade 1 obesity, and grade 2/3 obesity 
as causes of US death are displayed in Table 1 Modified below. 
 

 
 
Together, these estimates suggest that 16.8% (95% CI: 7.1-26.0) of US deaths to black and white 
men and women aged 40-84 between 1986 and 2006 were associated with high BMI in these 
populations. This overall estimate, which attends to the concerns raised by Wang (2014, 2014), 
Wang and Liu (2014), and Professor Hanley is neither significantly nor substantively different 
from our original estimate of 18.2% (95% CI: 9.8-27.1). Thus, using an approach that is “simple 
but not simpler” than it ought to be, we find that high BMI imposes a considerable mortality 
burden on the US adult population.  
 
Conversely, if we estimate age-specific obesity HRs in the NHIS-LMF using conventional 
survival models (i.e., that do not attempt to adjust for differential selection into the NHIS-LMF), 
we would estimate a PAF that suggests that high BMI levels in the U.S. adult population reduced 
mortality by 9.6% between 1986 and 2006. That is, the estimated PAF is -9.6%. This estimate is 
implausible not only because of the high prevalence of obesity and its known health 

Table	1	Modified.	Estimated	%	of	U.S.	Deaths	between	Ages	40.0	and	84.9	for	Birth	Cohorts	1900	to	
1960	Associated	with	Overweight,	Grade	1	Obesity,	and	Grade	2/3	Obesity,	NHIS-LMF	1986-2006.

Black	Women -2.6 (-11.2,4.9) 8.7 (-1.5,14.3) 15.3 (6.3,19.4) 21.4
White	Women .6 (-3.4,4.7) 11.0 (8.1,14.0) 7.7 (7.0,8.4) 19.3
Black	Men .1 (-7.8,8.3) 5.0 (.6,10.1) 4.8 (2.0,8.6) 9.9
White	Men 2.4 (-1.6,6.5) 7.1 (4.9,9.4) 5.2 (3.9,6.6) 14.7
Abbreviations:	NHIS-LMF,	National	Health	Interview	Survey	Linked	Mortality	Files.
Numbers	in	parentheses	indicate	95%	confidence	intervals.

Overweight Grade	1	Obesity Grade	2/3	Obesity Total



consequences, but also because it’s derived from a modeling strategy that was shown to estimate 
severely biased age-specific m:f HRs in the NHIS-LMF (left-hand panel Figure 5).   
 
We conclude by thanking Professor Hanley for the helpful comments, cautions, and exercises 
included in his comment. Professor Hanley’s pleas about model diagnostics are helpful and we 
agree with his sentiments in spirit and in practice. We reiterate the fact that we used graphs, 
drawings, and diagnostic comparisons with population mortality rates to guide our modeling 
strategy of the obesity-mortality association in the NHIS-LMF data. We also affirm that our 
adjustments did not “exchange one ‘paradox’ for another.” Rather, as we’ve shown in our 
examination of m:f HRs above, our approach estimated age-specific HRs in the NHIS-LMF that 
matched closely the known parameter values for age patterns observed in the official NVSS data. 
In contrast, conventional survival models estimated m:f HRs that were severely biased. We 
therefore started with a paradox – no attenuation of m:f HRs when we know attenuation exists – 
and we advanced both theoretical and empirical reasons for suspecting gender-based differences 
in health selection into the NHIS. When we used our approach to adjust estimates for this 
differential selection we ended not with another paradox, but rather with age-specific m:f HRs 
that matched closely the HRs observed in the population. We therefore defend the use of this 
approach, albeit with the recognition of Professor Hanley’s plea “that models be ‘as simple as 
possible but not simpler.’” Centering baseline age on the mean age at time of survey indeed 
made the model “simpler” than it should be, yet centering NHIS respondents’ baseline ages on 
plausible values resulted in comparable conclusions to those presented in our paper.  
 

Thanks, 

 

Ryan K. Masters 

Daniel A. Powers 

Eric N. Reither 

Y. Claire Yang 

Bruce G. Link 
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