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Summary

� Losses of floral pigmentation represent one of the most common evolutionary transitions in

flower color, yet the genetic basis for these changes has been elucidated in only a handful of

cases.
� Here we used crossing studies, bulk-segregant RNA sequencing, phylogenetic analyses and

functional tests to identify the gene(s) responsible for the transition to white flowers in

Iochroma loxense.
� Crosses between I. loxense and its blue-flowered sister species, I. cyaneum, suggested that

a single locus controls the flower color difference and that the white allele causes a nearly

complete loss of pigmentation. Examining sequence variation across phenotypic pools from

the crosses, we found that alleles at a novel R3 MYB transcription factor were tightly associ-

ated with flower color variation. This gene, which we term MYBL1, falls into a class of MYB

transcriptional repressors and, accordingly, higher expression of this gene is associated with

downregulation of multiple anthocyanin pigment pathway genes. We confirmed the repres-

sive function ofMYBL1 through stable transformation of Nicotiana.
� The mechanism underlying the evolution of white flowers in I. loxense differs from that

uncovered in previous studies, pointing to multiple mechanisms for achieving fixed transitions

in flower color intensity.

Introduction

From a genetic and biochemical perspective, the biosynthesis of
anthocyanin pigment represents one of the best studied metabolic
pathways in plants. The red, purple and blue anthocyanins are the
products of a series of enzymatic steps that are highly conserved
across plants, and they constitute the most common pigments
responsible for flower and fruit coloration (Winkel-Shirley, 2001;
Grotewold, 2006). The regulation of anthocyanin production
varies in different taxa, but members of the WD-repeat (WDR),
basic helix–loop–helix (bHLH) and MYB families are commonly
important regulators of this pathway (Feller et al., 2011; Davies
et al., 2012). Often, these transcription factors form a complex (the
MYB–bHLH–WDR or MBW complex) that can coordinately
activate or repress multiple steps in the pathway to modulate pig-
ment production (Albert et al., 2014).

This deep understanding of anthocyanin pathway function
and regulation has made it possible to identify the genetic basis
of pigment variation in many nonmodel plants. These studies
have begun to reveal predictable patterns in pigment evolution
(Streisfeld & Rausher, 2011; Sobel & Streisfeld, 2013).
For example, evolutionary transitions to white flowers via losses
of floral anthocyanin production have consistently involved

loss-of-function mutations in R2R3 MYB transcriptional activa-
tors (Quattrocchio et al., 1999; Schwinn et al., 2006; Hoballah
et al., 2007). Given that a wide range of pathway mutations can
give rise to white flowers (de Vlaming et al., 1984; van Houwelin-
gen et al., 1998), this pattern has been attributed to preferential
fixation of these R2R3 MYB mutations (Streisfeld & Rausher,
2011). R2R3 MYB transcription factors are among the largest
gene families in plants, and each member is highly specialized in
terms of spatial expression, timing of expression and target genes
(Kranz et al., 1998; Ramsay & Glover, 2005). Thus, mutations
in R2R3 MYBs have the potential to change anthocyanin gene
expression only in the flower, with minimal pleiotropic conse-
quences for the production of anthocyanins or related flavonoids
in other tissues (Wessinger & Rausher, 2012). Nonetheless, this
apparent preferential fixation is based on studies of floral pigment
loss in two genera (Antirrhinum and Petunia) and remains to be
validated more broadly.

Here we examine the genetic basis for the transition to white
flowers in the Andean genus Iochroma (Solanaceae). Iochroma is a
relatively small genus of c. 25 species, but presents a wide range
of flower colors, including red, blue, green, white, yellow and
orange (Smith & Baum, 2006). The ancestral state in the genus
is blue flowers, which derive their color from delphinidin-based
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anthocyanins (Smith & Baum, 2007; Berardi et al., 2016). From
this ancestral state, the clade has experienced multiple transitions,
leading to a variety of derived color phenotypes, including at
least three to white or yellow flowers due to losses of floral antho-
cyanins (Smith & Goldberg, 2015). The present study focuses
on the most recent of these transitions, along the branch leading
to the white-flowered I. loxense. Its sister species, I. cyaneum, is a
horticulturally important plant in which the anthocyanin path-
way and anthocyanin production have been previously character-
ized (Smith & Rausher, 2011; Berardi et al., 2016). Taking
advantage of the crossability of these two taxa, segregating back-
cross populations were created to identify genes associated with
flower color variation. Given the large number of potential can-
didate genes, including the many R2R3 MYBs, we adopted a
bulk-segregant RNA-Seq approach to identify potentially
causative loci and determine their effects on pathway gene
expression. The results implicate a novel class of R3 MYB tran-
scriptional repressors, which appear to influence flower color via
the same developmental changes as the previously identified
R2R3 loss-of-function mutations.

Materials and Methods

Crossing and phenotyping

We created a cross between the blue-flowered I. cyaneum and the
white-flowered I. loxense using two cultivated accessions. The
parental I. cyaneum individual was derived from an accession culti-
vated at the Missouri Botanical Garden by W. G. D’Arcy, and this
accession was used to generate a low-coverage genome in previous
work (Gates et al., 2016). The parental I. loxense individual was
derived from material from the University of Loja Botanical Gar-
dens near Loja, Ecuador. Voucher specimens for each accession
(Smith 265 and 235, respectively) are deposited at the University
of Wisconsin–Madison Herbarium and the Missouri Botanical
Garden. Previous biochemical studies confirm that I. cyaneum pro-
duces over 97% blue delphinidin-based anthocyanin pigments,
while I. loxense produces no detectable floral anthocyanins (Berardi
et al., 2016). A single F1 individual was backcrossed to each
parental accession to create segregating backcross populations.
Backcross individuals were grown in glasshouse conditions with
natural light. Flowers from each backcross individual were pho-
tographed, and individuals were visually grouped into three pheno-
typic classes (blue, white and F1 phenotype). Floral anthocyanins
were quantified by eluting pigments from fresh corolla tissue in
500 ll methanolic HCl (1%) and measuring absorbance at
530 nm. Reflectance spectra were collected from the corolla tube
and lobe of each individual using a JAZ spectrometer as described
by Ng & Smith (2016). Spectral variation was examined by princi-
pal component analysis of the combined corolla tube and lobe data
in the visible spectrum (400–700 nm).

Association mapping

Bulk transcriptome sequencing of each parent and phenotypic
pool was used to search for allelic variants associated with flower

color. Floral bud RNA was extracted following Coburn et al.
(2015) from the blue and white parents (two biological replicates
each); 20 blue and 15 F1 phenotype individuals from the back-
cross to the blue parent; and eight white and nine F1 phenotype
individuals from the backcross to the white parent. Two lanes of
Illumina 100-base-pair paired-end RNAseq of Tru-Seq libraries
(Illumina, Inc., San Diego, CA, USA) were generated for these
six pools of RNA. We created a transcriptome index from the
I. cyaneum transcriptome (Gates et al., 2016) with BOWTIE 2.02
(Langmead et al., 2009) with default settings and mapped reads
from each pool using TOPHAT 2.1.0 (Kim et al., 2013) allowing
five mismatches per read (-N flag) and a final read edit distance
of 8. This TOPHAT mapping for each pool generated a BAM file
to be used in both association and expression analyses. In addi-
tion to each TOPHAT BAM mapping file, downstream expression
and variant calling analyses also require a gtf mapping file.
Without a prespecified gtf from an annotated genome assembly,
TOPHAT makes run-specific gtf mapping files along with each
BAM mapping but can exclude low expression genes of interest
(e.g. anthocyanin pathway genes in white-flowered pools) in these
gtf files. To avoid potentially missing genes in the gtf file, we used
BWA-MEM (Li & Durbin, 2009) to construct a pan-gtf file by
mapping reads from all libraries to the I. cyaneum transcriptome.
This mapping was passed to TOPHAT for gtf file construction and
the resulting gtf file contained all gene models with reads that
were mapped in any pool. We then used SAMTOOLS (Li et al.,
2009) to generate variant calls in each of the mappings. Before
association mapping, we removed low-quality variants with < 10-
fold coverage and with a quality score of < 50.

Two approaches were used to test for associations between
genes and color phenotypes using the mapped reads. First, we
conducted a transcriptome-wide search for genes with patterns
and frequencies of single nucleotide polymorphism (SNP) varia-
tion consistent with the phenotypic pools. We focused on genes
that differed between the parents by three or more SNPs with
> 2009 coverage to increase confidence in the assignment of alle-
les to the I. cyaneum or I. loxense parents. We filtered this initial
list of genes, saving those which showed no mapped SNPs in the
blue backcross pool (i.e. all reads match the blue I. cyaneum par-
ent). This follows from the expectation that blue-flowered indi-
viduals should be homozygous for the blue parental allele at the
causative locus. We further reduced the pool by applying a sec-
ond filter, keeping only genes with 35–65% blue variants in the
F1 phenotypic pools and < 35% blue variants in the white pheno-
typic pool. With precise phenotyping, we would expect 0% blue
variants in the white pool; however, distinguishing the two phe-
notypes was difficult in the backcross to the white parent. We
expected the F1 phenotypic pool to have intermediate allele fre-
quency, but not precisely 50% blue variants because of the diffi-
culty in phenotyping as well as any cis-regulatory effects.

Next, we compared loci recovered from this transcriptome-
wide pipeline to SNP variation at candidate loci in the antho-
cyanin pathway. We included seven structural genes (Chs, Chi,
F3h, F30h, F3050h, Dfr, Ans) and six known transcription factors
(the R2R3 MYB activator AN2 and repressorMYB27, the bHLH
genes jaf13 and AN1, the WDR AN11 and the R3 MYB
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repressor MYBx) (Koes et al., 2005; Albert et al., 2014). We refer
to the names of the loci in Petunia hybrida for six transcription
factors (AN1, AN2, etc.) for ease of comparison with existing lit-
erature. The Iochroma orthologs for these pathway genes have
been characterized in previous studies (Smith & Rausher, 2011;
Coburn et al., 2015; Gates et al., 2016). For each locus, we calcu-
lated the proportion of reads matching the blue I. cyaneum parent
allele in each phenotypic pool.

Phylogenetic analyses ofMYBL1

A combination of bioinformatic and phylogenetic analyses was
used to elucidate the evolutionary history of MYBL1, an R3
MYB gene identified by our pipeline as having a strong associa-
tion with flower color. Potential orthologs in related taxa were
retrieved through a combination of BLAST searches and gene pre-
diction using Augustus (Stanke & Morgenstern, 2005). Genome
assemblies for tomato (Solanum lycopersicum), potato (S. tuberso-
sum), S. pennellii, pepper (Capsicum annuum), tobacco (Nicotiana
tabacum), petunia (P. hybrida) and coffee (Coffea canephora) were
accessed through the Sol Genomics Network (solgenomics.net)
and the Coffee Genome Hub (coffee-genome.org). Protein
sequences for MYBL1 were aligned to similar Solanaceae MYB
sequences along with representatives of the major MYB sub-
groups in Arabidopsis (Stracke et al., 2001; Dubos et al., 2010)
for phylogenetic analysis. The sequences were aligned using
Clustal in GENEIOUS 6.05 (Biomatters Inc., Auckland, New
Zealand) with default settings. The phylogeny was estimated in
MRBAYES 3.2.5 (Ronquist & Huelsenbeck, 2003) with two inde-
pendent runs, each of 1 million generations, and a mixed prior
on models. Convergence was judged by potential scale reduction
factor (PSRF) values approaching 1.0, estimated sample sizes
(ESS) exceeding 300 and similarity of the consensus trees from
the two runs.

Expression analyses

Expression levels of anthocyanin transcription factors and regula-
tory genes in each of our six RNA pools (the two parents and the
two phenotypes in each backcross population) were measured by
mapping reads to the I. cyaneum transcriptome as described
above. After mapping we calculated fragments per kilobase per
million (FPKM) and tested for differential expression using
CUFFDIFF 1.1.2 (Trapnell et al., 2010) with our custom .gtf file.
CUFFDIFF uses an optimization routine to obtain a maximum a
priori estimate of the FPKM for a given fragment (typically a
gene). From this sampling routine, the program also calculates
a 95% confidence interval based upon the variance–covariance
relationship of high likelihood samples that are also weighted by
an information index (as a means of ensuring lower coverage frag-
ments will have appropriate levels of uncertainty). We used the
FPKM estimates and accompanying confidence intervals to com-
pare expression levels across pools for each gene by using a two-
sample t-test where the standard error for the expression of each
gene at each pool is calculated as the confidence interval divided
by 1.96. We also conducted quantitative real-time PCR (qPCR)

to confirm patterns of expression across the phenotypic pools.
Three individuals were randomly selected from the four back-
cross pools. We completed two replicate qPCRs for each individ-
ual and three for each parent for seven structural genes and four
transcription factors (see Supporting Information Table S1 for
primers). Two of the six transcription factors included in the
association analysis (MYB27 and AN1) were excluded from the
qPCR experiment because of their low expression across all pools
in the RNASeq experiment. Protocols for cDNA synthesis, qPCR
conditions and data analysis follow Coburn et al. (2015).

Functional testing

The function of IlMYBL1 was tested through stable transforma-
tion of N. tabacum. First, the complete coding sequence of
MYBL1 from I. loxense was synthesized (GenScript Corp., Piscat-
away, NJ, USA) and cloned into the pRTL2 vector (Carrington
& Freed, 1990), resulting in constitutive expression regulated by
the enhanced cauliflower mosaic virus 35S (e35S) promoter with
the tobacco etch virus (TEV) translational enhancer element.
The resultant expression cassette was subsequently subcloned into
the binary vector pPXP212 (Hajdukiewicz et al., 1994). Tobacco
leaf disks were transformed with this vector following the proto-
col outlined by Clemente (2006), and 20 of the resulting trans-
formants were grown from seed in the glasshouse. Floral
pigmentation was quantified from both transgenic and wild-type
plants by eluting anthocyanins from petal disks with 500 ll
methanolic HCl (1%) and measuring absorbance at 530 nm.

Results

Patterns of phenotypic variation in crosses suggest a single
underlying locus

Crosses between the white-flowered I. loxense and the blue-
flowered I. cyaneum resulted in a pale (nearly white) phenotype.
The F1 has a white floral tube with slight anthocyanin pigmenta-
tion near the mouth of the corolla (Fig. 1a). Such patterning is
not apparent in the parents, which are uniformly colored
throughout the tube and the mouth. The highly reduced level of
floral pigmentation in the F1 suggests nearly complete dominance
of the allele (or alleles) from the white-flowered I. loxense.

Backcrosses of the F1 to I. loxense and I. cyaneum recovered the
three parental phenotypes, consistent with a single major locus
determining the flower color difference. Both blue and F1 pheno-
types segregated in the backcross to the blue I. cyaneum parent,
and F1 and white phenotypes in the backcross to the white
I. loxense parent (Fig. 1a). As expected for a single gene controlling
the phenotype, the numbers of individuals with each phenotype
did not differ significantly from 1 : 1 (backcross to blue, 35 blue:
38 F1 phenotype; backcross to white, 8 white: 11 F1 phenotype,
P = 0.8, Fisher’s exact test). Fewer individuals were scored in the
backcross to white because of low viability in that cross (possibly
due to incipient incompatibility between the sister species).

Quantitative comparisons of pigment concentration showed a
clear split between the blue phenotype and the other two
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phenotypes. The blue-flowered parent and the blue-flowered
individuals from the backcross to the blue parent produced about
five times the amount of anthocyanin pigment as the white or F1
phenotype individuals, with no overlap in values (Fig. 1b).
Although the white-flowered backcross individuals had lower
average pigment content than the F1 phenotype individuals, there
was significant overlap among the pools (Fig. 1b).

A similar pattern was observed in a principal component (PC)
analysis of floral color spectra, which sharply divided the blue-
flowered individuals and the rest. The first principal component
axis captured 84% of the variation and split the individuals into
two clusters, I. cyaneum and the blue-flowered individuals from the
backcross to I. cyaneum vs the others (Fig. S1a). This axis corre-
sponds to brightness (the total amount of light reflected), as each of
the wavelengths of light has roughly equal loading (Fig. S1b). As
expected, blue flowers have low brightness, while the white and F1
phenotype flowers have high brightness (Fig. S1a). The other
minor PC axes incorporate relative reflectance across different
wavelengths (floral hue), and here indicate different reflectance in
green/yellow wavelengths vs red/blue (Fig. S1b).

Bulk-segregant mapping points to an R3 MYB associated
with color

We used a bulk-segregant RNA-Seq approach to identify genes
associated with the phenotypic classes from the crosses. Although
the white and F1 phenotypes overlap in pigment concentration
and reflectance spectra, we sequenced each of the pools separately
in order to detect expression differences that could account for
their distinct color patterns (Fig. 1a). Our first filtering of the
transcriptomic pools for associated genes (requiring three confi-
dently called SNPs between the parents and no variants called
between I. cyaneum and the blue-flowered pool) resulted in 35
candidates (Table S2). Among these candidates, only one
belonged to a class of genes (MYB transcription factors) known
to regulate anthocyanin production. Although the gene appeared
to be a single repeat R3 MYB, the closest BLAST hit in tomato was
an R2R3 MYB with uncharacterized function (Table S2). We
next filtered the list of 35 candidates by SNP frequency in the
remaining pools, retaining genes with 35–65% reads matching

I. cyaneum in the F1 phenotype pools and < 35% in the white
pool. The apparent R3 MYB sequence was the only gene to pass
this second filter, and given its phylogenetic proximity to
A. thaliana MYBL2 (see phylogenetic analysis in next Results
section), this locus was designated MYBlike-1 or MYBL1. The
MYBL1 sequences for I. loxense and I. cyaneum have been
uploaded to GenBank as KY658468 and KY658469.

We compared these results to the known structural and regula-
tory genes of the anthocyanin pathway, none of which emerged
from the transcriptome-wide search. All of the structural genes
were segregating both blue and white parental alleles in the blue-
flowered pool, indicating that none of these comprises the
causative locus. The same pattern was observed for four of the six
transcription factors (the R2R3 MYB AN2, the bHLH jaf13, the
WDR AN11 and the R3MYB MYBx). The AN1 bHLH ortholog
presented nearly undetectable floral expression (Table S3), and
thus no SNPs could be confidently called across the pools. This
result suggests that, between jaf13 and AN1, the former is proba-
bly the principal bHLH partner in the anthocyanin regulatory
complex in Iochroma flowers. The final candidate locus, the
R2R3 MYB repressor MYB27, did present zero called variants in
the blue-flowered pool, as would be predicted for a causal locus.
However, this gene was not recovered in the transcriptome-wide
search because of its low expression (Table S3) and accordingly
low coverage. Such low floral expression is consistent with studies
in Petunia, suggesting that its primary role is repression of antho-
cyanins in vegetative tissue (Albert et al., 2011). Thus, the lack of
called variants for MYB27 in the blue pool is probably due to
linkage with the causative locus. Indeed, additional bioinformatic
analyses (see gene annotation analyses in next Results section)
suggest that the MYBL1 gene detected in the transcriptome-wide
search is closely linked to theMYB27 ortholog in Iochroma.

Novel R3 MYB belongs to a clade of R2R3 MYB repressors

The similarity of Iochroma MYBL1 to an R2R3 MYB in tomato
raised the possibility that this R3 MYB might be derived from a
past duplication of an R2R3 MYB. Indeed, additional searches of
nearby tomato scaffolds from chromosome 5 uncovered a highly
similar sequence in an unannotated region that was 10 kb from

I. cyaneum (blue parent)

Backcross to blue: Blue type

Backcross to blue: F1 type
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Fig. 1 Phenotypic variation in parents and
backcrosses. (a) Flowers and corolla mouths
of parental species (Iochroma cyaneum and
I. loxense), their F1 and example phenotypes
from the backcrosses. (b) Boxplots of
anthocyanin content in corolla tissue,
measured as absorbance at 530 nm g�1 fresh
tissue. Order of the phenotypes along the
x-axis follows (a). Boxes encompass the
upper and lower quartiles and the horizontal
line represents the median.
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Fig. 2 Majority rule consensus tree from Bayesian analysis of MYB sequences. Posterior probabilities are given above branches. Sequences are prefixed by
TAIR or GenBank numbers. Known repressors are highlighted. Taxon names are abbreviated as follows: Slyc, Solanum lycopersicum; Stub, S. tubersosum;
Spen, S. pennellii; Cann, Capsicum annuum; Ph, Petunia hybrida; Ccan, Coffea canephora; Ml,Mimulus lewisii; Am, Antirrhinum majus; and At,
Arabidopsis thaliana. The suffix for At sequences includes the subgroup number when available (Dubos et al., 2010).
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the first tomato R2R3 found with BLAST. This suggested that
tomato might possess an ortholog of MYBL1 that had been
missed in annotation. Subsequent gene prediction analyses
revealed a complete open reading frame with a highly conserved
R3 MYB region in tomato as well as S. pennellii, S. tuberosum and
C. annuum, all members of the fleshy fruited subfamily
Solanoideae, which includes Iochroma. Although P. hybrida and
C. canephora contained sufficiently large contigs (< 15 kb) around
the conserved R2R3 MYBs, we did not recover orthologs of
MYBL1 from these taxa.

Phylogenetic analyses of MYBL1 along with other R2R3 and R3
MYBs are consistent with a recent origin via duplication within the
clade of R2R3 MYB repressors. The MYBL1 sequences from
Iochroma, Capsicum and Solanum form a well-supported clade
(100% posterior probability, Fig. 2) that is closely related to a
group of ‘MYB3-like’ Solanaceae R2R3 genes, including the
tomato R2R3 originally uncovered in the BLAST search. These

R2R3 MYBs probably act as repressors due to the presence of
C-terminal repression motifs (Jin et al., 2000; Fig. 3). Indeed, as
already mentioned, one of these genes (MYB27 in P. hybrida) has
been well characterized and actively represses anthocyanin biosyn-
thesis (Albert et al., 2011, 2014). The presence of only a single
Petunia sequence in this Solanaceae repressor clade suggests that
the duplication which gave rise to MYBL1 occurred after the split
of Petunieae and the ‘x = 12’ clade containing Solanoideae
(23–47Ma) (De-Silva et al., 2017). These Solanaceae MYBL1 and
MYB3-like sequences are closely related to AtMYBL2 and the
Arabidopsis subgroup 4 MYBs (Fig. 2), which also function as tran-
scriptional repressors (Dubos et al., 2008, 2010).

Members of the MYBL1 clade share several changes in their
coding sequence that may relate to their functional evolution.
First, these MYBs present large deletions in the R2 domain, com-
parable to AtMYBL2 and other R3 MYBs (Fig. 3). These dele-
tions have resulted in the loss of the helix–turn–helix motifs

Fig. 3 Comparison of MYBL1 and closely related sequences. The DNA-binding R2 and R3 domains are indicated; each contains three a-helices (gray boxes)
with conserved tryptophan residues (*). The R3 domain also includes a bHLH binding motif. Locations are from Stracke et al. (2014) and Du et al. (2015).
Repression motifs include EAR motifs and the TLxLFR motif. These often fall within the C-terminal motifs (C1, C2, C3, C4), which are conserved across the
subgroup 4 repressors (Kranz et al., 1998; Legay et al., 2007). Note that these sequence motifs were identified in Arabidopsis and differ slightly in Solanaceae.
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required for DNA-binding and functionality of the domain
(Ogata et al., 1994; Williams & Grotewold, 1997). Second, the
MYBL1 sequences have lost the C-terminal active repression
motif DLNx2P present in the MYB3-like R2R3 sequences and in
Petunia’s MYB27. Nonetheless, they have gained a novel repres-
sion motif (LxLxL) near the end of the R3 domain (Fig. 3). Both
of these repression motifs fall into the class of ethylene-responsive
element binding factor-associated amphiphilic repression or EAR
motifs, which are found through plants (Kagale & Rozwadowski,
2011). Thus, it appears that the repressive activity of MYBL1 was
probably retained despite a c. 40% reduction in the length of the
protein. Neither the MYBL1 clade nor AtMYBL2 contain the
WxM motif required for cell-to-cell movement (Kurata et al.,
2005), suggesting they do not diffuse like the smaller R3 MYBs
of the CPC clade (Fig. 2).

Differential expression associated with color phenotypes

Comparison of gene expression levels across the backcross pools
points to upregulation of MYBL1 associated with loss of

pigmentation, consistent with its putative role as a pigment
repressor. In the backcross-to-blue, the F1 phenotype individuals
have roughly twice the MYBL1 expression of the blue-flowered
individuals (Fig. 4). Given that the trans-regulatory environment
should be homogenized across these two pools, this difference
would be best explained by a cis-regulatory change at MYBL1.
Expression levels for MYBL1 were slightly elevated in the white
backcross individuals compared to those with the F1 phenotype,
but the difference was not significant (Fig. 4). A marked differ-
ence in expression of MYBL1 was also observed between the par-
ents, although the I. cyaneum expression level overlapped with
multiple backcross pools. These qPCR experiments produced
very similar patterns, with the strongest differences between the
two parents and between the two phenotypic pools in the back-
cross to blue (Fig. S2). Given the relatively subtle differences in
expression, additional experiments would be useful to better
quantify allele-specific MYBL1 expression across the individuals
in these segregating populations.

By contrast with MYBL1, the other transcription factors
showed no evidence of differential expression in association with
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Fig. 4 Variation in pathway gene expression across phenotypic pools. A simplified pathway is depicted on the left comprising the enzymes chalcone synthase
(CHS), chalcone isomerase (CHI), flavonone 3-hydroxylase (F3H), flavonoid 30-hydroxylase (F30H), flavonoid 30,50-hydroxylase (F3050H), dihydroflavonol 4-
reductase (DFR) and anthocyanidin synthase (ANS). Branches of the pathway leading to pelargonidin and cyanidin pigments are not shown as I. cyaneum
produces only delphinidin. Note that in Iochroma, F3050H has little 30 activity and thus appears not to act on dihydrokaempferol (Smith & Rausher, 2011).
Elements of the pathway are regulated by bHLH, WDR, and R2R3 and R3 MYB proteins. Expression levels are given for each of these loci in fragments per
kilobase per million (FPKM). Error bars denote 95% confidence intervals, and lower-case letters indicate significantly different values.
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the color phenotypes. The three transcription factors with quan-
tifiable floral expression (AN2, jaf13 and AN11) showed statisti-
cally indistinguishable levels of expression across the backcross
pools in both the transcriptomic analysis and the qPCR experi-
ment (Figs 4, S2). The lack of variation in expression at these loci
suggests that MYBL1 does not regulate these transcription fac-
tors, and instead controls flower pigmentation through regulation
of the structural genes of the pathway.

Consistent with this hypothesis, we observed marked variation
in the expression of structural genes. In particular, F3050h, Dfr
and Ans showed an almost complete loss of expression in both
the white-flowered and the F1 phenotype pools, suggesting that
their expression is strongly inhibited by the increase in MYBL1
expression. The significant downregulation of these three loci was
also recovered in the qPCR experiment (Fig. S2). Two of the
early genes, Chs and F3h, also showed a trend toward lower
expression with decreasing pigmentation, but these patterns were
not consistently significant (Figs 4, S2). By contrast with the
other structural genes, Chi did not exhibit lowered expression in
the less pigmented pools. This gene may be controlled by differ-
ent transcriptional regulators, as implicated by studies in several
other systems (Dubos et al., 2008; Yi et al., 2010; Koehler et al.,
2012).

R3 MYB acts as a functional floral anthocyanin repressor in
Nicotiana

Expression of MYBL1 from I. loxense in N. tabacum (tobacco)
resulted in a nearly complete loss of floral anthocyanins. All of
the transformed lines presented the white-flowered phenotype,
with 11–20 times lower absorption across them and 14 times
lower absorbance on average (Fig. 5). N. tabacum, another mem-
ber of the Solanaceae, is estimated to be diverged from Iochroma
32Ma (De-Silva et al., 2017), indicating that the R3 MYB has
the ability to repress anthocyanins in distantly related taxa. Also,
the primary pigment in N. tabacum is cyanidin (McCarthy et al.,
2017), as opposed to delphinidin, which is in the blue-flowered
Iochroma. Given that cyanidin, a derivative of dihydroquercetin,
does not require F3050H activity, this result suggests that the level
of downregulation at the other pathway genes (Fig. 4) is probably
sufficient to abolish pigment production.

Discussion

Through a combination of crossing studies and bulk-segregant
RNA-sequencing, our results indicate that a novel R3 MYB tran-
scription factor, MYBL1, controls the intensity of floral pigmen-
tation in Iochroma. The MYBL1 allele from the white-flowered
I. loxense acts in a nearly dominant fashion, with the F1 hybrid
between I. loxense and the blue-flowered I. cyaneum presenting
only traces of anthocyanin pigmentation towards the mouth of
the corolla. Patterns of gene expression suggest that this loss of
pigmentation is due to downregulation of structural genes in the
pathway, particularly the late anthocyanin-specific elements.
Although we cannot exclude the possibility of causative coding
sequence mutations at MYBL1, the elevated expression of this
gene in the F1 phenotype and white-flowered pools suggests a cis-
regulatory change as the underlying mechanism, analogous to the
R3 MYB transcription factor controlling flower color in Mimulus
(Yuan et al., 2013). Under this scenario, the transition from the
ancestral state of blue flowers to the derived state of white flowers
along the I. loxense lineage could be explained by the increased
expression of the MYBL1 regulator leading to downregulation of
anthocyanin pathway genes and suppression of floral pigment
production.

While the structure of MYBL1 resembles known R3MYB
repressors, phylogenetic analyses demonstrate thatMYBL1 is evo-
lutionarily distinct. Most of the previously described R3 MYB
repressors, such as CAPRICE (CPC) in Arabidopsis and MYBx in
Petunia, fall into a single clade that is distantly related to MYBL1
(Fig. 2). Similar to MYBL1, these genes lack an R2 domain and
contribute to the regulation of anthocyanin production (Zhu
et al., 2009) along with other aspects of epidermal cell differentia-
tion (Wada et al., 1997; Schnittger et al., 1999; Serna, 2008;
Wang & Chen, 2014). While the closest relatives of the CPC
clade of R3 MYBs remain unclear, the MYBL1 clade is well
resolved as a part of the subgroup 4 R2R3 repressors (Fig. 2). All
of the characterized subgroup 4 genes in Arabidopsis (AtMYB4,
AtMYB7 and AtMYB2) regulate elements of the phenyl-
propanoid pathway, which includes anthocyanins (Jin et al.,
2000; Preston et al., 2004; Fornale et al., 2014). Petunia MYB27
also belongs to this subgroup 4 clade and modulates anthocyanin
production (Albert et al., 2011). These patterns suggest that
anthocyanin regulation is probably the ancestral state for the
MYBL1 clade as well as the other post-duplication copy,
MYB3like. Given the physical proximity of the MYBL1 genes to
the MYB3like R2R3 genes in the Solanoid genomes (c. 10 kb),
we hypothesize that these R3 MYBs arose by tandem duplication
followed by loss of the R2 domain.

The molecular evolution of the MYBL1 clade within
Solanaceae presents a striking parallel to the evolution of the
AtMYBL2 gene in Arabidopsis. Both of these single-domain R3
MYB repressors arose from clades of R2R3 MYB repressors, and
both show a dynamic history of loss and gain of repression
motifs. AtMYBL2 lost the EAR motif shared among the sub-
group 4 R2R3 MYB repressors (Liu et al., 2015) but gained a
novel TLxLFR repression motif at the C-terminus (Matsui et al.,
2008). Similarly, MYBL1 lost the EAR motif characteristic of the
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Fig. 5 Effects ofMYBL1 expression in Nicotiana tabacum. Anthocyanin
content is measured as absorbance at 530 nm g�1 fresh tissue. Error bars
show � 1 SD. Representative flowers are shown for each treatment.
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MYB3like genes and Petunia MYB27 (Albert et al., 2011), but
acquired a new EAR motif near the end of the R3 domain
(Fig. 3). Like AtMYBL2, the MYBL1 clade has retained the con-
served bHLH binding motif in the R3 domain (Zimmermann
et al., 2004) and thus is likely to bind with the bHLH transcrip-
tion factors and act as part of an MBW regulatory complex.

The presence of the EAR repression motif in MYBL1 suggests
that it functions as an active transcriptional repressor, although
some degree of passive repression is possible. Given the structural
similarity to AtMYBL2, we predict that MYBL1 binds the bHLH
factor and possibly also to the R2R3 partner (Albert et al., 2014).
The presence of the R2R3 MYB (AN2 homolog), which nor-
mally acts as an activator, allows the complex to identify the tran-
scriptional targets, while the R3 MYB induces epigenetic
silencing via the EAR motif (Kagale & Rozwadowski, 2011).
Thus, the replacement of one of the R2R3 MYB partners in the
MBW complex with an R3 MYB could transform the complex
from an activator of anthocyanin gene transcription to a repressor
(Albert et al., 2014) (Fig. 6). Depending on its abundance relative
to the R2R3 activators, it is also possible that MYBL1 could
passively repress anthocyanin gene expression by titrating bHLH
factors, similarly to the CPC clade of R3 MYBs that lack the
EAR active repression motifs (Mitsuda & Ohme-Takagi, 2009).
Both mechanisms are consistent with the pattern seen in the
backcrosses, where intermediate levels of MYBL1 expression (as
in the F1) allow some pigment production (presumably because
some MBW complexes contain only R2R3 MYB activators).
When R3 MYB expression is high, as in the white-flowered pools
and parent, most MBW complexes contain at least one R3 MYB,
and thus function as repressors. Additional studies would be
needed to confirm this model forMYBL1 function.

The mode of action of MYBL1 may have important conse-
quences for understanding the evolutionary trajectory that led to
the transition to white flowers in I. loxense. Judging from expres-
sion levels in the phenotypic pools (Fig. 4), a 30% increase in
MYBL1 expression might be sufficient to convert a blue flower
into a nearly white flower. Even a small increase might be suffi-
cient to produce a pale phenotype that could be targeted by selec-
tion, whether by biotic factors, like pollinators, or abiotic factors,
such as climatic conditions (Rausher, 2008). We do not presently
know the mutation(s) that caused the observed expression change
in MYBL1, but if it were accomplished with a single mutation,
the resulting allele could spread quickly through the population
given its nearly dominant action (Haldane, 1924, 1927). This
stands in contrast to most of the previously identified genetic
changes associated with transitions to white flowers, which
involve loss-of-function mutations in the R2R3 MYB activators
(Quattrocchio et al., 1999; Schwinn et al., 2006; Hoballah et al.,
2007). These alleles are recessive and thus would experience a
lower probability of fixation, a phenomenon known as ‘Haldane’s
Sieve’ (Turner, 1981; Charlesworth, 1992).

Although loss-of-function R2R3 MYB mutations and gain-of-
function R3 MYB mutations are expected to experience different
rates of fixation, their ultimate effect on development is likely to
be similar. Because the R3 MYB acts by partnering with the
bHLH and using the R2R3 MYB to identify targets, the set of

anthocyanin genes which experience downregulation are expected
to be the same. In Iochroma and other asterids, the MBW com-
plex, whether acting as an activator or repressor, most strongly
targets the late genes of the pathway. The isolation of effects to
the late genes may be important in allowing the suppression of
pigment production but maintenance of other pathway products,
such as flavones and flavonols (Streisfeld & Rausher, 2011;
Wessinger & Rausher, 2012). Similarly, the apparent bias
towards fixation of regulatory mutations as opposed to coding
mutations in structural genes may reflect selection to maintain
the intact pathway for pigment production in other tissues and
developmental stages (Wessinger & Rausher, 2012; Ho & Smith,
2016). Overall, this work together with studies in other flowering
plants suggests that convergence at the level of individual genes
and mutations may not be expected when the underlying mecha-
nisms present multiple, developmentally similar, pathways to the
same phenotype.
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